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Abstract 

Modern complex systems are increasingly expected to exhibit emergent properties such as 
safety and security even as they become more complex, interconnected, and reliant on software 
than ever before. Because of this evolution in the characteristics of these systems, the methods 
available today for developing system architectures no longer provide systems engineers with 
adequate design support. As a result, it is becoming increasingly challenging for systems 
engineers to develop system architectures that exhibit emergent properties like safety.  

This thesis addresses this problem by developing a safety-driven architecture development 
framework that enables the design of emergent properties such as safety into a system 
architecture from the beginning. The key idea is that the results from a hazard analysis process 
known as Systems Theoretic Process Analysis (STPA) should drive design decisions. The 
framework therefore starts with an initial STPA analysis of the system to determine how unsafe 
or undesirable behavior could occur. Structured and systematic processes are then provided to 
help systems engineers use the STPA results to develop the required control behavior of the 
system and explore possible system architecture options to implement that control behavior. 
This framework therefore enables systems engineers to make more informed early architectural 
design decisions driven by safety considerations. This framework is applied to an Urban Air 
Mobility (UAM) case study to demonstrate that it provides the necessary design support to 
enable the development and refinement of an air traffic management (ATM) architecture for 
UAM. 

When creating a system architecture, assumptions may also need to be made to mitigate the 
inherent uncertainties and lack of detailed information about the system at that early stage of 
design. However, these assumptions are used as the basis for design decisions, and it is important 
that they remain valid to avoid flaws in the architecture arising when underlying assumptions 
become invalid. Thus, this thesis also develops and demonstrates a supporting framework to help 
identify these underlying assumptions and ensure they remain valid both during system 
development and after the system is placed into operation. 
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Chapter 1 Introduction 

1.1 Motivation 

Developing complex systems today is becoming more challenging than ever before because 
of both an evolution in the characteristics of these systems and a greater emphasis on the 
properties that these systems must exhibit [1]. On the one hand, the demand for greater 
functionality and greater productivity has given rise to systems with more components that are 
more interconnected and interdependent than systems of the past [2]. In addition, there is an 
increasing desire to use automation and software to augment or enhance the capabilities of 
these systems. Examples of this include the development of self-driving vehicles by the 
automotive industry [3], the wide variety of automation and autonomous functions being 
introduced onboard current and future aircraft [4, 5] and the development of Terrain Relative 
Navigation that was used to guide the landing of NASA’s Mars rover Perseverance in 2021 [6].  

On the other hand, these systems are also increasingly expected to exhibit properties such as 
safety, security, and sustainability. For example, in the automotive industry, there is much 
greater emphasis on functional safety and cybersecurity today as a result of the potential safety 
concerns associated with self-driving vehicles operating on public roads [3]. Similarly, in the space 
industry, the increasing number of spacecraft operated by government and commercial 
organizations has resulted in increased attention being paid to reducing debris and pollution in 
space for the safety and sustainability of future space missions [7]. 

Properties like these are known as Emergent Properties because they are the result of (i.e., 
they emerge from) the behavior of the system and the interactions between system components 
[2, 8]. A system will only exhibit these properties if it is designed to achieve the required behavior 
while avoiding undesirable behavior and interactions between components. 

One set of early design decisions that have an important influence on the system’s behavior 
are those made to create a system’s architecture [9]. A System Architecture is defined as an 
abstract description of the entities of a system and the relationships between those entities [9]. 
It is therefore important to develop an appropriate system architecture to ensure that the 
desired emergent properties like safety are exhibited by a system. Unfortunately, current 
methods for developing system architectures do not provide sufficient support for designing a 
system architecture to achieve emergent properties like safety.  

The goal of this dissertation is to address this problem by developing an alternative approach 
to architecture development that is more suitable for architecting modern complex systems and 
that helps systems engineers to be more successful in designing emergent properties into their 
system architectures from the beginning. 

1.2 Challenges in Architecting Complex Systems 

To design a system architecture to achieve emergent properties such as safety and security, 
systems engineers need to be able to identify the requirements necessary to achieve those 
properties. They can then determine the behavior and structure of the system needed to meet 
those requirements [2]. Unfortunately, as systems have become more complex and software-
intensive, current methods for developing system architectures have become limited in their 
ability to help systems engineers make appropriate design decisions.   
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One limitation of current methods is that they are not focused enough on the safety-relevant 
interactions in a system. Many current methods focus too much on the physical components and 
interfaces of a system. The important safety-related interactions thus become hidden amongst 
the myriad of system components and interfaces. As a result, it can be difficult for systems 
engineers to fully comprehend how their design decisions will impact the behavior of the system, 
and they may inadvertently introduce flaws in the system architecture as they create it. 

Another limitation of current methods is that they lack a systematic process for identifying 
potential architecture options. Although these methods suggest general design principles to use 
such as maximizing modularity or minimizing coupling [10, 11, 12], they provide minimal 
guidance on when to apply which design principles. Systems engineers are thus left to make these 
decisions using their experience and engineering judgement.  

Finally, the last limitation of current methods is their reliance on quantitative metrics for 
evaluating and comparing architecture options. Historically, detailed system architectures have 
been compared using quantitative physical metrics such as mass or thermal performance [13]. 
However, for properties like safety, it is much harder to identify similar types of measurable 
quantitative metrics, especially during the early stages of system development.  

1.3 A Systems-Theoretic Approach to Architecture Development 

To address these limitations, a new approach to architecture development is needed that 
provides more support to help systems engineers design emergent properties like safety into a 
system architecture from the beginning [2, 14]. This research proposes Systems Theory as the 
foundation for this new approach. 

Systems Theory is uniquely suitable because it recognizes the importance of considering the 
system as a whole instead of just focusing on the individual components. In addition, a key idea 
in Systems Theory is that emergent properties are realized when sufficient constraints are 
enforced on the interactions between components. When these constraints are adequately 
enforced, the necessary interactions occur while undesirable interactions are avoided [2, 8].  

This is an important characteristic of emergent properties because it suggests that to achieve 
them, the system must include sufficient control over the behavior of the system components 
and the interactions between them to prevent undesirable behavior. For example, to ensure the 
safe operation of a self-driving vehicle, there must be adequate control to ensure the vehicle 
navigates safely on public roads without colliding with objects or other road users while getting 
passengers or cargo to the correct destinations at the desired time. Because Systems Theory 
focuses on control in a system, it provides a useful theoretical foundation for a new approach to 
architecture development that provides more appropriate design support to help systems 
engineers design emergent properties like safety into a system architecture.  

In [15], an initial version of a systems-theoretic approach to architecture development was 
developed. A key strength of the approach developed in [15] was that it provided guidance for 
using the results from a hazard analysis method called Systems Theoretic Process Analysis (STPA) 
to identify system requirements and the required system-level behavior. However, a major 
limitation was that it lacked a similarly structured and systematic process for creating 
architecture options and comparing them. As such, this research aims to extend the initial 
systems-theoretic approach developed in [15] and address this key limitation. 
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1.4 Research Objective and Contributions 

The goal of this dissertation is to improve the ability of systems engineers to design emergent 
properties like safety into a system architecture by extending the initial systems-theoretic 
approach developed in [15].  The objective of this research can therefore be stated as follows. 

Research Objective: To create an architecture development framework that provides structured 
and systematic processes for creating and assessing system architectures. 

To address the challenges described in Section 1.2 and achieve the research objective, there 
are three main contributions of this research. 

Contribution 1: A structured process for comparing identified architecture options based on 
safety-relevant criteria to support the development of a preferred architecture option  

This contribution addresses the reliance of current methods on quantitative metrics for 
evaluating and comparing architecture options. Especially during the early stages of design, when 
many design details about the system are not yet known, it can be challenging to identify 
appropriate quantitative metrics for properties such as safety and evaluate the performance of 
an architecture with respect to those quantitative metrics. 

Instead of relying on quantitative comparisons of system architectures, this research 
develops a structured process for performing a qualitative, control-oriented comparison of 
architecture options. By analyzing each architecture option under consideration using STPA, the   
identified scenarios can be compared to determine the benefits and tradeoffs of each 
architecture option. Ultimately, these benefits and tradeoffs can be used to inform a decision 
about the preferred architecture that best achieves the desired emergent properties. 

Contribution 2: More structured and systematic processes for developing and refining the system 
behavior and architecture necessary for safety and other emergent properties to be achieved 

This contribution addresses the lack of appropriate design support provided by current 
methods. This lack of support is the result of current methods not focusing enough on the 
control-oriented interactions in a system and only suggesting general design heuristics to help 
systems engineers create a system architecture. To address these limitations, the architecture 
development framework developed in this research focuses first on defining the control behavior 
that a system must achieve to successfully exhibit properties such as safety. Only after the 
required behavior is defined is a system architecture created to implement it. 

To create the required control behavior, this research extends the guidance provided in [15] 
to create a more structured process for identifying the required control elements. The process 
also defines how to iterate on the behavioral design. This iteration allows systems engineers to 
both fix any flaws and more thoroughly explore the behavioral design space for a system. 

Once the required behavior has been defined, this research develops a more structured and 
systematic process for using STPA to iteratively identify architecture options that are worth 
evaluating and comparing. Using insights gained from the analysis of these options, the process 
helps systems engineers to incrementally develop and refine the system architecture.  
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Contribution 3: A supporting framework for identifying and accounting for assumptions made 
during architecture development 

Especially when designing new systems that do not yet exist, early design decisions are made 
under significant uncertainty. For example, the environment in which that system will operate 
may not be fully known. To make design decisions despite these uncertainties, assumptions are 
typically made about what the system’s behavior or operating environment might be in the 
future [16]. However, the effectiveness of those design decisions becomes contingent on the 
underlying assumptions remaining valid. If an assumption becomes invalid, the effectiveness of 
the associated design decisions may be compromised, and flaws may arise in the system design.  

For this reason, although this research is primarily focused on how to make appropriate 
architectural design decisions, a supporting framework for identifying and accounting for 
underlying assumptions was also developed and demonstrated.  

1.5 Case Study: Air Traffic Management and Urban Air Mobility (UAM) 

To demonstrate and evaluate the architecture development framework created in this 
research, the framework is applied to develop an air traffic management (ATM) architecture for 
the National Airspace System (NAS) to enable the implementation of Urban Air Mobility (UAM). 
This section provides a brief overview of the architecture problem to be solved. 

UAM is a relatively new mobility concept that envisions using small aircraft to transport 
passengers or cargo on demand within an urban area [17, 18], similar to the ride hailing services 
provided by Lyft and Uber today. To realize this novel transportation concept, one of the major 
challenges of interest in this research is the integration of UAM into the NAS.  

There is broad recognition that the centralized approach used to manage air traffic in the NAS 
today will not feasibly accommodate the addition of UAM flights [18, 19, 20, 21, 22, 23] because 
they have very different characteristics than today’s air traffic. For example, UAM is expected to 
operate at a higher traffic density, faster pace of flight operations, and perform flights more on-
demand compared to today’s regularly scheduled commercial air traffic [18, 19, 23]. In addition, 
UAM aircraft are anticipated to spend most of their flight time flying low and slow over densely 
populated urban areas [18, 23] unlike today’s air traffic that spend most of their flight time at 
high altitudes away from densely populated areas.  

The existing ATM architecture was not built to manage air traffic with these characteristics. 
From a workload perspective, the current ATM architecture depends on human air traffic 
controllers having centralized control over air traffic [24] and they would be overwhelmed by the 
increased traffic density and pace of UAM flight operations [19]. In addition, the current ATM 
architecture relies on having enough time and extra space to respond to unexpected incidents 
such as emergencies or weather disruptions. However, with the increased traffic densities and 
the low and slow flight of UAM aircraft over populated areas, there will be much less time and 
space available to respond to disruptions or emergencies when they arise. 

For these reasons, it is necessary to re-design the ATM system architecture to accommodate 
UAM flights without compromising the level of safety of the NAS. The goal of this case study is 
therefore to develop an appropriate ATM system architecture that will be able to safely manage 
UAM flights alongside existing aviation operations. 
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Because the ATM system is extremely complex, it needs to be designed incrementally to 
ensure that the development effort remains intellectually manageable. This dissertation 
therefore develops the ATM architecture for UAM over two design iterations to demonstrate 
how this architecture development framework can be used to develop and refine a system 
architecture based on incremental insights about the architecture gained during prior iterations.  

1.6 Hypotheses and Evaluation 

 This research explores two main hypotheses, and their evaluation provides support for the 
first two research contributions described in Section 1.4. While Contribution 3 is demonstrated 
as part of the UAM case study, no formal evaluation is performed. 

Hypothesis 1: A systems-theoretic approach can identify relevant criteria for comparing 
architectures and evaluating their ability to achieve emergent properties 

This hypothesis is evaluated in Chapter 4, where the first design iteration of the UAM case 
study is performed to create an initial collision avoidance ATM architecture for UAM. As part of 
this design iteration, two architecture options are compared: (1) a centralized collision avoidance 
architecture and (2) a decentralized collision avoidance architecture. The benefits and tradeoffs 
identified for these two architecture options using this architecture development framework are 
then compared to the benefits and tradeoffs identified in similar comparisons that have been 
performed in the existing literature. This evaluation demonstrates that this framework identifies 
not only the benefits and tradeoffs that have been found in the existing literature but also 
additional ones that provide a more comprehensive understanding of the various ways that an 
architecture option is able or unable to achieve safety. 

Hypothesis 2: A systems-theoretic approach can support making informed design decisions to 
iteratively develop and refine the architecture for a system 

This hypothesis is evaluated in Chapter 5 by completing a second design iteration for the UAM 
case study to refine the initial collision avoidance architecture created in design iteration 1. After 
both design iterations are complete, the progression of the ATM architecture over the two 
iterations is evaluated. This evaluation demonstrates that the framework enables incremental 
refinement of a system architecture and provides the necessary support to help systems 
engineers make informed design decisions as they make these refinements. 

1.7 Scope 

This research is scoped in several ways to ensure appropriate depth of focus. First, the 
architecture development framework created in this research is intended to be used during the 
concept and architecture development phase of the systems engineering V-model [25, 26]. The 
framework begins after stakeholder analysis is complete and assumes that a prioritized set of 
stakeholder needs and a statement of the system’s purpose is already available. The framework 
ends with the selection of a system architecture that is intended for use in downstream detailed 
system design and verification and validation activities. Thus, this research will not consider the 
process of eliciting and prioritizing stakeholder needs or the process of verifying and validating 
the system. This research will also not consider the creation of a detailed system design. This 
ensures that the focus of this research remains on early-stage system architecture development. 
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Second, this research focuses on the process of developing a system architecture and does 
not consider the tools and methods for documenting it. This specific focus ensures that a clear 
process is defined for creating system architectures using this new approach before considering 
the methods and tools needed to support that process. Thus, architecture description 
frameworks such as the Department of Defense Architecture Framework (DoDAF) [27] or The 
Open Group Architecture Framework (TOGAF) [28] will not be considered. Similarly, the use of 
specific modeling languages such as the Systems Modeling Language (SysML) [29] are also not 
included within the scope of this research. 

Finally, the framework created in this research focuses primarily on designing safety into 
system architectures. In addition to preventing traditional losses such as loss of life, injury, or 
damage to property, it also includes broader notions of safety such as loss of mission. Although 
the author believes this architecture development framework could be applied to design other 
emergent properties into systems besides safety, this research focuses primarily on safety. 

1.8 Organization of Dissertation 

The remainder of this dissertation is organized as follows.  

Chapter 2 reviews the available literature from several engineering disciplines to identify the 
different types of approaches that are currently used to develop system architectures. The 
limitations of these approaches are discussed to identify specific gaps that this research needs to 
address. Then, an overview of systems theory and STPA is provided to justify their use as the 
foundation for the architecture development framework created in this research.  

Chapter 3 describes the development of the safety-driven architecture development 
framework. First, the overall approach to architecture development is described by applying key 
concepts from systems theory. Then, an overview of the safety-driven architecture development 
framework is provided followed by a description of the processes contained within it. 

This architecture development framework is then applied over two design iterations to 
develop an ATM architecture for the NAS that can manage UAM air traffic alongside existing air 
traffic. The first design iteration focuses on developing a high-level collision avoidance 
architecture for the NAS to show how the safety-driven architecture development framework 
can be used to generate a system architecture based on hazard analysis results. Chapter 4 
presents the results from this first design iteration. 

The second design iteration then focuses on refining the selected high-level collision 
avoidance architecture in iteration 1 to obtain a more detailed definition of the collision 
avoidance architecture for the NAS. This design iteration shows how the safety-driven 
architecture development framework can also be used to incrementally refine a system 
architecture. The results from this second design iteration are presented in Chapter 5.  

Chapter 6 develops and demonstrates the supporting framework that was developed to help 
identify underlying assumptions during the architecture development process and account for 
them as the system architecture is developed. 

Finally, Chapter 7 summarizes the conclusions of this dissertation, discusses some of its 
limitations and describes possible directions for future work.  
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Chapter 2 Literature Review 
Although the process of developing a system architecture is typically considered to be a 

systems engineering activity, Systems Engineering is not the only discipline that has created 
methods and approaches for developing architectures. In the late 1960s and 1970s, as the size 
and complexity of software systems began growing, there was recognition that methods were 
needed to facilitate the creation of good software architectures [30, 31]. Later, as systems 
engineers began to contend with similar increases in size and complexity of more general 
engineered systems, many of the ideas for architecting software systems were adapted by the 
Systems Engineering community to design these engineered systems. More recently, the field of 
Product Design, which is closely related to Systems Engineering, also developed methods for 
creating good product architectures [32].  

As a result of these past research efforts, a wide variety of different methods for architecture 
development already exist. Instead of simply coming up with yet another new architecture 
development method in this research, it is important to evaluate these existing methods to better 
understand the limitations that make them ill-suited for designing modern complex systems that 
have the characteristics described in Chapter 1. These limitations can then be used to inform the 
development of the new framework.  

2.1 Current Methods for Architecture Development 

In this research, four main types of approaches were identified in the disciplines identified in 
the previous section: (1) Decomposition-based methods, (2) Reuse-based methods, (3) 
Quantitative methods, and (4) Flow-based methods. 

2.1.1 Decomposition-Based Methods 

One of the most commonly used approaches for developing system architectures is 
decomposition. Decomposition, also known as analytic reduction, is the process of dividing up a 
system into its constituent parts or functions [10]. Not only do decomposition-based methods 
exist in all of the disciplines surveyed in this research, but decomposition is also the foundation 
for processes recommended in safety standards such as ISO 26262 [33] and ISO 21448 [34]. 

For example, in software engineering, one focus in the 1970s was on modularity and 
identifying effective ways to divide a software program up into modules [35, 36, 37]. Two main 
ideas were proposed. The first is information hiding where the goal is to divide a system up into 
modules such that design decisions contained within one module are hidden from the rest [36]. 
The second is stepwise refinement where the goal is to incrementally divide a software program 
into a series of subtasks, gradually making more detailed design decisions [37]. 

In Systems Engineering and product design, decomposition is also commonly used to identify 
the system requirements and functions [26, 32, 38, 39] and one popular group of methods for 
doing this is Model-Based Systems Engineering (MBSE) methodologies. In a widely cited 2008 
paper [40], Estefan reviews six of the most popular MBSE methodologies including INCOSE’s 
Object-Oriented Systems Engineering Methodology (OOSEM) [11] and others [12, 41, 42, 43, 44]. 
Although each method contains slight variations, they all follow an overall process that is like that 
shown in Figure 1 to generate system requirements, the necessary functions, and the system 
architecture to implement those functions. 
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Figure 1: Today’s decomposition-based architecture development approach 

The result of this decomposition-based process is a system architecture that is typically 
represented using an object-oriented model that also focuses primarily on the components (i.e., 
objects) and the interfaces between them. As an example, Figure 2 shows the block diagram for 
a satellite drawn using an object-oriented modeling language called Systems Modeling Language 
(SysML) [29]. In Figure 2, the satellite is represented in terms of the objects or components (e.g., 
electrical power subsystem) and the interfaces between them (e.g., data flows, power cables). 

 
Figure 2: Example system block diagram for a satellite drawn in SysML (from [29]) 
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Limitations of Decomposition-Based Methods 

These approaches could be used to design simpler systems of the past because those systems 
contained components that behaved relatively independently of each other. As a result, it was 
possible to assume that a system could be divided up into components before identifying and 
analyzing the interactions. It was also assumed that the system design will be successful if the 
behavior of each system element is well understood and has clearly defined interfaces. 
Unfortunately, these assumptions are not necessarily valid for today’s software-intensive 
complex systems [2, 9, 45]. Instead, the design process needs to be more focused on the control-
oriented interactions in a system. As discussed in Chapter 1, it is these control-oriented 
interactions that determine if the system can adequately enforce the safety constraints and thus 
exhibit the desired emergent properties.  

One of the key limitations of decomposition-based approaches is therefore that the methods 
and the underlying system models they use focus too heavily on the components and interfaces 
in a system. The control-oriented aspects of the system thus become obscured or hidden, making 
it more difficult for systems engineers to recognize the critical interactions that define the control 
behavior of the system. For example, the block diagram of the satellite in Figure 2 shows 
numerous physical interactions between the satellite’s subsystems but not the interactions that 
ensure the satellite is at the right orbital altitude and in the right orientation to fulfill a mission. 

Another key limitation is their lack of guidance for how to create the system architecture or 
identify possible architecture options. Because there are typically multiple ways to divide up a 
system into components [26, 39], rules of thumb known as partitioning heuristics are sometimes 
used to help systems engineers decide how to divide up the system into modules. For example, 
Design Structure Matrices (DSMs) [46] help identify ways to modularize a system that minimizes 
the connections between modules and maximizes a module’s independence. Some additional 
examples of partitioning heuristics suggested in program design and MBSE methodologies 
include: 

1. Maximizing cohesiveness [11, 47] 
2. Information hiding [11, 35]  
3. Enabling component reuse  [11, 47] 
4. Minimize difficulty in making changes [11] 

Unfortunately, these heuristics do not always lead to a good system architecture for any 
system. A systems engineer must therefore know when to apply which heuristics [48]. However, 
decomposition-based methods typically offer little guidance and include minimal system-level 
analyses to help systems engineers choose the right heuristic(s) for a given system. For example, 
many of the MBSE methodologies use system use cases to inform the decomposition of a system 
into functions [11, 42, 47].  

In summary, decomposition-based methods are limited in their ability to support the 
development of system architectures for modern complex systems for two reasons. First, the 
underlying object-oriented system models do not adequately emphasize the control-oriented 
aspects of a system. Second, they lack a systematic process for creating the system architecture 
or identifying possible architecture options. 
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2.1.2 Reuse-Based Methods 

Another approach to architecture development that has received significant research 
attention in systems engineering and software engineering is reuse-based methods. Reuse-based 
methods are an approach to architecture development that identifies fundamental aspects of a 
system design that can be reused (like a template) to solve commonly occurring design problems. 
The goal of these methods is to help software engineers or systems engineers to more quickly 
identify useful architectures by leveraging the lessons learned from past design efforts.  

In the mid to late 1990s, design patterns [49] or architectural styles [30] were created to help 
capture and share design experience about how to structure a software system. In essence, they 
defined a configurable or re-usable system model [49, 50] that could be tailored to suit a specific 
system being designed and they have sometimes helped to identify less obvious system 
structures that a software developer might not have identified on their own [49].  

Another reuse-based method in software engineering that is similar to design patterns is 
software design frameworks. Software design frameworks describe a commonly occurring 
problem and the required objects and system structure needed to solve that problem [51]. In 
addition, they also contain the code for a reusable main program and the developer decides what 
components to plug into it [51, 52]. A commonly cited example of a software design framework 
is the Model/View/Controller (MVC) framework for implementing a graphical user interface [51]. 

The concept of reusable architectures and patterns has also been applied in Systems 
Engineering for creating system architectures. For example, INCOSE and NASA both recommend 
using reference architectures when creating the system architecture [26, 39]. Like patterns, a 
reference architecture is a system architecture for a previous system that a systems engineer can 
use to help decide how to architect a new system.  

INCOSE has also explored the use of pattern-based design methods in systems engineering 
and their MBSE patterns working group [50] created Pattern-Based Systems Engineering (PBSE). 
In PBSE, a pattern is a reusable or configurable system model. PBSE is thus an extension of 
traditional MBSE methodologies with additional methods for managing patterns and configuring 
them to suit the needs of a particular project [50, 53].  

Another reuse-based method that has been proposed in systems engineering is Platforming 
[54]. Platforming is defined as the sharing of components or processes across a family of products 
with the goal to reduce the development costs and lead times by sharing these costs across 
multiple products [54]. For example, the automotive industry uses platforming to create families 
of vehicles that all use a common foundational vehicle platform [54].  

Limitations of Reuse-Based Methods 

Although there are potential benefits to using reuse-based methods to create system 
architectures, there are also important limitations to consider. First, although the use of reuse-
based methods is often motivated by the ability to share design knowledge and speed up the 
design process, these benefits have not been empirically validated. In a 2012 paper [55], Zhang 
and Budgen reviewed the literature on software design patterns up to 2009. Although they found 
good support for the claim that using patterns improves communication between software 
developers and maintainers, they found no evidence that patterns are effective at helping 
novices learn about design by sharing design knowledge. They also found inconclusive evidence 
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that the use of patterns has any impact on the productivity of developers or the quality of the 
software they produce. In fact, [56] notes that reuse has resulted in significant accidents in 
aerospace systems in the past. 

Another limitation when using patterns or reference architectures is that it can be challenging 
for systems engineers and software developers to make decisions about which patterns to use in 
their design. This is because studies have found that focusing on reuse may not necessarily be 
the best approach for all systems [55] and choosing which patterns to apply still requires some 
prior design experience. Zhang and Budgen highlight this problem in [55] when they note that 
software developers first need to gain experience by seeing how others applied a pattern before 
they can know how and when to use that pattern in their own designs [55].  

Finally, the use of patterns or reference architectures assumes that a good architecture has 
already been identified for a given problem. For new versions of existing systems or new systems 
that bear significant similarities to existing systems, patterns or reference architectures may be 
useful to avoid having to start a design from scratch. However, for new systems that have never 
been built before (such as UAM), a “good” architecture will not be available. This makes patterns 
and reference architectures of limited use when designing new types of systems. Furthermore, 
attempting to use a pattern and reference architecture could limit the opportunities for systems 
engineers to come up with new architectures that might perform better for their specific system 
than the pattern or reference architecture. 

In summary, the main limitations of reuse-based methods are that many of the claimed 
benefits have not been validated and these methods can be challenging to apply because they 
provide little guidance on how to select the best pattern or reference architecture for a given 
system. In addition, although these methods may be beneficial for systems that have established 
some amount of design precedent, they are limited in their ability to help systems engineers 
design new types of systems where a good architecture has not yet been identified. 

2.1.3 Quantitative Methods 

In the decomposition-based and reuse-based methods reviewed above, the focus is primarily 
on choosing the best way to decompose a system into modules and it is this choice that drives 
the creation of a system architecture. However, these methods typically only consider a few 
possible architecture options.  

An alternative approach is to perform tradespace exploration. A tradespace is defined as the 
set of architectures represented on a space defined by two or more metrics [10]. Quantitative 
methods aim to explore the architectural tradespace for a system more thoroughly by 
systematically identifying possible architecture options and then quantifying and comparing the 
performance of these options with respect to a set of performance criteria. This quantitative 
comparison allows the system designer to make a data-driven decision about which option is the 
best. Thus, in quantitative methods, the performance criteria drive the creation (and selection) 
of a system architecture. There are three main types of quantitative methods: (1) enumeration 
and evaluation methods, (2) optimization methods, and (3) simulation methods. 
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Enumeration & Evaluation methods 

The main goal of enumeration and evaluation methods is to first identify all feasible 
architecture options and then evaluate and compare the performance of each one. One simple 
way to enumerate architecture options is to use morphological matrices [10]. A morphological 
matrix is essentially a table where each row represents a design variable, and each column 
represents an alternative value (option) for that design variable. Architecture options are created 
by selecting one value for each design variable. For more complex system architectures, an 
alternative approach is to represent the design variables and the connections and constraints 
between them using a graph [57, 58, 59]. The graph is then traversed and values for each design 
variable are chosen to create architecture options. 

Once the architecture options are enumerated, the performance of each architecture option 
must then be evaluated with respect to a set of performance metrics. One common evaluation 
approach is to use designer-provided equations that specify the relationship between 
architectural features and the selected performance metrics [58, 59]. Alternatively, a method 
called Value Assessment of System Architectures Using Rules (VASSAR) proposed to evaluate 
architecture options based on the extent to which it satisfies the stakeholder requirements [57].  

Once the performance of all architecture options has been evaluated, they can be compared 
to identify tradeoffs between them. This comparison is sometimes done graphically using pareto 
front plots [10, 57, 58, 59].  A pareto front plot is essentially a scatter plot where each point 
represents an architecture option and the axes represent the performance metrics (e.g., total 
utility and cost) that the architecture options are evaluated against. For example, Figure 3 shows 
a pareto front plot generated from a retrospective analysis of different mission architectures 
developed in the 1960s for the Apollo program [59]. Each point represents a mission architecture 
option that is plotted based on its mission success probability (a measure of utility) and initial 
mass to low earth orbit (IMLEO) (a measure of cost).  

 
Figure 3: Pareto plot for possible apollo mission architectures (reproduced from [59]) 

The pareto front plot thus helps a systems engineer to visualize the tradespace and quickly 
identify the architecture options with the best performance. It can also help to identify tradeoffs 
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between architecture options that have similar overall performance but exhibit better 
performance on one metric at the cost of worse performance on another metric. 

Optimization Methods 

While evaluation and enumeration methods provide good coverage of the tradespace for a 
system, they can require a significant amount of time and computational resources to evaluate 
the large number of architecture options that are generated. To reduce these costs, optimization 
methods identify the best (optimal) design for a system by iteratively searching the architectural 
tradespace. At each iteration, the goal is to identify architecture options that offer incrementally 
better performance than the architecture options found in previous iterations. Iteration stops 
when the architecture option with the best performance has been found. 

One example of an optimization method used in mechanical engineering and product design 
is Axiomatic Design [60], a mathematical approach to system design where a system designer 
must select the design parameters that define the system. Matrix-based design equations then 
define how the design parameters satisfy the functional requirements [60].  

Using these matrix-based design equations, Axiomatic Design provides two design axioms to 
help a designer choose the best design parameters for their system. The Independence Axiom 
focuses on maximizing the independence between the functions of the system. Based on this 
principle, a system designer should select design parameters that minimize the coupling between 
the functional requirements. The Information Axiom, then, provides a quantitative approach for 
determining how good the design is by calculating the probability that a system successfully 
achieves its desired performance with respect to the functional requirements.  

While axiomatic design has been applied successfully to the design of physical systems, it is 
more difficult to apply to other types of system design because of its narrow focus on functional 
independence and information content. In addition, axiomatic design tends to be focused on 
design within a specific discipline whereas systems engineers need to consider the concerns from 
multiple disciplines simultaneously when selecting an optimum design. 

To address this need to optimize across engineering disciplines concurrently, Multi-
Disciplinary Design Optimization (MDO) methods were created. Instead of making discipline-
specific design decisions sequentially (e.g., structural design, then thermal design), MDO 
methods optimize the system design over the constraints of multiple disciplines simultaneously. 
These methods were initially used to design aerospace systems where strong coupling between 
engineering disciplines made it challenging to design systems one discipline at a time [61]. 

In MDO, the design problem is formulated mathematically using equations that define (1) the 
design variables and the range of possible values, (2) the objective function used to calculate the 
performance of an architecture option based on the values of the design variables, and (3) the 
constraint functions used to quantify the constraints that an architecture option must meet to 
be considered feasible [13]. 

Once the problem has been formulated, a wide variety of different optimization algorithms 
can be used to identify the optimal values for the design variables. [62] provides a good overview 
of the different classes of optimization algorithms and how to select which algorithm to use based 
on the characteristics of the objective function and constraint functions. Although many of the 
optimization algorithms used by MDO methods are designed to solve for continuous design 
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variables such as length or mass, there are also optimization methods that are designed 
specifically for optimization problems involving discrete design variables [63, 64].  

Simulation Studies 

Finally, a third type of quantitative method for analyzing and evaluating system architectures 
is simulation studies. Although simulation studies do not help to create architecture options, they 
provide a way to evaluate and compare them by “operating” a system virtually. Systems 
engineers can then obtain quantitative data about the aspects of a system’s behavior that are of 
interest before any software or hardware is developed. Simulation studies can thus be used to 
compare different architecture options operated in the same simulated environment or scenario. 

Simulations are becoming an increasingly popular tool for evaluating the behavior or 
performance of a wide variety of different systems architectures [1] and they have been used 
extensively in the ATM literature to evaluate ATM architectures and concepts. Given the 
relevance of these methods to the UAM case study used in this dissertation, this section provides 
a brief overview of the different types of simulation studies in the ATM literature.  

The methods used to analyze ATM concepts today can be divided into three main categories. 
The first category is physical NAS models that were developed to model specific areas of the NAS 
such as runways, airports or terminal airspace at a high level of detail. These models are typically 
used to analyze the impact of changes to airspace structure or airport layout on performance 
metrics such as capacity or delays [65]. However, Odoni notes in [65] that these models do not 
adequately analyze safety. 

The second category of models are functional NAS models that model the NAS as a whole but 
at a higher level of abstraction and for a specific function such as conflict detection. There are 
two main types of functional NAS models: (1) Control-Theoretic Models and (2) Human 
Performance Models. Control-theoretic models use mathematical abstraction derived from 
control theory to model air traffic management as a control system. The goal of these models is 
to identify algorithmic ways to enable multiple decision-making agents to collectively control and 
coordinate the movements of aircraft to resolve conflicts and avoid collisions [66, 67, 68].  

By contrast, human performance models were developed to model the cognitive functions 
and decision-making of air traffic controllers or flight crews. Because the current air traffic control 
system is so human-centric, human performance models were needed to analyze the impact of 
changes such as new ATM concepts or procedures on human performance metrics such as 
workload [69, 70, 71].  

Finally, the third category is simulation frameworks that provide the infrastructure needed to 
integrate different models into a complete simulation of air traffic flowing through the NAS [72, 
73, 74, 75].  These frameworks enable performance metrics such as throughput, capacity or 
closest point of approach between aircraft to be calculated. More recently, a new type of 
simulation framework called Agent-Based Modeling and Simulation (ABMS) [76, 77] provides a 
more dynamic approach to simulation. By modeling the interactions and decision-making of each 
agent to match what would occur in the real world, they are used to predict overall system 
behavior and performance.  
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Limitations of Quantitative Methods 

While quantitative methods have been applied successfully in the aerospace and automotive 
industries to create and analyze physical or more detailed architectures, these methods are more 
challenging to apply when developing other types of architectures such as conceptual or 
functional architectures. 

One key reason is that it is much harder to identify relevant quantitative metrics for 
evaluating architectures at the conceptual level compared to the physical level. For example, 
mass and cost are common quantitative metrics for evaluating a physical architecture. However, 
it is more challenging to identify suitable metrics to quantify the safety or security of a conceptual 
or functional architecture because safety and security are not physical properties.  

Even if quantitative metrics exist, the performance of a conceptual or functional architecture 
with respect to a given metric is challenging to evaluate. This is because in the early stages of 
system design, many of the design details needed to calculate quantitative metrics are not yet 
known. For example, mass and cost can be calculated for a physical architecture but are much 
harder to calculate for a conceptual or functional that only defines a set of functions and the 
interactions between them, not the details of how they are implemented.  

These issues suggest that creating system architectures, especially during the early stages of 
system design, is a fundamentally different type of problem solving activity than creating physical 
architectures and different techniques are required [78]. DeRemer and Kron make this 
observation in [79] when they state that: 

Structuring a large collection of modules to form a “system” is an essentially distinct and 
different intellectual activity from that of constructing the individual modules [79, p. 80] 

In summary, quantitative methods enable more systematic and thorough exploration of a 
tradespace compared to decomposition-based or reuse-based methods when creating physical 
system architectures. However, because they require architectures to be evaluated strictly in 
terms of quantitative metrics, it is challenging to use quantitative methods to evaluate 
conceptual or functional architectures for emergent properties like safety. 

2.1.4 Flow-Based Methods 

The last type of approach to architecture development is flow-based methods. Flow-based 
architecture development methods are typically used to design systems where the primary goal 
of the system involves flow-based properties such as efficiency or throughput. For example, a 
logistics network might be designed using flow-based methods to maximize the speed and 
efficiency with which packages can be transported from source to destination. Similarly, a 
communications network might be designed using flow-based methods to maximize the data 
throughput or the number of clients that can be served.  

Flow-based methods model the system as a network of nodes (i.e., a graph) through which 
items, energy or data flow through. These graph-based models are then used to identify how 
best to link the nodes to achieve the desired properties. Flow-based methods have been used to 
design mission architectures and space logistics networks [80], utility, and transit infrastructure 
networks in a city [81] as well as software systems [31, 82]. 
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Limitations of Flow-Based Methods 

While these flow-based methods have been successfully used to design systems to achieve 
flow-based properties such as efficiency or throughput, they are not suitable for designing 
systems to achieve non-flow-based properties such as safety because they only focus on the flow 
interactions between nodes of the system. However, as discussed in Chapter 1, it is the control-
oriented interactions in a system that give rise to emergent properties. Thus, like the object-
oriented models used in decomposition-based methods, flow-based models do not focus enough 
on the essential control-oriented interactions that enable emergent properties such as safety to 
be achieved.  

2.2 Limitations of Current Approaches 

In section 2.1, a wide variety of architecture development methods were reviewed. Based on 
the limitations discussed for each category of methods, the key limitations that are addressed by 
this research are as follows. 

First, the modeling approach underlying many of the architecture development methods do 
not model the control-oriented interactions in the system that are critical to ensuring that 
emergent properties such as safety and security are achieved. Object-oriented system models 
focus too much on the physical components and interfaces in a system while flow-based system 
models focus too much on flow interactions. As a result, it is much harder for system designers 
to reason about the necessary functions and control interactions that should be included in the 
system design because they are obscured by these system models. 

Second, although many of the architecture development methods recognize the importance 
of deciding how to divide up a system into components, they typically offer little guidance on 
how to make that decision for a specific system. Some methods (e.g., MBSE methods) offer a 
variety of heuristics that a systems engineer can use to inform how they decompose their system. 
Other methods rely on the use of patterns or reference architectures that a system designer can 
customize like a template. In either case, however, little guidance is provided on how to decide 
which heuristics to apply and there is heavy reliance on the experience of the system designer to 
make these decisions. Furthermore, for new or novel systems that have never been designed 
before, useful heuristics, patterns or reference architectures may not exist yet because a design 
precedent has not yet been established. 

Third, many of the current architecture development methods evaluate architecture options 
using methods that are not suitable for conceptual or logical architectures created at the early 
stages of system design. This limitation arises because these methods require architecture 
options to be evaluated using quantitative criteria that are easiest to identify when creating a 
physical system architecture. However, some desirable emergent properties do not have 
associated quantitative criteria that can be easily defined. Furthermore, even if quantitative 
criteria are identified, it is much harder to quantitatively evaluate the performance of early-stage 
conceptual or logical architectures with respect to those criteria because many of the design 
details have not yet been decided. 

These limitations thus suggest that there is a need to develop a more structured and 
systematic approach for designing emergent properties into system architectures that can be 
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applied starting at the early stages of system design. This research proposes using Systems 
Theory as the foundation for this new approach.  

2.3 Introduction to Systems Theory 

To design emergent properties into modern complex systems, the design process needs to 
avoid the limitations discussed in Sections 2.1 and 2.2 by using an approach that is focused on 
the control-oriented aspects of a system and emphasizes the need to consider the system as a 
whole. Instead of relying on decomposition, architecture development needs to take a holistic 
control-oriented approach based on systems theory. 

As discussed in Chapter 1, architecting modern complex systems to achieve emergent 
properties such as safety is challenging because they are becoming more complex and 
interconnected. Because of the increased coupling between components, their behavior is no 
longer independent and depends on both the inputs received from other components as well as 
the context or environment they are operating in. Unfortunately, decomposition-based 
approaches overemphasize the independence of the components [83, 84], making it more 
difficult to identify or analyze the emergent behaviors or properties of the system [2, 8, 84]. 

Systems theory was created in response to this need to view systems more holistically. It 
recognizes that the properties or behaviors of the system are not just the sum of the behaviors 
of the components and that the system’s behavior depends on the environment in which it 
operates [83, 85]. For this reason, Systems Theory emphasizes considering the system as a whole, 
including the context or environment in which the system operates.  

Systems theory also recognizes that the behavior of a system arises from circular loops of 
cause-and-effect relationships instead of linear chains. As Peter Senge states, “reality is made up 
of circles but we see straight lines” [86, p. 73]. Instead of understanding the behavior of a system 
in terms of one event leading to another (a linear view of causality), Systems Theory views a 
system’s behavior as being influenced by feedback in continuously operating circular loops [86, 
87]. As a result of these circular loops of cause and effect, behavior in one part of the system can 
eventually influence another part of the system even if they are not directly coupled or connected 
to each other [45]. For this reason, the behavior of a system arises from the structure of its 
control and feedback loops [88]. 

There are two pairs of key concepts that form the foundation of Systems Theory: Hierarchy 
and Emergence, and Communication and Control [2, 8]. First, in systems theory, a system can be 
organized into hierarchical levels such that the properties associated with the system elements 
at one level arise (i.e., emerge) from the interactions between the parts at the next lower level 
[2, 8]. Extending these ideas to engineered systems, any complex system can also be organized 
into hierarchies of subsystems, functions or components. Emergent properties such as safety 
thus arise from the interactions between the system components at the level below [2].  

This leads to the second pair of key concepts: Communication and Control. To ensure that 
the necessary interactions between system components occur, components at one level of the 
hierarchy can apply controls onto the level below to constrain the interactions that occur at the 
lower level [2, 8]. The enforcement of these constraints thus ensures that the required 
interactions occur and undesirable interactions are avoided. In addition, the implementation of 
these controls requires the communication of both controls down to the components below as 
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well as feedback up to the controller. Communication and control are therefore the means by 
which constraints on a system’s behavior are enforced [2].  

2.4 Overview of STAMP and STPA 

Systems-Theoretic Accident Model and Processes (STAMP) is an accident causality model that 
is based on Systems Theory [2]. As in Systems Theory, STAMP emphasizes the importance of 
considering the system as a whole. This includes not just the technical aspects such as hardware 
and software but also the human operators, the social and organizational aspects as well as the 
system’s operating environment. In addition, STAMP also recognizes that emergent properties 
such as safety arise from the interactions between the system components. This holistic view of 
a system enables STAMP to explain how accidents or undesirable behavior might occur due to 
non-linear or indirect causes, design and requirements flaws, and human factors issues in 
addition to component failure.  

STAMP also treats safety as a control problem rather than a reliability problem. Instead of 
focusing on preventing component failure, STAMP focuses on preventing accidents or 
unacceptable losses by ensuring the necessary interactions and behaviors occur and undesirable 
interactions or behaviors are avoided. This can be done by identifying and enforcing sufficient 
constraints on the system’s behavior and the interactions between the system components.  

Based on this concept of safety as a control problem, STAMP models the controls in a system 
using a hierarchical safety control structure that contains a controlled process and the various 
controllers that can influence or control the system’s behavior. This is illustrated in Figure 4.   

 
Figure 4: A simple control loop (from [89]) 

Under this paradigm, a controller enforces the system constraints by applying appropriate 
control actions to control a system’s behavior or the interactions between its components. In 
turn, the controller receives feedback about the effect of those controls on the system. This 
concept of control is interpreted broadly. Although the controls could be technical or physical 
controls, they may also be social or organizational controls. 

Process models are another important and unique aspect of STAMP. Process models (also 
known as mental models for humans) are important for the safe operation of a system because 
they are used by controllers to make decisions and select appropriate control actions. For this 
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reason, controllers must receive adequate feedback to keep process models updated over time 
to avoid making unsafe decisions based on an incorrect process model. For example, if a pilot’s 
mental model of their aircraft is inconsistent with the actual aircraft state, they may provide 
control inputs that are unsafe in the context of the actual state of the aircraft.  

Based on this theoretical foundation, a hazard analysis technique called Systems-Theoretic 
Process Analysis (STPA) was created. STPA takes a more generalized view of accidents and losses. 
Although a loss may involve human death or injury, it may also involve other types of losses such 
as equipment, mission, financial or information losses. This enables a wide variety of control-
oriented emergent properties to be analyzed using STPA including maintainability [90] and 
scalability [91]. Figure 5 shows the four steps in STPA. 

 
Figure 5: The STPA process (from [89]) 

STPA analyzes the control loops in a safety control structure to proactively identify potential 
flaws and causes of accidents during development before an actual accident occurs [89]. These 
flaws and causal factors are identified as Unsafe Control Actions (UCAs) and causal scenarios.  

Because of STPA’s focus on identifying potential flaws in control loops, an STPA analysis can 
be used to inform how a system should be designed or how to improve an existing design to 
mitigate or prevent the UCAs and scenarios. However, a more structured process is needed for 
using the STPA results to create and assess architecture options.  

2.5 Past Research Using STAMP and STPA for Architecture Development 

In addition to the safety-driven approach to architecture development that was developed in 
[15], there have been several other research efforts that have also applied STAMP and STPA to 
architecture development. This section provides a brief overview of these past research efforts 
to highlight some specific aspects of architecture creation and assessment that a systems-
theoretic architecture development framework should address. 

Comparing Architecture Options Using STPA 

One way that STPA has been used in architecture development is to analyze a series of 
architecture options that have already been created and compare the results. For example, 
Kharsansky used STPA to compare three architecture options for controlling and managing a 
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constellation of satellites in terms of the reliability and safety of the architecture as well as the 
ability to scale the architecture to larger constellation sizes [91].  

Similarly, France used STPA to compare four architecture options for an automated park 
assist system where each architecture option gives the automation an increasing level of control 
over the vehicle and the parking task [92]. France then compared the different architectures in 
terms of the number of driver and automation UCAs identified for each option [92].  

As a final example, Horney used STPA to analyze two architecture options for controlling the 
formation shape of one or more unmanned aircraft that are tethered to a lead human-piloted 
aircraft [93]. In one option, the human pilot decided the formation shape and in the other, the 
tethered unmanned aircraft decided the formation shape. Horney then compared the two 
options in terms of the identified UCAs and scenarios and used them to highlight the potential 
challenges of each option [93].  

These past research efforts all employ a common strategy for comparing architecture 
options. They identify a series of architecture options first, evaluate each one with respect to a 
set of pre-determined criteria (e.g., number of UCAs or scenarios) and then compare them based 
on those criteria to determine the benefits and tradeoffs of different options. 

Although these research efforts are an improvement over the traditional methods for 
architecture development, there are two key limitations. First, more guidance is needed on how 
to systematically identify the architecture options to be evaluated instead of just using heuristics 
or experience. For example, Kharsansky and France defined architecture options in terms of 
different levels of automation, a heuristic that is commonly used when deciding how much 
automation to include in a system. Instead of just relying on heuristics or past experience, a more 
systematic process is needed for identifying what architecture options should be considered. 

Second, more guidance is needed on identifying the criteria by which architecture options 
should be assessed. Instead of just comparing architecture options in terms of the number of 
different types of UCAs or scenarios identified, a more structured process is needed to help 
identify appropriate metrics of interest for a specific system.  

Using STPA to Improve an Architecture 

Another way that STPA has been used in architecture development is to analyze an initial 
architecture using STPA and use the results to inform changes to improve that architecture. 
When done iteratively, the architecture can be improved incrementally. 

One method that does this is called Systems-Theoretic Early Concept Analysis (STECA) [94]. 
STECA is based on systems theory and extends STAMP and STPA to analyze the Concept of 
Operations (ConOps) for a system early in the design process. STECA focuses on systematically 
identifying missing information, undocumented assumptions and inconsistent or conflicting 
information in the ConOps and formulating mitigation strategies to address these problems [94].  

To do this, STECA first models the system based on the ConOps using a control structure. It 
then defines a set of formal equations that can be used to analyze the control structure for gaps 
in a mathematically rigorous manner. Three main gaps are analyzed: (1) completeness in the 
definition of the control loops, (2) constraints fully accounted for, and (3) consistency and clarity 
where responsibilities or control actions are shared by multiple controllers in the control 
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structure [94]. STECA then provides a process for modifying the control structure to remedy any 
gaps that are identified. The STECA analysis and design process is illustrated in Figure 6. 

 
Figure 6: STECA process flow diagram (from [94]) 

Another method that uses the results of an STPA analysis to improve an initial system 
architecture is the conceptual architecture-based approach described by Leveson in [14]. In this 
design process, an initial system architecture (called a conceptual architecture) is analyzed using 
STPA to identify UCAs and scenarios that describe potential causes of unsafe system behavior. 
Changes to the system architecture can then be identified that will mitigate or eliminate the 
identified UCAs or scenarios and the STPA analysis can be updated to reflect the new version of 
the system architecture. In [14], this process is applied to the design of a Thermal Tile Processing 
System (TTPS) robot. 

The TTPS robot is an automated vehicle that was intended to be used to refurbish thermal 
tiles on the space shuttle after a space flight. In essence, the robot consisted of a mobile base to 
move from one location to another and a robotic arm that serviced the thermal tiles on the space 
shuttle. To prevent the mobile base from tipping over while the robotic arm was extended, the 
mobile base included stabilizer legs that needed to be deployed and secured before extending 
the robotic arm [14]. An initial architecture for this robot used separate controllers to control the 
movement of the robotic arm and stabilizer legs as shown in Figure 7. 
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Figure 7: Initial system architecture for TTPS robot (from [14]) 

An STPA analysis of this initial architecture found that poor coordination between the two 
controllers controlling the robotic arm and stabilizer legs was associated with numerous 
hazardous scenarios. For example, the stabilizer legs could be retracted before the robotic arm 
was fully stowed or the robotic arm could be extended before the stabilizer legs were fully 
deployed, either of which could cause the robot to tip over.  

Based on these STPA results, Leveson finds that many of these hazardous scenarios could be 
prevented by using the same controller to control the stabilizer legs and robotic arm instead of 
using separate controllers [14]. Having the same controller be responsible for controlling both 
the stabilizer legs and robotic arm makes it easier to coordinate their movements. This 
alternative architecture is shown in Figure 8.  

 
Figure 8: Alternative architecture for the TTPS robot (from [14]) 
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This example illustrates how information about how a system might behave can inform the 
development of its architecture. Because the STPA analysis identified that coordinating the 
movement of the robotic arm and stabilizer legs would be critical for ensuring safe system 
operation, a better architecture was identified that used the same controller to control both 
parts. This functional grouping makes it easier to ensure that unsafe behavior would be avoided.   

Both STECA and the conceptual architecture-based approach are useful because they help 
systems engineers to identify information that can inform changes to the architecture. By helping 
to highlight flaws or inconsistencies in a system architecture, both STECA and the conceptual 
architecture-based approach provide systems engineers with useful information that can guide 
and inform their design decisions. It is this type of design support that a safety-driven architecture 
development framework should also strive to provide. 

However, both STECA and the conceptual architecture-based approach require an initial 
ConOps or conceptual architecture to be defined first to perform the initial analysis on. That 
initial architecture is then modified to address any flaws that are found. Instead of creating an 
initial architecture and then addressing any flaws, it would be preferable to create an initial 
architecture that avoids as many of the flaws as possible from the beginning. 

2.6 Summary 

This chapter surveyed a wide variety of architecture development methods and identified 
several key limitations to be addressed. First, many of these methods do not focus enough on 
the control-oriented interactions that are critical to ensuring that emergent properties such as 
safety are achieved. Second, they rely primarily on general heuristics to guide the creation of a 
system architecture and typically offer little guidance on how to make those design decisions for 
a specific system. Finally, they rely on quantitative criteria for comparing architecture options 
even though it can be difficult to identify appropriate quantitative criteria for emergent 
properties like safety, especially during the early stages of development.  

Instead of these traditional approaches, systems theory and STAMP offer a more suitable 
approach for designing emergent properties like safety into a system architecture from the 
beginning. Because of STPA’s focus on identifying potential flaws in control loops, an STPA 
analysis provides useful information that can be used to inform decisions about how a system 
should be architected to achieve safety and other emergent properties. The next chapter 
describes the architecture development framework that was developed to structure the process 
of using STPA results to inform architectural design decisions and create a system architecture 
that best achieves the desired emergent properties.   
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Chapter 3 A Safety-Driven Approach to Architecture Development 
As described in Chapter 1, this research aims to develop a framework for architecture 

development that enables systems engineers to design emergent properties like safety into their 
system architectures. To address the limitations of current methods that were described in 
Chapter 2, this framework will need to provide three main types of support. First, instead of 
simply relying on decomposition to identify the system elements, this framework needs to help 
systems engineers reason about what functions and interactions will need to be included in the 
system architecture to achieve the desired emergent properties. Second, instead of just relying 
on design heuristics, this framework needs to help generate relevant design information that 
systems engineers can use to inform their architectural design decisions. Finally, instead of only 
using quantitative metrics to evaluate and compare architecture options, this framework needs 
to help identify relevant evaluation criteria that systems engineers and analysts can use to 
determine how well an architecture option achieves the desired emergent properties. Because 
this framework is focused on early-stage architecture development, it is also important that these 
criteria can be identified even when few details about the system are known.  

To meet these needs and enable systems engineers to design emergent properties into 
systems, Systems Theory provides a suitable theoretical foundation for this framework. This 
chapter is organized as follows. First, the concepts from Systems Theory (described in Section 
2.3) are applied to define a systems-theoretic approach to architecture development. Then, an 
overview of the framework is provided followed by the details of how each part of the framework 
was developed. 

3.1 A Systems-Theoretic Approach to Architecture Development 

In any architecture development effort, the overarching goal is to determine how the system 
should be designed to achieve the desired emergent properties while avoiding undesirable 
behavior. Ultimately, this requires deciding what functions the system needs to perform, what 
interactions are needed between functions, what the components of the system should be and 
how they should be structured. To create a systems-theoretic approach to architecture 
development, the concepts from systems theory can be applied to each of these design decisions. 

As discussed in Section 2.3, one of the key concepts from Systems Theory is Holism – the idea 
that the behavior of a system depends on the context it operates in. Applying this concept to 
architecture development therefore suggests that systems need to be designed as a whole. This 
means that design decisions should account for both the interactions between functions or 
components of the system as well as the interactions between the system and the environment 
in which it operates. These interactions are an especially important aspect of the system design 
because the desired emergent properties of a system can only be achieved if the necessary 
interactions are designed into a system while avoiding undesirable ones.  

Similarly, applying the concepts of hierarchy and emergence as well as communication and 
control suggests emergent properties can be designed into a system by enforcing sufficient 
constraints to control the behavior of the system components and the interactions between 
them. This requires that the system design contains the right components arranged in an 
adequate hierarchy with the necessary communication (feedback and control actions) to achieve 
the system goals while enforcing constraints on how those goals can be achieved. 
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A system-level design process should therefore assist system designers in creating the system 
architecture by helping them to identify the necessary interactions (e.g., control actions and 
feedback) and the required system structure. This will ensure that components at a particular 
level of the control hierarchy are designed to exert adequate control over the components at the 
level below.   

3.2 Overview of the Safety-Driven Architecture Development Framework 

Based on the overall approach described in the previous section, a new framework for 
developing system architectures called the Safety-Driven Architecture Development Framework 
(SDADF) was developed to help systems engineers design emergent properties like safety into a 
system architecture from the beginning of architecture development. Conceptually, the 
framework consists of 3 main parts as illustrated in Figure 9. 

 
Figure 9: Conceptual overview of safety-driven architecture development framework 

The key overarching idea is that a system should be designed to prevent unsafe or undesirable 
behavior. Thus, the first part of this framework is to perform an initial STPA analysis of the system 
to identify preliminary information about how unsafe behavior of the system might occur. One 
of the strengths of STPA is that it analyzes a system including the context in which that system 
operates. Thus, using STPA results to drive design decisions ensures that those design decisions 
account for the system’s operating context. 

This framework applies the existing STPA process with no changes. However, because few 
design details are known during early-stage design, this initial STPA is performed at a high-level 
of abstraction to minimize the number of assumptions that need to be made about the system 
during the analysis. This initial abstract definition of the system can then be refined as 
architecture development progresses. 

Once potential unsafe system behaviors have been identified, the next part of the framework 
defines the control behavior needed to prevent those unsafe behaviors. Developing the control 
behavior before exploring and comparing architecture options allows systems engineers to 
determine what the desired behavior of the system should be before creating a system structure 
to implement it. Thus, the behavioral design of a system serves as a cognitive steppingstone to 
support later reasoning about what the preferred system architecture might be.   
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A Behavioral Design Process was therefore developed to provide a structured process for 
using the causal scenarios identified by STPA to define the necessary safety constraints and the 
control loops that are needed to enforce them. The output of this part of the framework is a 
Conceptual Architecture, a control-oriented system model that represents the various control 
elements that are needed in the system and the relationships between them. 

Once the desired control behavior has been defined, the final part of this framework involves 
creating a system architecture to implement that desired behavior. To do this, a Structural Design 
Process was developed to provide a systematic process for deciding how to allocate the control 
elements to either new or existing system components to create the system architecture. 
Because there can be numerous options for how to allocate the control elements to achieve the 
same desired behavior, this process helps systems engineers to systematically explore and 
compare different architecture options to identify the one that best achieves the desired 
emergent properties. 

The remainder of this chapter elaborates on the details of the behavioral and structural 
design processes. This framework is then applied to develop and refine an ATM architecture for 
UAM in Chapter 4 and Chapter 5. 

3.3 The Behavioral Design Process 

The purpose of the behavioral design process is to define the control behavior that is needed 
to enforce the necessary safety constraints and ensure unsafe or undesirable behavior is 
prevented. However, designing an adequate control behavior can be difficult to do because 
modern complex systems typically require numerous interdependent safety constraints to be 
enforced. The behavioral design may therefore need to contain many control functions and 
interactions to adequately enforce all the safety constraints. Furthermore, the interdependence 
between control functions makes it difficult to ensure that design decisions made to avoid one 
type of unsafe behavior do not inadvertently lead to another.  

For these reasons, a structured and iterative process is needed to help systems engineers 
incrementally refine the required control behavior and evaluate it to ensure that flaws are not 
introduced as the behavior is designed.  Figure 10 provides an overview of the behavioral design 
process. 

 
Figure 10: Overview of behavioral design process to define required control loops 
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3.3.1 Defining System Requirements 

The input to this behavioral design process is the causal scenarios identified by the initial 
STPA. As shown in Figure 10, this process starts by using those scenarios to identify appropriate 
system requirements. Consistent with STAMP principles, the system requirements define the 
safety constraints that will need to be enforced to prevent the unsafe behaviors described in the 
STPA causal scenarios. These requirements are intended to be solution-neutral and should only 
state what constraint(s) need to be enforced. The requirements should not describe how the 
constraints should be implemented or who should enforce the constraints because those 
decisions will be made later in the development process when additional design information is 
available to make a more informed decision.  

As an example, consider a simple, abstracted version of an Air Traffic Control (ATC) system 
where Air Traffic Management is a controller that monitors the movement of aircraft in the 
airspace and issues a Coordination control action to prevent collisions by coordinating the 
movement of aircraft. The control structure for this simple ATC system is shown in Figure 11. 

 
Figure 11: A simple control structure of the air traffic control system 

Figure 12 shows an example of how the Coordination control action can be analyzed to derive 
a collision avoidance requirement, Req-1. 

 
Figure 12: Example requirement derived from initial STPA analysis (control action in red) 

As illustrated in Figure 12, each requirement defines a constraint that, when enforced in the 
system, would prevent or mitigate one or more scenarios. By doing this for all the scenarios 
identified in the initial STPA analysis, a set of system requirements are defined that, when 
implemented, will adequately control the hazards. 
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3.3.2 Creating the Conceptual Architecture 

Once the system requirements have been defined, a Conceptual Architecture is created to 
model the control loops that are needed to enforce the safety constraints described in the 
requirements. Unlike the system architecture which models the physical components and 
relationships between them, the conceptual architecture does not necessarily model the physical 
components. Instead, it is a functional control structure that models the control behavior that 
the system will need to exhibit in terms of the required control elements and the relationships 
between them. 

Inspired by the elements of a basic control loop, a conceptual architecture includes four main 
types of control elements as shown in Figure 13. The creation of each control element is therefore 
a design decision that needs to be made. By defining these four types of control elements, 
adequate control loops can be created to enforce the safety constraints described in the 
requirements. 

 
Figure 13: Illustration of the four types of control elements in a conceptual architecture 

Defining Control Responsibilities (Control Element 1) 

Creating a conceptual architecture starts with identifying the control responsibilities that that 
system will need to perform. To ensure that all safety constraints described in the requirements 
are enforced, these control responsibilities are derived from the system requirements. However, 
not every system requirement generates a new control responsibility because a single control 
responsibility may have multiple system requirements that specify different aspects of its 
required behavior. For example, one responsibility of the ATM system is to prevent collisions 
between aircraft. However, to specify how this responsibility should be carried out, numerous 
requirements are needed to describe what feedback is needed, the factors that should be 
considered when modifying the path of an aircraft to prevent a collision, and how quickly those 
decisions should be made. 

For this reason, groups of related system requirements are used to derive the control 
responsibilities and their corresponding constraints that specify restrictions on how those 
responsibilities should be performed. Figure 14 illustrates how this is done for eight generic 
system requirements to generate two control responsibilities and six constraints.  
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Figure 14: Deriving control responsibilities and constraints from system requirements 

To form these requirement groups, each system requirement is first categorized as either a 
control requirement or a constraint requirement. Control requirements describe a control 
decision or control function that needs to be performed. By contrast, constraint requirements 
describe restrictions or constraints on acceptable ways that a control decision should be made 
or the expected response of the controlled process in the system.  

Once the system requirements are classified, they can then be organized into groups where 
each group consists of one control requirement and the constraint requirements that apply to it. 
This is illustrated by the blue and green requirements on the left side of Figure 14. Grouping the 
requirements like this ensures that related requirements are considered together when the 
control behavior is developed. For each group of requirements, the control requirement is used 
to generate a control responsibility, and the constraint requirements are used to generate 
responsibility constraints (RCs) that are associated with the control responsibility. 

Continuing the simple ATC system example illustrated in Figure 11, consider the three system 
requirements shown in Table 1 that describe several aspects of how air traffic should be managed 
to prevent collisions. To the right of each requirement is its classification. 

Table 1: Example classification of system requirements 

All three of the requirements in Table 1 pertain to the same aspect of air traffic control: 
coordinating the movement of aircraft to prevent collisions. However, Req-1 describes the 
control decision to be made (resolving potential conflicts) while Req-2 and Req-3 describe 
constraints on the inputs that should be considered when making that decision. 

Requirement Category 

Req-1: ATC system shall coordinate the movement of 
aircraft to resolve potential conflicts 

Control Requirement 

Req-2: ATC system shall account for operational 
constraints when selecting coordination 

Constraint Requirements 
Req-3: ATC system shall ensure that aircraft have received 
the coordination being communicated 
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Using the three requirements shown in Table 1, a control responsibility (Resp-1) for 
preventing conflicts and its associated behavioral constraints (RC-1 and RC-2) can be generated 
as shown in Table 2. The system requirement used to generate each responsibility or constraint 
is linked in red. 

Table 2: Example control responsibility and constraints 

Defining Process Model Parts, Control Actions and Feedback (Control Elements 2, 3 and 4) 

Once the control responsibilities and associated constraints have been generated from the 
system requirements, the process model parts, control actions, and feedback can then be defined 
based on what is needed to carry out each responsibility and meet its behavioral constraints. 
Figure 15 illustrates how this is done.  

 
Figure 15: Identifying the other control elements from responsibilities and constraints 

As illustrated in Figure 15, the responsibilities and associated constraints are first used to 
generate the process model parts and control actions. Process model parts contain the 
information needed by a controller to make appropriate decisions when carrying out a 
responsibility. Thus, the process model parts for a given responsibility can be generated by 
considering what information will be needed to make the decision described by that 
responsibility and its associated constraints. Similarly, the control actions can be generated by 
considering what output(s) might be needed by that responsibility to enable effective control. 

As described in STAMP, in addition to having the right information in the process model to 
make appropriate decisions, it is also important that those process model parts are kept updated 
over time and this requires appropriate feedback. Thus, for each process model part, the 
necessary feedback required to keep it updated should be identified. 

As a concrete example of how process model parts, control actions, and feedback are defined, 
Figure 16 shows how these control elements are generated for Resp-1, RC-1, and RC-2 that were 
shown in Table 2. To continue maintaining traceability, the responsibility or constraint that was 
used to identify each control element is linked in red.  

Control 
Responsibility 

Resp-1: Coordinate the movement of aircraft to prevent conflicts [Req-1] 

Constraints 

RC-1: Account for operational constraints when selecting 
coordination [Req-2] 

RC-2: Ensure that aircraft have received the coordination being 
communicated [Req-3] 
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Figure 16: Example control elements generated for responsibility Resp-1 

As shown in Figure 16, coordinating the movement of aircraft (Resp-1) requires identifying a 
conflict based on the planned trajectories of aircraft in the airspace (PM-1, updated by FB-1) and 
then modifying those trajectories (CA-1) to resolve that conflict. In addition, to account for 
operational constraints (RC-1), Resp-1 must know what they are (PM-3, updated by FB-2). 
Similarly, to ensure aircraft have received their trajectory modifications (RC-2), Resp-1 must 
receive confirmation that the aircraft received the trajectory modification (PM-4, updated by FB-
3). This example therefore illustrates that this process allows systems engineers to carefully 
define a control loop for each responsibility by deciding the various control actions and feedback 
that are needed to carry out each responsibility and meet its associated constraints.  

Defining Control Action Targets and Feedback Sources 

By following this process for each of the defined responsibilities, the process model parts, 
control actions, and feedback associated with each responsibility can be generated. However, 
they cannot be assembled into a conceptual architecture yet until the targets of each control 
action and the sources of each piece of feedback are defined. To define the control action targets 
and feedback sources, the process model parts and constraints associated with the various 
responsibilities can be compared and the following rules can be applied: 

• Feedback sources are the responsibilities or controlled process that have the required 
information in their process model 

• Control action targets are the responsibilities or controlled process whose decision 
making must include the information in that control action 

By applying these rules to the control actions and feedback associated with each 
responsibility, the relationships between responsibilities (and the controlled process) can be 
defined in terms of the control actions and feedback that are exchanged between them. Figure 
17 illustrates how this is done for three generic responsibilities.  
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Figure 17: Defining control action targets and feedback sources 

By applying the feedback sources rule, two responsibilities (or a responsibility and the 
controlled process) will be connected by feedback if they share the same process model part. 
Thus, in Figure 17, Resp-1 receives feedback FB-1, FB-2, and FB-5 from Resp-2 because those two 
responsibilities share process model parts PM-1, PM-2, and PM-5. Similarly, Resp-2 receives 
feedback FB-4 from the controlled process because the controlled process and Resp-2 share 
process model part PM-4. This same reasoning is also how the feedback sources were determined 
for the feedback between Resp-3 and Resp-1 and between Resp-3 and the controlled process. 

Note that in some cases, there might be more than one responsibility that could serve as the 
feedback source for a piece of required feedback. In such cases, a systems engineer will need to 
choose which responsibility should serve as the feedback source. For example, in Figure 17, Resp-
1 needs to receive feedback FB-5 for PM-5, and either Resp-2 or Resp-3 could provide that 
feedback because they both have PM-5 in their process model. In Figure 17, Resp-2 is chosen as 
the feedback source. However, because this behavioral design process is designed to be iterative, 
this decision can be revisited and changed later if needed. 

Next, by applying the control action targets rule, two responsibilities (or a responsibility and 
the controlled process) will be connected by a control action if the constraint for one 
responsibility requires that it make use of information contained in a control action provided by 
another. For example, in Figure 17, Resp-1 provides control action CA-1 to Resp-2 because of the 
Resp-2 constraint that requires CA-1 be considered in Resp-2’s decision making. Similarly, Resp-
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2 provides control action CA-3 to the controlled process because of the Resp-2 constraint that 
requires CA-3 to be used to influence the behavior of the controlled process. This same reasoning 
is also how the control action targets were determined for the control actions between Resp-1 
and Resp-3 and between Resp-3 and the controlled process. 

In addition, Figure 17 also illustrates how control inputs (i.e., lateral coordination) between 
two responsibilities might be defined. If two responsibilities share a common process model part 
that is not associated with a control action, then lateral coordination or a control input is needed 
between them to ensure that the shared process model part remains consistent between them 
and does not become misaligned [95].  

As a concrete example of how these rules are applied for a specific system, consider how 
Resp-1 identified for the simple ATC example might receive the required feedback defined in 
Figure 16 and what the target of its control action might be. The feedback sources and control 
action target for the feedback and control actions associated with Resp-1 are shown in Figure 18. 

 
Figure 18: Identifying control action targets and feedback sources 

For Resp-1, FB-1, FB-2, and FB-3 all involve feedback about the aircraft and therefore that 
feedback is obtained directly from the aircraft. Similarly, CA-1 is intended to change the trajectory 
of aircraft to resolve a conflict and therefore CA-1 is provided to the aircraft.  

Figure 18 also introduces a second responsibility Resp-3 to illustrate how Resp-1 might be a 
feedback source for another responsibility. Resp-3 is a responsibility that receives proposed 
trajectory modifications and confirms that an aircraft will always have alternate trajectories 
available if the proposed trajectory modifications were implemented. Resp-3 therefore needs to 
know what trajectory modifications are being proposed (PM-5). Since Resp-1 is identifying 
trajectory modifications to transmit to the aircraft and has possible trajectory modifications in its 
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process model (PM-2), Resp-1 is therefore the source of feedback about proposed trajectory 
modifications to Resp-3.  

Having defined the various control elements and the feedback sources and control action 
targets, the control elements can now be assembled to create the conceptual architecture. Once 
assembled, the conceptual architecture looks similar in structure to the control structure in 
Figure 17. The conceptual architecture therefore represents the desired control behavior of the 
system in terms of the responsibilities that will need to be performed and the control actions and 
feedback that are exchanged between them and with the controlled process.  

In addition, using the traceability that was maintained throughout this process thus far, each 
element in the conceptual architecture can be traced directly back to a requirement and an STPA 
scenario that motivated its inclusion. Thus, this process also helps to capture the design rationale 
underlying the inclusion of each element in the conceptual architecture.  

3.3.3 Updating the Initial STPA and Refining the Conceptual Architecture 

Finally, the last step of this behavioral design process is to update the STPA analysis of the 
system based on the conceptual architecture that was created to refine the causal scenarios 
identified in the initial SPTA analysis. This STPA update provides a systems engineer with an 
opportunity to evaluate the conceptual architecture they have created to identify any flaws that 
might have been inadvertently introduced and the ways in which the conceptual architecture 
might not adequately control the system hazards identified at the beginning of STPA. 

  Based on the updated and refined set of STPA scenarios, systems engineers can then decide 
if any of those scenarios could be mitigated or prevented by changing the conceptual 
architecture. For example, if a scenario describes a missing piece of feedback, the conceptual 
architecture should be modified to add the missing feedback. Sometimes, the STPA scenarios 
may also highlight a problem with how the behavior of a responsibility was designed and that 
may prompt a reformulation of that responsibility to try to improve its behavior. Once the 
necessary modifications have been made to the conceptual architecture, the STPA analysis can 
then be updated again to determine if the change had its desired effect and if any new unsafe 
behaviors were introduced.  

By iteratively updating the conceptual architecture and then updating the STPA analysis, this 
behavioral design process gives systems engineers the opportunity to iterate on the design of the 
conceptual architecture and explore the behavioral design space for a system. This iteration is 
intended to be performed until no further improvements to the conceptual architecture can be 
made. It is at this point that a system designer can proceed to the structural design process where 
a system architecture is created to implement this conceptual architecture. 

3.4 The Structural Design Process 

Once the conceptual architecture is created, the final part of this architecture development 
framework is to create a system architecture to implement it using the structural design process. 
The goal of this structural design process is therefore to identify the system architecture that best 
achieves the desired emergent properties.  

To create a system architecture that implements the conceptual architecture, the main 
design decision that must be made is who is assigned to perform each of the responsibilities. 
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Once the responsibilities have all been assigned, the control actions and feedback associated with 
each responsibility can be assigned accordingly to the same controller. This ensures that each 
controller is provided with the appropriate control actions (i.e., authority) and feedback to 
perform their assigned responsibilities.  

Thus, in this approach, an architecture option represents one possible way to assign the 
responsibilities (and their associated control actions and feedback) to either existing or new 
controllers in the system. A generic example of how an architecture option is created is shown in 
Figure 19. 

 
Figure 19: Generic example of how an architecture option is created 

The generic system shown in Figure 19 has 3 controllers which collectively control a 
controlled process and there are four responsibilities that each need to be assigned to at least 
one controller. Thus, one possible architecture option is: 

1. Assign Resp-1 to controller 1 
2. Assign Resp-2 to both controller 1 and controller 3 (shared responsibility) 
3. Assign Resp-3 and Resp-4 to controller 3  

Although Figure 19 illustrates one possible assignment of these responsibilities, it is not the 
only one. The tradespace of possible architecture options is therefore defined by all possible 
assignments of responsibilities to controllers. However, this tradespace grows exponentially with 
the number of responsibilities and controllers in the system.  In general, for a system with n 
responsibilities and m possible controller assignments, the number of possible architecture 
options (i.e., the size of the tradespace) N is defined by Equation 1. Note that this equation 
assumes each responsibility is only assigned to one controller. Relaxing this assumption and 
allowing a responsibility to be assigned to multiple controllers further increases the value of N.  

𝑁 = 𝑚𝑛 (1) 

Thus, in the case of the generic example in Figure 19, with n = 4 responsibilities to be assigned 
and m = 3 possible controllers to assign them to, there are theoretically N = 81 possible 
architecture options (again, assuming no sharing of responsibilities between controllers). For a 
real system with many more controllers and responsibilities, there could be an overwhelming 
number of potential architecture options to consider in the tradespace.  
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Because the architecture tradespace grows exponentially with the number of responsibilities 
and controllers in the system, it will not be feasible or practical to exhaustively explore every 
architecture option before selecting the best or preferred one. Instead of exhaustive 
enumeration, a process is needed to guide the exploration of different architecture options and 
to highlight those architectures that are worth exploring and comparing.  

To do this, an iterative structural design process was developed to help systems engineers 
systematically explore alternative architecture options and incrementally improve the system 
architecture based on what they learn about the behavior of different architecture options. An 
overview of this process is shown in Figure 20. 

 
Figure 20: Overview of the structural design process 

3.4.1 Creating Architecture Options 

The inputs to this process are the conceptual architecture and the causal scenarios from the 
updated STPA that were identified in the behavioral design process. Recall that in that process, 
any scenarios identified in the updated STPA that could be mitigated or prevented by making a 
change to the conceptual architecture were addressed. However, there are also some scenarios 
that might only be possible to mitigate or prevent with a structural change. It is from these 
scenarios that architecture options of interest can be identified. 

The first step in this structural design process is to use the causal scenarios to identify 
potential responsibility assignments that could help to mitigate or prevent them. In other words, 
the goal is to identify what responsibility assignments might be preferable because they help to 
mitigate or prevent unsafe behavior. For example, if a scenario involves two responsibilities 
having inconsistent information about the same process model part, one way to prevent that 
scenario occurring could be to assign the responsibilities to the same controller to avoid having 
the same process model part being needed by two different controllers. 

For these scenarios where a preferred responsibility assignment could mitigate or eliminate 
the occurrence of that scenario, these preferences are recorded as assignment constraints. 
Examples of different types of assignment constraints are shown in Table 3.  
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Table 3: Examples of different types of assignment constraints 

Once these assignment constraints have been identified, they can then be used to decide 
what architecture options are created and explored. This is done by first creating a baseline 
architecture option that assigns responsibilities to controllers in a way that satisfies as many of 
the assignment constraints as possible. Then, for each assignment constraint that is not satisfied 
by the baseline architecture option, a change is made to the responsibility assignments to satisfy 
that assignment constraint. Thus, different architecture options are created as changes are made 
to the assignment of different responsibilities.  

3.4.2 Analyzing and Comparing Architecture Options 

Once architecture options have been created, the remaining two steps in the structural 
design process are to analyze and compare the architecture options to understand how different 
responsibility assignments change the behavior of the architecture. This information can then be 
used to inform follow-on architectural design decisions. Figure 21 illustrates how architecture 
options are analyzed and compared. 

 
Figure 21: Comparing architecture options based on STPA scenarios 

Assignment Constraint Type Constraint Notation 

Preferred controller 
constraint 

Note: Ca and Cb are 
controllers in a system 

Assigning a responsibility to one preferred controller:  
Resp-X = 𝐶𝑎 

Shared assignment of a responsibility to multiple controllers: 
Resp-X = 𝐶𝑎 ∧ 𝐶𝑏  

Multiple assignment preferences for a responsibility:  
Resp-X = 𝐶𝑎 ∨ (𝐶𝑎 ∧ 𝐶𝑏) 

Same Controller Constraint Resp-X = Resp-Y 

Different Controller 
Constraint 

Resp-X ≠ Resp-Y 
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As shown in Figure 21, STPA is first used to analyze each architecture option to determine 
what unsafe behaviors might occur in each architecture option. Since these architecture options 
are different implementations of the conceptual architecture, the STPA analysis performed at the 
end of the behavioral design process can be updated and refined again here to reflect the specific 
architecture option being analyzed.  

From the STPA analysis of each architecture option, causal scenarios are obtained. Some of 
these causal scenarios might be unique to the given architecture option while others might occur 
for multiple architecture options. For example, in the upper table of Figure 21, scenario SC-1 is 
only identified for architecture option A1 and SC-3 is only identified for A2. However, SC-2 is 
identified for both A2 and A3. 

Regardless of which architecture option the scenario is identified for, all the scenarios 
identified from the analysis of each architecture option are combined into a master scenario set. 
This master set is then used to instantiate an architecture comparison table. The lower half of 
Figure 21 shows a generic example of what an architecture comparison table looks like before it 
is filled out and Table 4 shows what that architecture comparison table looks like once it is 
completed for the generic example in Figure 21.  

Table 4: Generic example of an architecture comparison table once completed 

As shown in Table 4, the architecture comparison table has 3 main parts: 

1. Identified scenarios: One row is created for each scenario in the master scenario set 
2. Scenario occurrence: One column is created for each architecture option being 

compared and each cell contains a “yes” or “no” to indicate whether the scenario 
occurs for that architecture option 

3. Evaluation criteria: A short phrase describing a control-related difference in behavior 
between the architecture options 

Filling out this architecture comparison table starts with deciding whether each scenario 
occurs for that architecture option. For example, in the first row of Table 4 scenario SC-1 occurs 
for architecture option A1 (because it was identified for that architecture option as shown in the 
upper table of Figure 21) but is resolved or does not occur for A2 and A3. By contrast, in the third 
row, scenario SC-3 occurs for architecture A2 but does not occur for A1 and A3. 

Identified 
Scenarios 

Scenario Occurs? Evaluation 
Criteria A1 A2 A3 

SC-1 Yes 
No 

[Assumption] 

No 

[Assumption] 
EC-1 

SC-2 
No 

[Assumption] 
Yes Yes EC-2 

SC-3 No 

[Assumption] 
Yes 

No 

[Assumption] 

EC-3 

EC-4 

SC-4 Yes Yes Yes N/A 
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When deciding if a scenario occurs for an architecture option, it is important to record any 
assumptions used to make that decision, especially if it is decided that a scenario does not occur 
for an architecture option. In Table 4, these assumptions are denoted by the “[Assumption]” 
placeholders in the cells containing “No”. It is important to capture these assumptions because 
if that architecture option is chosen for further development, the ability of that architecture to 
resolve or avoid that scenario becomes contingent on those underlying assumptions remaining 
valid. The supporting framework developed later in Chapter 6 then describes how to ensure they 
remain valid as the development of the system progresses.  

Once these determinations have been made, they can be used to identify the control-related 
differences between architecture options. For each scenario, the behavior of each architecture 
option in that scenario is compared and an Evaluation Criterion is generated that describes the 
control-related difference(s) in behavior that differentiates the architecture options. For 
example, one difference in decision making between centralized and decentralized ATM 
architectures that has been identified in the literature [96] could be described by the following 
evaluation criterion. 

Example evaluation criterion: Responsiveness of trajectory modification decisions to prevent 
loss of separation when resolving a multi-aircraft conflict in densely populated airspace 

 By doing this for each of the scenarios in the master set, the evaluation criteria that are 
generated highlight the various control-related differences between the architecture options. 

When generating the evaluation criteria, note that each scenario does not necessarily 
generate a unique evaluation criterion and it is possible that multiple evaluation criteria might 
be identified for a given scenario. This might occur if there is more than 1 aspect of the scenario 
where differences in behavior are observed between the architecture options. For example, in 
the third row of Table 4, criteria EC-3 and EC-4 are both derived from the same scenario SC-3.  

Note also that not every scenario will have an evaluation criterion generated for it because 
there may be some scenarios that are found to occur for all architecture options. Scenario SC-4 
(the last row of Table 4) is an example of this. This result would suggest that the unsafe behavior 
described in that scenario is not prevented or mitigated by any of the architecture options and 
therefore no meaningful control-related difference in behavior is observed between architecture 
options for that scenario. Thus, as shown in Table 4, no evaluation criterion is generated. 

To help guide an analyst or systems engineer in generating an evaluation criterion from a 
given scenario, Figure 22 shows the general structure of an evaluation criterion.  

Evaluation Criterion Structure: 

Example: Responsiveness of trajectory modification decisions to prevent loss of separation 
when resolving a multi-aircraft conflict in densely populated airspace 

<Characteristic> of <Control Aspect> to prevent <hazard> when <scenario context> 
                       [1]              [2]                                      [3]   [4] 

Figure 22: Structure of an evaluation criterion 

As shown in Figure 22, an evaluation criterion consists of four parts, each of which provides 
control-relevant information to support the comparison of architecture options. The first two 
parts (items 1 and 2) describe what is different about the control behavior of the architecture 
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options in the scenario under consideration. Consistent with the concept of control in systems 
theory and STAMP, there are four Control Aspects that should be considered: (1) decision making, 
(2) process models, (3) feedback and control inputs, and (4) control path. The Characteristic then 
describes a property or attribute of that aspect of control. Table 5 provides some example 
characteristics for each control aspect. Note that the characteristics listed in Table 5 are intended 
to be used as examples only and do not represent an exhaustive list of every possible attribute 
or property that could be identified.  

Table 5: Example characteristics for each control aspect 

The latter two parts of an evaluation criterion (items 3 and 4) describe the conditions under 
which the control behavior described in the first two parts occurs. This includes the Hazard that 
the control behavior is intended to prevent and the Scenario Context in which that control 
behavior is occurring. Combined, these two parts describe why the control behavior is needed 
and the circumstances in which it is occurring and both are derived from the causal scenario 
under consideration. The hazard is derived from the traceability maintained in STPA between the 
scenario and the system-level hazards and the scenario context is derived from the scenario itself. 

Once the architecture comparison table has been completed, the evaluation criteria and the 
results in the comparison table can be used to identify benefits and tradeoffs between the 
architecture options. For each evaluation criteria, if a scenario does not occur for that 
architecture option, there is a benefit for that architecture option with respect to that evaluation 
criterion (e.g., better, more responsive, more timely). However, if a scenario does occur for that 
architecture option, then there is a tradeoff for that architecture option with respect to that 
evaluation criterion. For example, Table 6 shows how the comparison table in Table 4 would be 
used to generate benefits and tradeoffs for the three generic architecture options.  

Control Aspect Example Characteristics 

Decision Making 

• Responsiveness of decision making 

• Frequency or complexity of decision making  

• The need/ability to make a decision (in certain situations) 

• Ease of coordinating two related decisions 

Process Models 

• Level of situational awareness available or needed 

• Ability to ensure adequate update of a process model part 

• Level of uncertainty associated with a process model part 

• Ability to maintain alignment of two related process model parts or 
the same process model part across two controllers 

Feedback and 
Control Inputs 

• Timeliness of feedback or control input 

• Ability to interpret/process/verify/respond appropriately to 
feedback or a control input 

• Use of a certain type of feedback or control input 

Control Path 

• Vulnerability of a control path or control action 

• Potential for conflict between two related control actions or the 
same control action issued by two different controllers 

• Responsiveness of controlled process in executing control action 



 

51 

 

Table 6: Comparison results for generic evaluation criteria in Table 4 

By analyzing the comparison results like this, a systems engineer can study the different 
control-related aspects of a system’s behavior more systematically to both identify the benefits 
and tradeoffs of different architecture options and understand what parts of the architecture 
contributed to those benefits or tradeoffs. 

Once the comparison results have been generated, systems engineers have two options for 
how to make use of these results. One option is that they could decide that one of the 
architecture options being compared is the best architecture they can find and therefore they 
choose one of those options as the system architecture to move forward with for further 
development. Alternatively, they could decide that there exists one or more additional 
architecture options that might be better than the ones that have already been identified. For 
example, an architecture option representing a combination or hybrid of the responsibility 
assignments in two of the already-compared architecture options might be considered. If this is 
the case, they can continue iterating through this structural design process by creating those 
additional architecture options and then analyzing and comparing those new options using this 
same process until they believe they have found the best or their preferred system architecture 
to move forward with for further development. 

3.5 Summary 

This chapter introduced the safety-driven architecture development framework that was 
developed to enable systems engineers to design safety and other desired emergent properties 
into their system architectures from the beginning of development. Unlike existing approaches 
to architecture development, this new approach does not rely on decomposition to create the 
system architecture. Instead, it is based on systems theory and focuses on helping systems 
engineers to analyze and design the control-oriented aspects of the system to ensure that 
appropriate controls are implemented in the system architecture. This ensures that the system 
can adequately enforce the necessary safety constraints to avoid unsafe or undesirable system 
behavior. 

The key idea behind this safety-driven architecture development framework is to use STPA 
results to inform behavioral and structural design decisions and there are three main parts to the 
framework. First, an initial STPA analysis of the system identifies preliminary information about 
how unsafe behavior could occur. Then, the Behavioral Design Process provides a structured way 

Evaluation Criteria Benefit (+) or Tradeoff (-) 

A1 A2 A3 

EC-1    

EC-2    

EC-3    

EC-4    
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to define the desired control behavior of the system modeled as a conceptual architecture. 
Finally, the Structural Design Process provides a systematic way to explore and compare different 
system architecture options for implementing the conceptual architecture. Putting all three parts 
together, the full safety-driven architecture development framework is shown in Figure 23. 

 
Figure 23: The full safety-driven architecture development framework 

In the next two chapters, this safety-driven architecture development framework is applied 
to develop an ATM system architecture for the NAS that will enable the integration of UAM into 
the airspace alongside existing air traffic.  

  



 

53 

 

Chapter 4 Design Iteration 1: Developing an Initial ATM Architecture 
Since the 1930s, commercial/civil air traffic in the NAS has been managed using a centralized 

ATM architecture [24] where Air Traffic Control (ATC) is primarily responsible for keeping aircraft 
safely separated, especially those flying under Instrument Flight Rules (IFR). Although this 
centralized architecture has enabled a safe NAS thus far, it will be challenging to continue relying 
on it while introducing UAM. This is because, as discussed in Chapter 1, the characteristics of 
UAM air traffic are challenging conventional approaches used to ensure the safety of the NAS. 

Because of these challenges, a significant amount of research has been done to define 
potential new ATM concepts and architectures that could feasibly manage UAM air traffic. These 
include more decentralized ATM concepts such as Free Flight [97], Distributed Air/Ground Traffic 
Management (DAG-TM) [98], and more automated approaches to ATM [66, 67, 99]. NASA and 
the FAA have also both published concept of operations documents for UAM [17, 100] that 
describes the infrastructure that will be needed and the airspace structure that might be used to 
safely manage UAM air traffic.  

Despite the wide variety of new ATM architectures that have been proposed, the methods 
used to analyze or evaluate these architectures for safety face the same challenges described in 
Section 2.2. Often, the safety of these ATM architectures is evaluated only after they have been 
created. In addition, it can be difficult to evaluate the safety of these ATM architectures using 
quantitative metrics, especially early in the development process. 

For this reason, the goal of this first design iteration is to apply the architecture development 
framework developed in Chapter 3 to develop an ATM architecture for UAM that accounts for 
safety considerations from the beginning. This will be done by identifying and then comparing 
different possible architecture options to inform a decision about what the preferred ATM 
architecture for UAM should be. 

Because the ATM architectures developed in the existing literature have primarily focused on 
collision avoidance, this design iteration will focus on the same. By aligning the focus of this first 
design iteration with that of previous comparisons of ATM architectures, the results obtained 
from this case study can be compared to those in the existing literature to evaluate the ability of 
this framework to identify suitable criteria for comparing architecture options. 

The remainder of this chapter is organized as follows. First, an initial STPA of the NAS is 
performed to determine how unsafe behavior might occur when UAM air traffic is introduced 
into the airspace. Then, NAS system requirements for collision avoidance and a conceptual 
architecture that meets those requirements is developed. Finally, two architecture options to 
implement the conceptual architecture are evaluated and compared to determine the benefits 
and tradeoffs between them. These benefits and tradeoffs are then compared to those identified 
in the existing literature. Finally, the benefits and tradeoffs are used to inform a decision about 
what the preferred ATM architecture for UAM should be.  

4.1 Initial Analysis of the NAS Using STPA 

STPA begins with the identification of relevant losses, hazards, and system-level safety 
constraints. Because this case study focuses on the safe management of air traffic, the system 
boundary matches that of the NAS today and includes the various aircraft and operators, the 
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people and components needed to manage air traffic, and the FAA. The losses and hazards also 
correspond to those of the NAS and are presented in Table 7 and Table 8 respectively. The 
system-level safety constraints derived from those hazards are presented in Table 9. 

Table 7: System losses 

Loss ID Loss Description 

L-1.  Loss of life or injury 

L-2.  Loss or damage to aircraft or equipment 

L-3.  Nonachievement of mission  

L-4.  Excessive environmental impact (beyond <TBD> level) 

L-5.  Loss or damage of critical infrastructure 

L-6.  Loss of critical community needs 

L-7.  Loss of public acceptance of UAM 

 
Table 8: System hazards 

Hazard ID Hazard Description Loss Link 

H-1.  
Aircraft do not maintain minimum separation (to other 
flights or surface objects)  

L-1, L-2, L-3, L-5, 
L-7 

H-2.  Flight operations are harmful to occupant health L-1, L-3, L-7 

H-3.  

Missions (e.g., transportation, police operations) cannot be 
completed within acceptable performance limits (e.g., 
within a specified period of time, within delay tolerance) 

L-3, L-4, L-7 

H-4.  
Environmental effects of flight operations exceed acceptable 
levels (e.g., noise, emissions) 

L-4, L-7 

H-5.  Critical public or aviation infrastructure becomes inoperable L-2, L-3, L-5, L-6 

H-6.  

Public safety is compromised (e.g., because emergency 
services aircraft are unable to fulfill their mission or airspace 
exclusions are not maintained) 

L-1, L-2, L-3, L-5, 
L-6, L-7 

 
Table 9: System-level safety constraints 

Constraint ID Constraint Description Hazard Link 

C-1.  Aircraft must not violate minimum separation standards in 
flight (to air and surface objects)  

H-1 

C-2.  Flight operations must not be harmful to occupant health H-2 

C-3.  Missions must be completed within acceptable performance 
limits 

H-3 

C-4.  Environmental effects of flight operations must not exceed 
acceptable levels (e.g., noise, pollution) 

H-4 

C-5.  Critical infrastructure must remain operable  H-5 

C-6.  Flight operations must not compromise public safety H-6 
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Once the losses, hazards, and safety constraints have been identified, the next step in STPA 
is to create the control structure. The control structure used to model the NAS is shown in Figure 
24. To minimize the number of assumptions needed to create this initial control structure, the 
NAS is modeled at a high level of abstraction and this control structure will be incrementally 
refined as architecture development progresses. 

 
Figure 24: NAS control structure 

Since the goal is to analyze the NAS with UAM integrated into it, the lowest level of the control 
structure includes both UAM aircraft and operators as well as existing aviation aircraft and 
operators, including commercial airlines, general aviation (GA) aircraft, and emergency services. 
The next level up in the control structure is Air Traffic Management, an abstract controller that 
encapsulates all ATM responsibilities necessary to safely manage and control both existing 
aviation air traffic as well as UAM air traffic. Note that this abstract controller does not imply that 
a decision has been made about whether UAM air traffic is managed by the same entity as 
existing aviation air traffic or a separate one. That decision should be made as part of developing 
the ATM architecture for the NAS. This abstract controller is simply a model abstraction used to 
enable a broader analysis of air traffic management in the NAS. Finally, the highest level of the 
control structure includes federal regulators such as the Federal Aviation Administration (FAA). 

It is worth noting that the control actions and feedback associated with UAM aircraft and 
operators (left side of Figure 24) are modeled more abstractly than those associated with existing 
aviation operations (right side of Figure 24). This reflects what is already known or commonly 
assumed about how the NAS might accommodate the introduction of UAM. It is commonly 
assumed that the management of existing air traffic will remain similar to how ATC works today 
[18]. Therefore, the interactions between ATM and existing aviation aircraft and operators are 
modeled to reflect those interactions today. However, because the interactions between ATM 
and UAM aircraft have yet to be determined, no assumption about existing operations or a pre-
existing operational concept is made. Instead, the interactions between ATM and UAM aircraft 
and operators are modeled abstractly using a control action called Coordination and generic 
feedback called Requests and Reports. Later in the development process, these abstract control 
actions and feedback will be refined into more detailed ones based on the desired ATM behavior 
generated using this framework. 
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The third step in STPA is to generate UCAs. Since the focus of this research is on designing the 
ATM system to manage UAM air traffic, the Coordination control action highlighted in red in 
Figure 24 was analyzed to identify UCAs and scenarios. It is well recognized that the NAS will need 
to exhibit not only safety but also other emergent properties such as throughput and efficiency. 
Thus, the UCAs (and scenarios) generated during this initial STPA demonstrate how multiple 
emergent properties can be analyzed in an integrated manner. A selected set of example UCAs 
involving safety, throughput, and efficiency are presented here to illustrate how these properties 
were considered. UCA-1.15 and UCA-1.28 also illustrate how UCAs can affect multiple properties 
(e.g., safety and throughput). The full set of UCAs and scenarios can be found in Appendix A.  

Examples of UCAs Involving Safety Concerns 

UCA-1.1: Air Traffic Management does not coordinate the interaction between two UAM 
aircraft or a UAM aircraft and another airspace user when a collision between them is 
imminent [H-1, H-3] 

UCA-1.2: Air Traffic Management does not coordinate air traffic in the airspace to assist UAM 
aircraft in an emergency [H-1, H-2, H-3] 

UCA-1.29: Air Traffic Management coordinates the interaction between two aircraft too late 
to prevent violation of minimum separation between them [H-1, H-2, H-3] 

Examples of UCAs Involving Efficiency Concerns 

UCA-1.4: Air Traffic Management does not coordinate air traffic to allow UAM aircraft to 
access the airspace when UAM aircraft need to execute a mission and the UAM aircraft meet 
the criteria for access to that airspace [H-3] 

UCA-1.8: Air Traffic Management does not coordinate the movements of UAM aircraft when 
they interfere with the operations of other NAS users [H-1, H-3] 

UCA-1.31: Air Traffic Management coordinates air traffic to allow UAM aircraft access to the 
airspace too late after the time window in which UAM aircraft need that access [H-3] 

Examples of UCAs Involving Throughput Concerns 

UCA-1.15: Air Traffic Management coordinates air traffic to allow UAM aircraft to access the 
airspace when the NAS does not have sufficient capacity [H-1, H-3, H-4] 

UCA-1.28: Air Traffic Management provides coordination to UAM aircraft that does not 
satisfy priority needs (e.g., an aircraft running out of fuel needs access to an airport sooner 
than one that has plenty of fuel) [H-1, H-2, H-3]  

UCA-1.39: Air Traffic Management restricts air traffic for too long after environmental effects 
of system operation have returned to acceptable levels [H-3] 

The last step of STPA is to generate causal scenarios for each of the UCAs and several example 
causal scenarios are presented here for UCA-1.1 and UCA-1.8. These example scenarios illustrate 
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that by starting the STPA analysis early in the development process at a high level of abstraction, 
a wide variety of different types of scenarios can be identified. 

Example Scenarios for UCA-1.1 

UCA-1.1: Air Traffic Management does not coordinate the interaction between two aircraft when 
a collision between them is imminent [H-1, H-3] 

 

CS-1.1.1-2: Air Traffic Management has received feedback about the potential conflict but does 
not issue coordination because it is preoccupied with other tasks and does not have the capacity 
to process the feedback it receives. Air Traffic Management therefore does not recognize the 
potential conflict and does not provide coordination to prevent it. 

CS-1.1.2-2: Air Traffic Management does not receive feedback about the potential conflict 
because there are more aircraft in the airspace than Air Traffic Management is capable of 
detecting and tracking simultaneously. As a result, it receives incomplete feedback about the 
aircraft present in the airspace. 

CS-1.1.4-1.2: Air Traffic Management provides coordination and it is received by the aircraft but 
is not effective in preventing violation of minimum separation. This might occur if the aircraft is 
preoccupied with another task and is unable to execute the coordination provided by Air Traffic 
Management in a timely manner. It may also occur if the provided coordination is incorrect or 
insufficient for resolving the conflict. 

Example Scenarios for UCA-1.8 

UCA-1.8: Air Traffic Management does not coordinate the movements of UAM aircraft when they 
interfere with the operations of other NAS users [H-1, H-3]  

 

CS-1.8.1-2: Although Air Traffic Management receives feedback about this interference, it does 
not issue coordination because Air Traffic Management wrongly believes that UAM aircraft’s 
impact on other NAS users is negligible or tolerable by the other NAS users and therefore there 
is no need to issue coordination to reduce the impact. 

CS-1.8.2-4: Air Traffic Management does not receive feedback that UAM aircraft are interfering 
with the operations of other NAS users because the impact to their operations occurs gradually 
or there is a small impact to a large number of NAS users and Air Traffic Management does not 
receive feedback about the overall extent of the impact to the operations of other NAS users. 

CS-1.8.4-2: Air Traffic Management provides coordination when UAM aircraft interfere with the 
operations of other NAS users. The coordinated solution is received by the UAM aircraft but it 
does not prevent the interference because it was provided by Air Traffic Management at the last 
minute. 

4.2 Developing the Collision Avoidance Conceptual Architecture 

The next part of this architecture development framework is the behavioral design process 
where a conceptual architecture is developed to adequately control the hazards and prevent 
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undesirable behavior. As discussed at the beginning of this chapter, this design iteration is 
primarily focused on safety and the collision avoidance aspect of air traffic management. Thus, a 
conceptual architecture for collision avoidance was developed to mitigate or prevent the UCAs 
and scenarios that will lead to H-1 (i.e., violation of minimum separation). Although not 
demonstrated in this research, this same process can be applied to control the other hazards.  

4.2.1 Identifying NAS System Requirements for Collision Avoidance 

The behavioral design process starts with identifying the system requirements that describe 
the safety constraints necessary to mitigate or prevent the scenarios identified using STPA from 
occurring. Figure 25 shows examples of how system requirements were derived from specific 
UCAs and scenarios in the initial STPA analysis. Traceability between scenarios and requirements 

is recorded using the links and “” symbol in the square braces. This traceability records the 
rationale for each requirement by linking it to the scenario that each requirement is intended to 
mitigate or prevent.  

Table 10 then shows some additional examples of collision avoidance requirements that were 
generated. The full set of collision avoidance requirements generated for this design iteration is 
presented in Appendix B. 

UCA-1.1: Air Traffic Management does not coordinate the interaction between two UAM 

aircraft or a UAM aircraft and another airspace user when a collision between them is 

imminent [H-1, H-3]  

CS-1.1.1-2: Air Traffic Management has received feedback about the potential conflict but 
does not issue coordination because it is preoccupied with other tasks and does not have the 
capacity to process the feedback it receives. Air Traffic Management therefore does not 

recognize the potential conflict and does not provide coordination to prevent it. [ Req-3, 
Req-4] 

CS-1.1.2-2: Air Traffic Management does not receive feedback about the potential conflict 
because there are more aircraft in the airspace than Air Traffic Management is capable of 
detecting and tracking simultaneously. As a result, it receives incomplete feedback about the 

aircraft present in the airspace. [ Req-8] 

Req-3: ATM system shall ensure that sufficient capacity is available to detect and coordinate 
all aircraft that have or will need access to the airspace [CS-1.1.1-2]  

Req-4: ATM system shall coordinate the movement of aircraft to resolve any potential 
conflicts [CS-1.1.1-2]  

Req-8: ATM system shall only allow as many users to access the airspace as it is capable of 
detecting, tracking and coordinating [CS-1.1.2-2] 

Figure 25: Examples of how solution-neutral, system-level requirements are generated 
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Table 10: Additional examples of system requirements 

Req ID Requirement 

Req-6 
ATM system shall ensure that acceptable coordination options are always available 
for aircraft to avoid violation of minimum separation. 

Req-10 
ATM system shall account for intended movements of aircraft in addition to current 
trajectories to detect potential collisions 

Req-11 
ATM system shall ensure that information about the intent, mission, acceptable 
operational impacts and future intended movements of aircraft is available, does not 
contain errors and is kept updated 

Req-12 
ATM system shall coordinate the movements of other aircraft to prevent violation 
of minimum separation with an aircraft that is unable to communicate or not 
responding 

Req-13 
ATM system shall ensure that aircraft have acknowledged receipt of the 
coordination being communicated 

Req-17 
ATM system shall ensure that coordination provided to the aircraft does not cause 
additional violation of minimum separation 

Req-83 
ATM system shall ensure that any proposed coordination has new alternative 
trajectories available before issuing the proposed coordination 

4.2.2 Creating the Conceptual Architecture 

Once the system requirements have been generated, the next step in the behavioral design 
process is to create a conceptual architecture to define the control behavior that will ensure UAM 
air traffic is safely managed. As described in Chapter 3, this is done by first categorizing the system 
requirements as either control requirements or constraint requirements. As an example, Table 
11 shows how the ten requirements shown in Figure 25 and Table 10 are categorized.  
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Table 11: Example categorization of control requirement and constraint requirements 

Of the ten requirements shown in Table 11, the first five requirements (blue rows) are control 
requirements because they describe specific control functions or decisions that need to be made. 
By contrast, the latter five requirements (green rows) describe constraints or specifications for 
how conflicts should be resolved.  

Once the requirements have been categorized as control or constraint requirements, groups 
of requirements can then be created where each group is defined by a control requirement and 
the related constraint requirements that apply to it. A control responsibility and associated 
responsibility constraints can then be generated for each group. As an example, Req-4 describes 
the need to prevent conflicts and Req-10, Req-12, Req-13, Req-17, and Req-83 all describe 
restrictions on how conflicts should be resolved. Thus, these six related requirements can be 
grouped together. 

Table 12 shows the control responsibility and associated constraints that are derived from 
these requirements, and each responsibility and constraint is traced to the requirement it was 
derived from using the links in the square braces. The four other control responsibilities identified 

Category Requirement 

Control 
Requirements 

Req-3: ATM system shall ensure that sufficient capacity is available to 
detect and coordinate all aircraft that have or will need access to the 
airspace 

Req-4: ATM system shall coordinate the movement of aircraft to resolve 
any potential conflicts  

Req-6: ATM system shall ensure that acceptable coordination options are 
always available for aircraft to avoid violation of minimum separation. 

Req-8: ATM system shall only allow as many users to access the airspace as 
it is capable of detecting, tracking and coordinating 

Req-11: ATM system shall ensure that information about the intent, 
mission, acceptable operational impacts and future intended movements of 
aircraft is available, does not contain errors and is kept updated 

Constraint 
Requirements 

Req-10: ATM system shall account for intended movements of aircraft in 
addition to current trajectories to detect potential collisions 

Req-12: ATM system shall coordinate the movements of other aircraft to 
prevent violation of minimum separation with an aircraft that is unable to 
communicate or not responding 

Req-13: ATM system shall ensure that aircraft have received the 
coordination being communicated 

Req-17: ATM system shall ensure that coordination provided to the aircraft 
does not cause another violation of minimum separation 

Req-83: ATM system shall ensure that any proposed coordination has new 
alternative trajectories available before issuing the proposed coordination 
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in this design iteration are shown in Table 13 and were derived from the other four control 
requirements listed in Table 11. 

Table 12: Example derivation of control responsibility and associated constraints 

Table 13: The four other control responsibilities for collision avoidance 

Control Requirement Control Responsibility 

Req-3: ATM system shall ensure that the number of 
active flights in the airspace does not exceed its 
capacity to detect and coordinate any eminent 
collisions between any aircraft in the airspace 

Resp-2: Ensure sufficient capacity is 
available 

Req-6: ATM system shall ensure that acceptable 
coordination options are always available for aircraft 
to avoid violation of minimum separation. 

Resp-3: Ensure coordination options 
are available 

Req-8: ATM system shall only allow as many users to 
access the airspace as it is capable of detecting, 
tracking and coordinating. 

Resp-4: Manage access to the 
airspace 

Req-11: ATM system shall ensure that information 
about the intent, mission, acceptable operational 

Resp-5: Manage airspace state 
information 

Requirements Group 

Req-4: ATM system shall coordinate the movement of aircraft to resolve any potential conflicts 

Req-10: ATM system shall account for intended movements of aircraft in addition to 
current trajectories to detect potential collisions 

Req-12: ATM system shall coordinate the movements of other aircraft to prevent 
violation of minimum separation with an aircraft that is unable to communicate or not 
responding 

Req-13: ATM system shall ensure that aircraft have received the coordination being 
communicated 

Req-17: ATM system shall ensure that coordination provided to the aircraft does not 
cause another violation of minimum separation 

Req-83: ATM system shall ensure that any proposed coordination has new alternative 
trajectories available before issuing the proposed coordination 

Control Responsibility (Resp) and Associated Constraints (RC) 

Resp-1: Coordinate the movement of aircraft to prevent conflicts [Req-4] 

RC-2: Account for planned trajectory when identifying conflicts [Req-10] 

RC-4: Ensure coordination decisions do not cause secondary conflicts [Req-17] 

RC-15: Continue resolving conflicts even if one or more aircraft are unable to 
communicate or are not responding [Req-12] 

RC-26: Ensure that aircraft have received coordination being communicated [Req-13] 

RC-58: Confirm alternative trajectories are available for any proposed coordination 
[Req-83] 
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impacts and future intended movements of aircraft is 
available, does not contain errors, and is kept 
updated. 

Having defined these five responsibilities and their associated constraints, the required 
process model parts, control actions, and feedback can then be identified. Table 14 shows an 
example of the control elements defined for Resp-1. Table 15 shows an example of the control 
elements defined for Resp-3. The full set of control actions and feedback for all five 
responsibilities in this design iteration are shown in Appendix B. 

For each of the feedback and control actions in Table 14 and Table 15, the feedback sources 
and control action targets are also identified using the process described in Section 3.4. In 
addition, traceability between each control element and the responsibility or associated 
constraint that was used to generate it is recorded using the links in the square braces.  

Table 14: Identifying process model parts, control actions, and feedback for Resp-1 

Resp-1: Coordinate the movement of aircraft to prevent conflicts 

RC-2: Account for planned trajectory when identifying conflicts 

RC-4: Ensure coordination decisions do not cause secondary conflicts 

RC-15: Continue resolving conflicts even if one or more aircraft are unable to 
communicate or are not responding 

RC-26: Ensure that aircraft have received the coordination being communicated 

RC-58: Confirm alternative trajectories are available for any proposed coordination 

Summary of 
Desired Behavior  

If any object or aircraft is within <TBD distance> of any aircraft in the 
airspace with a closure rate of <TBD closure rate>, a collision is 
imminent and the two aircraft should be provided with direction to 
avoid a potential collision. 

If an aircraft is unable to communicate, the trajectories of other aircraft 
should be modified to avoid conflicting with the non-communicative 
aircraft. 

<Rationale for the threshold distance and closure rate >  

Process Model 
Parts & Required 
Feedback/Inputs  

• Feedback from the aircraft: 
o Aircraft track (position, heading, ID, speed) [Resp-1] 
o Planned trajectory [RC-2, RC-4] 
o Acknowledgement of trajectory modifications [RC-26] 

• Input from Resp-5: Aircraft not communicating [RC-15] 

• Input from Resp-3: Alternate trajectories available [RC-58] 

Required Control 
Actions/Outputs 

• Control action to the aircraft and output to Resp-5: Trajectory 
modifications [Resp-1] 

• Control action to the aircraft only: Request acknowledgement of 
trajectory modifications [RC-26] 
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Table 15: Identifying process model parts, control actions, and feedback for Resp-3 

Having defined the five control responsibilities and their corresponding control actions and 
feedback, an initial conceptual architecture for collision avoidance can be created and this is 
shown in Figure 26. 

Resp-3: Ensure coordination options are available 

RC-25: Ensure that there is sufficient airspace available to allow alternative trajectories 
to be selected 

RC-54: Ensure that initiated traffic management plans are accounted for when 
identifying coordination options 

RC-88: Ensure that further coordination options are available for any proposed 
coordination 

Summary of 
Desired Behavior  

Continuously evaluate the trajectory and track of all aircraft to ensure 
that there are always alternative movement options available for the 
aircraft if its trajectory needs to be modified.  

If an aircraft’s trajectory is being modified, the proposed new trajectory 
should be evaluated to ensure it has alternative movement options 
available.  

Process Model 
Parts & Required 
Feedback/Inputs  

• Feedback from the aircraft: 
o Aircraft track (position, heading, ID, speed) [Resp-3] 
o Planned trajectory [Resp-3] 

• Input from Resp-2: Active traffic management programs [RC-54] 

• Feedback from Resp-1: Proposed trajectory modifications [RC-88] 

Required Control 
Actions/Outputs  

• Control action to Resp-4 and Resp-1: Alternate trajectories [Resp-3, 
RC-25] 

• Control action to Resp-1: Confirmation/rejection of trajectory 
modifications [RC-88] 
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Figure 26: Initial conceptual architecture 

As shown in Figure 26, this conceptual architecture now provides a more detailed definition 
of what needs to be contained in the ATM architecture to safely manage UAM air traffic. The five 
control responsibilities listed in Table 13 refine the orange “Air Traffic Management” box and 
specify the control actions and feedback needed to safely manage air traffic. Starting at the 
bottom of the orange box, the first row of responsibilities are Resp-1 and Resp-4. Resp-1 is the 
responsibility for identifying and resolving conflicts, and Resp-4 is the responsibility for managing 
access to the airspace and ensuring that aircraft only enter UAM airspace when they meet the 
requirements for operating in it.  

Above these responsibilities is Resp-5, the responsibility for managing information about the 
state of the airspace. This includes ensuring that aircraft track and trajectory data is not tampered 
with and that any erroneous track data for an aircraft is reported so that the other responsibilities 
can account for those errors in their decision making.  

Finally, the top-most row of responsibilities includes Resp-2 and Resp-3. Resp-2 is the 
responsibility for ensuring there is sufficient capacity to manage the air traffic that needs access 
to the airspace and can initiate a traffic management program to help manage temporary surges 
in air traffic if necessary. Resp-3 is the responsibility for receiving proposed trajectory 
modifications and confirming that an aircraft will have alternate trajectories available if the 
proposed trajectory modifications are implemented. Resp-3 therefore prevents aircraft from 
being placed on a trajectory with no options to change it if needed. 

Although all five responsibilities in Figure 26 are contained within the “Air Traffic 
Management (ATM)”, this does not necessarily imply that the current ATM system will be used 
to implement the responsibilities needed to manage UAM aircraft. 
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4.2.3 Updating the Initial STPA Analysis 

Having created the initial conceptual architecture shown in Figure 26, the initial STPA analysis 
of the NAS can be updated to reflect the design decisions that have been made thus far. To do 
this STPA update, the losses and hazards remain the same and the UCAs and scenarios are refined 
to reflect the design details in the conceptual architecture. For example, the UCAs and scenarios 
identified for the abstract Coordination control action can be refined now that Trajectory 
Modifications has been identified as one of the more specific control actions. In addition, new 
UCAs and scenarios may also be identified. This STPA update therefore provides an opportunity 
to determine what unsafe behaviors might occur in the conceptual architecture. 

When the initial conceptual architecture shown in Figure 26 was analyzed, several instances 
of missing control elements were identified, and changes were made to the conceptual 
architecture to address these issues. This section discusses one example of a change that was 
made based on the updated STPA results and then presents the final conceptual architecture that 
was created after several rounds of iteration. The full updated STPA can be found in Appendix C. 

One design flaw in the initial conceptual architecture that was identified by STPA was the 
inability to adequately prevent a collision between two aircraft if track and trajectory information 
is not available for an aircraft before it enters an area of airspace where UAM aircraft are 
operating. Table 16 shows how the initial STPA was updated to identify this refined scenario and 
the additional requirement that was derived from it. 

Table 16: Example of missing feedback identified by updated STPA analysis 

UCA Update 

Original UCA-1.1: Air Traffic Management does not coordinate the 
interaction between two aircraft when a collision between them is imminent 

Updated UCA-1.1.1: Resp-1 does not provide Trajectory Modifications when 
the trajectories of two aircraft are in conflict 

Scenario 
Update 

Original Scenario CS-1.1.2-5: The Air Traffic Management is not aware of 
future intended movements of the aircraft and wrongly assumes that the 
aircraft will continue on their current trajectories. Based on this information, 
the Air Traffic Management wrongly believes that a collision is not imminent. 

Refined Scenario CS-1.1.1-2.1: Resp-1 is not aware of the planned trajectory 
of the aircraft because at least one of the two aircraft enters the UAM 
environment without its tracking and trajectory information having been fully 
received. This could occur if the aircraft is allowed by Resp-4 to enter the 
UAM environment before tracking and trajectory information can be fully 
collected by Resp-5. As a result, Resp-1 either does not know the aircraft is 
there or has the wrong belief about the trajectory of that aircraft and 
therefore wrongly believes that no collision is imminent. 

Additional 
Requirement 

Req-88: ATM system shall ensure that tracking and trajectory information is 
present for an aircraft before it enters the UAM operating environment [CS-
1.1.1-2.1] 
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As can be seen in Table 16, CS-1.1.1-2.1 occurs because the availability of track and trajectory 
information is not considered by Resp-4 before allowing an aircraft entry into UAM airspace. In 
other words, there is missing coordination between Resp-4 and Resp-5 to ensure that an aircraft 
can be adequately tracked, and its trajectory is known before it enters UAM airspace. This missing 
coordination is highlighted by the orange arrows in the partial control structure shown on the 
left side of Figure 27. 

 
Figure 27: Zoomed-in view of changes made to Resp-4 and Resp-5 due to Req-88 

Thus, to mitigate this refined scenario, Req-88 was added to ensure that track and planned 
trajectory information are available for all aircraft before an aircraft is allowed access to UAM 
airspace. The conceptual architecture was then updated to add the necessary control action and 
feedback between Resp-4 and Resp-5 to meet this new requirement. Thus, as shown on the right 
side of Figure 27, in the revised conceptual architecture, Resp-4 now provides feedback to Resp-
5 about any aircraft inbound to airspace where UAM aircraft are operating and Resp-5 must 
confirm to Resp-4 that aircraft information (e.g., aircraft track and planned trajectory) is available 
before Resp-4 allows the aircraft to enter UAM airspace. This modification to the conceptual 
architecture therefore meets Req-88 and resolves CS-1.1.1-2.1 

4.2.4 Revised Collision Avoidance Conceptual Architecture 

Figure 28 shows the revised conceptual architecture for collision avoidance that was created.  
Compared to the initial conceptual architecture shown in Figure 26, this revised conceptual 
architecture contains the same five responsibilities. However, changes were made to some of the 
interactions between the responsibilities as well as the control actions and feedback exchanged 
with the aircraft based on the scenarios identified in the updated STPA.  
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Figure 28: Revised conceptual architecture for collision avoidance 

 

4.3 Exploring and Comparing NAS Architecture Options 

Having defined a suitable conceptual architecture for collision avoidance, the structural 
design process can now be used to identify a NAS system architecture to implement this 
conceptual architecture.  

4.3.1 Identifying Assignment Constraints 

First, assignment constraints need to be identified because they inform the architecture 
options that are created. These assignment constraints are generated using the causal scenarios 
from the updated STPA analysis of the conceptual architecture that was conducted at the end of 
the behavioral design process.  

The discussion in Section 4.2.3 showed how some of the causal scenarios identified in the 
STPA analysis of the conceptual architecture could be prevented or mitigated by making changes 
to the conceptual architecture. However, there were also some scenarios that could not be 
prevented by changing the conceptual architecture but could be mitigated by making an 
informed choice about how to assign the various responsibilities. It is from these scenarios that 
assignment constraints (i.e., preferred assignments) are derived. Table 17 shows four example 
scenarios, the assignment constraints derived from each scenario and the reasoning that led to 
each assignment constraint being defined. Additional examples of assignment constraints are 
shown in Appendix C together with the STPA scenarios.  
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Table 17: Examples of assignment constraints derived from updated STPA scenarios 

The scenarios listed in the left column of Table 17 all involve the behavior of Resp-1. For each 
of these scenarios, it was decided that there was a preferred assignment of Resp-1 that would 
potentially better mitigate the scenario. For example, scenario CS-1.1.1-1.1 describes inadequate 
communication between Resp-1 and Resp-3 that would be easiest to prevent if the two 
responsibilities were assigned to the same controller in the control structure so that they do not 
need to communicate across controllers. Thus, Resp-1 = Resp-3 is the assignment constraint to 
indicate this preference for Resp-1 and Resp-3 to be assigned to the same controller. 

UCA-1.1: Resp-1 does not provide Trajectory Modifications when the trajectories of two 
aircraft are in conflict 

Scenario 
Assignment 
Constraint 

Reason for Assignment 
Constraint 

CS-1.1.1-1.1: The potential conflict is 
recognized and Resp-1 attempts to 
resolve the conflict. However, Resp-3 
does not confirm that the trajectory 
modifications still have alternate 
trajectory options. As a result, Resp-1 is 
unable to issue trajectory modifications. 

Resp-1 = Resp-3 

Avoids the need to 
communicate across 
controllers in the control 
structure to receive 
confirmation that alternate 
trajectory options are 
available 

CS-1.1.1-1.2: Although feedback about a 
potential conflict is received, Resp-1 is 
preoccupied with resolving one set of 
conflicts and therefore does not issue 
trajectory modifications to resolve this 
other conflict. 

Resp-1 = 
Aircraft ∨ (ATM 
∧  Aircraft)  

Distributing the decision 
making among the aircraft 
could help reduce workload 
and increase decision 
making capacity 

CS-1.1.1-2.3: Resp-1 does not receive 
feedback about the potential conflict 
because it does not receive timely 
feedback on the presence of new ground 
hazards (e.g., a new construction crane). 
It therefore does not believe a collision is 
imminent and does not modify aircraft 
trajectories. 

Resp-1 = 
Aircraft ∨ (ATM 
∧  Aircraft)  

Unlike ATM, aircraft have 
better access to feedback 
about detected ground 
hazards and could make 
faster and more accurate 
trajectory modification 
decisions to avoid them 

CS-1.29.1-1.3: Although the imminent 
collision is recognized, the process of 
generating a resolution repeatedly gets 
interrupted by new conflicts due to the 
density of air traffic. As such, before the 
trajectory modifications can be issued, 
they need to be recalculated and thus the 
trajectory of aircraft are not modified 
until it is too late to avoid a collision 

Resp-1 = ATM 

Under high density traffic 
situations, ATM would be 
better able to anticipate 
future conflicts and can pre-
emptively avoid them 
instead of only reacting to 
conflicts as they occur 
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Similarly, scenario CS-1.1.1-1.2 describes a situation in which a period of high workload while 
resolving a conflict leads to Resp-1 being unable to resolve a second imminent conflict. This 
suggests that Resp-1 is vulnerable to disruptions in decision making that could potentially be 
alleviated if that decision making was either only assigned to the aircraft or shared between ATM 
and the aircraft so that the aircraft could sometimes help to make those decisions. Thus, the 
assignment constraint is Resp-1 = Aircraft ∨ (ATM ∧  Aircraft).  

From the 55 scenarios identified in the STPA analysis of the conceptual architecture 
(performed at the end of the behavioral design process), it was determined that 28 of them could 
potentially be mitigated by a preferred responsibility assignment. Table 18 shows the assignment 
constraints that were identified and the number of scenarios that could potentially be mitigated 
by each constraint.  

Table 18: Assignment constraints identified from updated STPA scenarios 

4.3.2 Creating Architecture Options to Explore 

Based on the information in Table 18, assignment constraints 2 and 3 were explored first 
because they impact the greatest number of scenarios. Based on these two assignment 
constraints, two candidate architecture options for how to assign Resp-1 were created and the 
responsibility assignments for each option are shown in Table 19.  

Table 19: Responsibility assignments for two architecture options 

As highlighted in Table 19, note that the only difference between the two architecture 
options is the assignment of Resp-1. This was done to ensure that any differences in behavior 
could be directly attributed to the difference in assignment of Resp-1. For the other four 
responsibilities, they are assigned to ATM in both architecture options to mirror the architecture 
that is used in today’s air traffic control system.  

# Assignment Constraint Notation # of 
Scenarios 

1 Assign Resp-1 and Resp-3 to same 
controller 

Resp-1 = Resp-3 2 

2 Assign Resp-1 to ATM Resp-1 = ATM 5 

3 Assign Resp-1 either to UAM aircraft or 
share it between UAM aircraft and ATM 

Resp-1 = Aircraft ∨ (ATM 
∧  Aircraft) 

21 

Resp. ID Responsibility 
Option A1 

Centralized 
Collision Avoidance 

 Option A2 

Decentralized 
Collision Avoidance 

Resp-1 Identify and resolve conflicts ATM Aircraft 

Resp-2 Ensure sufficient capacity is available ATM ATM 

Resp-3 
Ensure coordination options are 
available 

ATM ATM 

Resp-4 Manage access to the airspace ATM ATM 

Resp-5 Manage airspace state information ATM ATM 
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Architecture option A1 assigns Resp-1 only to ATM and it represents a centralized collision 
avoidance architecture where ATM is responsible for identifying and preventing conflicts. This is 
essentially the same architecture that is used in today’s air traffic control system. By contrast, A2 
assigns Resp-1 only to the aircraft and it represents a decentralized collision avoidance 
architecture where the aircraft are responsible for identifying and preventing conflicts. This 
architecture is comparable to the Free Flight concept that was proposed by the German 
Aerospace Center and others in the early 2000s [101]. A1 and A2 therefore represent diverse 
architectures for collision avoidance and comparing them can provide insight into how best to 
assign the various responsibilities. 

To illustrate the differences in these two system architectures, simplified control structures 
for architecture options A1 and A2 are shown in Figure 29 and Figure 30 respectively. Both figures 
show a zoomed-in version of the control structure in Figure 24 to focus on the differences in the 
ATM-aircraft and aircraft-aircraft interactions between architecture options. In each figure, Resp-
1 is shown in orange and the Trajectory Modifications control action (the main control action for 
Resp-1) is highlighted in red to show how its location in the control structure changes between 
architecture options. 

In addition, because each aircraft has the same interactions with ATM, the control actions 
and feedback between ATM and the aircraft are only listed for one aircraft in the control 
structure and it is implied that they apply to the other aircraft as well.  

 
Figure 29: Zoomed-in control structure for architecture option A1 
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Figure 30: Zoomed-in control structure for architecture option A2 

4.3.3 Evaluating and Comparing Architecture Options 

Having created these two architecture options, they can now be further analyzed using STPA 
and compared. For conciseness, this section will focus on the comparison results derived from 
the STPA analyses of each option. As an example, Table 20 shows four scenarios and the 
comparison results derived from them for the two architecture options. The full comparison table 
showing all the STPA scenarios that were used to compare these two architecture options can be 
found in Appendix D. 
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Table 20: Architecture comparison table for four example scenarios 

Table 20 shows that this scenario-based comparison of architecture options can identify 
evaluation criteria that cover multiple areas of control. The first and fourth criteria involve 
decision making, the second criterion involves feedback, and the third criterion involves the 
control path. To illustrate how the evaluation criteria in Table 20 were derived, the difference in 
behavior of architecture options A1 and A2 in the first and second scenarios are illustrated in 
Figure 31 and Figure 32 respectively. 

# Scenario 

Scenario 
Occurs? Evaluation Criteria 

A1 A2 

1 

Although the imminent collision is recognized, 
<controller(s) performing Resp-1> gets repeatedly 
interrupted by changing flight conditions and it 
constantly needs to modify its solution. As a result, 
a final solution is not selected until it is too late to 
prevent a collision 

No 

[A1] 
Yes 

Responsiveness of 
trajectory modifications 
decisions to prevent loss 
of separation when flight 
conditions change 
rapidly 

2 

<Controller(s) performing Resp-1> do not receive 
feedback about the potential conflict because they 
are unable to receive timely feedback on the 
presence of new ground hazards (e.g., a new 
construction crane). As a result, it does not believe a 
collision is imminent and does not try to modify 
aircraft trajectories to avoid the collision 

Yes 
No 

[A2] 

Timeliness of ground 
hazards feedback to 
prevent loss of 
separation when 
resolving a conflict 
involving terrain or 
ground obstacles 

3 

<Controller(s) performing Resp-1> issue trajectory 
modifications that do not result in collision. 
However, during transmission to the aircraft, part of 
the trajectory modification is dropped (e.g., due to a 
communications error). As a result, the aircraft only 
receives part of the trajectory modifications and 
that causes a conflict with another aircraft 

Yes No 

[A3] 

Vulnerability of 
providing trajectory 
modifications to prevent 
loss of separation when 
communication (path) 
errors occur 

4 

Although feedback about the potential conflict is 
received, <controller(s) performing Resp-1> do not 
issue trajectory modifications because they are 
preoccupied with resolving one set of conflicts and 
do not attend to feedback about a subsequent set.  

Yes 
No 

[A4] 

Frequency and 
complexity of trajectory 
modifications decisions 
to prevent loss of 
separation when 
resolving a conflict 
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Figure 31: Behavior of A1 (left) and A2 (right) in scenario 1 of Table 20 

 
Figure 32: Behavior of A1 (left) and A2 (right) in scenario 2 of Table 20 

First, consider scenario 1 (Figure 31). In this scenario, flight conditions (e.g., operational 
constraints, weather etc.) are changing rapidly and therefore the acceptable conflict resolution 
options are changing as well. Under these conditions, no unsafe behavior is observed for 
architecture option A1 because when Resp-1 is assigned to ATM, ATM is the sole decision maker 
and can quickly adapt its decision making as the flight conditions change. In addition, ATM has 
broader situational awareness of the state of the airspace and could anticipate some of these 
changes. As a result, it can select appropriate trajectory modifications and issue them to the 
aircraft with minimal delay. By contrast, in option A2 where Resp-1 is assigned to the aircraft, the 
aircraft must coordinate with each other to collectively make safe trajectory modification 
decisions. Therefore, when conditions are changing rapidly, the aircraft will likely need to 
repeatedly revise their coordination to select appropriate trajectory modifications based on the 
updated flight conditions. This repeated revision of coordination can therefore delay their 
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selection of trajectory modifications and therefore delay the aircraft in taking appropriate control 
inputs to resolve the conflict.  

Comparing the behavior of architecture options A1 and A2 in this first scenario therefore 
shows that the main behavioral difference between them is the responsiveness with which 
trajectory modification decisions can be made when flight conditions change rapidly. Specifically, 
architecture option A1 enables more responsive decision making than A2. This therefore leads to 
the formulation of the evaluation criterion for scenario 1 that is shown in Table 20. 

Next, consider scenario 2 (Figure 32). In this scenario, the aircraft detect a ground hazard that 
was not previously known and recognize that their trajectories conflict with that detected ground 
hazard. Unsafe behavior is observed for architecture option A1 because when Resp-1 is assigned 
to ATM, ATM must first receive feedback about the ground hazard from the aircraft before it can 
identify the conflict and decide how to resolve it. Thus, because ATM is dependent on the aircraft 
to provide this feedback about ground hazards, there is a delay before ATM can issue trajectory 
modifications. Depending on the length of the delay and the distance to the ground hazard, there 
may not be enough time to resolve the conflict before a collision occurs. By contrast, in option 
A2, as soon as the ground hazard is detected, the aircraft can begin coordinating to resolve the 
conflict and no unsafe behavior occurs due to communications delay.  

Thus, comparing the behavior of architecture options A1 and A2 in this second scenario shows 
that the main behavioral difference between them is the timeliness with which ground hazards 
feedback is received when resolving a conflict involving terrain or ground hazards. Specifically, 
architecture option A2 enables more timely feedback about ground hazards than A1. This leads 
to the formulation of the evaluation criterion for scenario 2 that is shown in Table 20. 

As these decisions are made, it is also important to record any underlying assumptions used 
to make these decisions. Table 20 also shows that each time it is decided that a scenario does 
not occur for an architecture option, any assumptions that were used to make that decision are 
identified and the assumption IDs are indicated in italicized text in the corresponding cell. The 
assumptions linked in Table 20 are shown in Table 21.  

Table 21: Examples of assumptions underlying comparison decisions 

ID Assumption 

A-1 
It is assumed that ATM will not have to coordinate conflicts as frequently because it 
has broader situational awareness of the future state of the airspace and can better 
resolve multiple conflicts over longer time horizons in a more coordinated fashion.  

A-2 
It is assumed that UAM aircraft would have onboard sensing capable of detecting 
ground hazards with enough range to allow time for the aircraft to respond to avoid a 
collision with the ground hazard. 

A-3 
It is assumed that with the aircraft sharing responsibility for preventing conflicts with 
ATM, a component failure (e.g., on ATM or on one of the aircraft) should not 
compromise the ability of other aircraft to prevent conflicts. 

A-4 
It is assumed that even if an initial set of aircraft are preoccupied with resolving a set 
of conflicts, any new aircraft would identify the conflict and coordinate its own set of 
trajectory modifications to avoid the other group of aircraft. 
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As discussed briefly in Chapter 3, it is important to identify these assumptions because the 
ability of an architecture to prevent a specified scenario is contingent on these assumptions being 
valid. Thus, if one of these architecture options is chosen for further development, then any 
downstream design decisions must not violate the assumptions associated with that architecture 
option. Chapter 6 provides a more detailed discussion of how to ensure that these assumptions 
remain valid as the design process progresses. 

In this design iteration, a total of nineteen evaluation criteria were identified across all 
aspects of control. These evaluation criteria highlighted key benefits and tradeoffs in three main 
areas of control: (1) decision making, (2) feedback and control inputs, and (3) control path. The 
remainder of this section will discuss the benefits and tradeoffs identified in each of these areas 
of control. The list of all nineteen evaluation criteria can be found in Appendix D. 

Decision Making Tradeoffs for Collision Avoidance 

The first finding from this comparison is that the two architecture options exhibit important 
differences in the ability of ATM or the aircraft to make safe and appropriate trajectory 
modification decisions to resolve conflicts. Table 22 shows the four evaluation criteria that 
highlight these differences. 

Table 22: Comparison results showing decision making tradeoffs for collision avoidance 

The first two rows of Table 22 (EC-1 and EC-4) show that when Resp-1 is assigned to the 
aircraft (as it is in A2), the ability of the system to make appropriate trajectory modification 
decisions is improved in two key ways. First, by assigning Resp-1 to the aircraft, the frequency 
and complexity of the decisions made by each aircraft is lower. This is because allowing the 
aircraft to perform Resp-1 distributes the decision making for conflict resolution. As a result, 
multiple groups of aircraft can resolve smaller conflict sets in parallel, making it easier to select 
appropriate trajectory modifications. This is possible when the traffic density is low because 
conflicts are more likely to occur further apart in space and therefore can be resolved 

ID Evaluation Criteria Benefit (+) or Tradeoff (-) 

A1 A2 

EC-1 Frequency and complexity of trajectory modifications 
decisions when resolving a conflict   

EC-4 Ability to make appropriate trajectory modification 
decisions to prevent loss of separation when multiple 
conflicts occur   

EC-5 Responsiveness of trajectory modification decisions to 
prevent loss of separation when resolving a multi-
aircraft conflict in densely populated airspace   

EC-6 Responsiveness of trajectory modifications decisions to 
prevent loss of separation when the state of the 
airspace changes rapidly or a conflict involves 
restrictive operational constraints 
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independently. By contrast, when Resp-1 is only assigned to ATM, ATM is the sole decision maker 
and must resolve all conflicts of any size that might occur at any time.   

The other improvement is that when multiple conflicts occur, they can be better resolved by 
the aircraft than by ATM. This is because distributing the decision making to the aircraft allows 
the aircraft to resolve different conflicts in parallel. By contrast, when Resp-1 is assigned to ATM, 
ATM must resolve all the conflicts by itself.  

However, the latter two rows of Table 22 also show these benefits may not be realized by 
architecture A2 under some challenging air traffic conditions. EC-5 shows that if the traffic density 
is high, assigning Resp-1 to ATM (as it is in A1) allows ATM to make more responsive (i.e., timely) 
trajectory modification decisions. Similarly, EC-6 shows that if the state of the airspace is 
changing rapidly or a conflict involves multiple restrictive operational constraints (e.g., an 
emergency, fuel or battery range limits etc.), assigning Resp-1 to ATM (as it is in A1) allows ATM 
to make more responsive trajectory modification decisions. Architecture option A1 can achieve 
these benefits because under these more challenging air traffic conditions, it is necessary to 
coordinate the resolution of these conflicts to avoid causing secondary conflicts. Thus, when 
Resp-1 is assigned to ATM, ATM’s broader situational awareness of the state of the airspace 
allows it to more easily make multiple simultaneous trajectory modification decisions to resolve 
many potential conflicts while accounting for all relevant operational constraints. In addition, 
ATM’s broader situational awareness allows it to more easily anticipate future changes to the 
state of the airspace and pre-empt future conflicts or problems before they can occur. By 
contrast, if the aircraft are performing Resp-1, their more limited situational awareness of the 
state of the airspace makes it harder for them to anticipate future conflicts. In addition, their 
ability to make timely decisions may be impaired by the need to coordinate trajectory 
modification decisions with other aircraft.  

Taken together, the above comparison results show that, when traffic density is low or in less 
challenging air traffic circumstances, assigning Resp-1 to the aircraft is beneficial because this 
architecture option lowers the frequency and complexity of trajectory modification decisions and 
enables better resolution of conflicts when multiple conflicts occur at the same time. However, 
when air traffic circumstances become more challenging (e.g., high traffic density, strict 
operational constraints etc.), assigning Resp-1 to ATM enables better coordinated and more 
timely trajectory modification decisions to be made to resolve any potential conflicts. 

Decision Making Tradeoffs for Efficient Management of Airspace 

Although this design iteration was primarily focused on safety, several evaluation criteria 
were also identified that involved efficiency. The comparison of these two architecture options 
showed that architecture option A1 enables better decision making for ensuring (1) efficient use 
of the airspace and (2) that high-priority flights receive the necessary precedence to complete 
their flights. Table 23 shows the two evaluation criteria (EC-7 and EC-8) that illustrate these 
differences in behavior. 
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Table 23: Comparison results showing decision making tradeoffs for efficiency 

ID Evaluation Criteria Benefit (+) or Tradeoff (-) 

A1 A2 

EC-7 Responsiveness of trajectory modifications decisions to 
enable aircraft to complete missions when reducing 
spacing between aircraft to accommodate additional air 
traffic 

  

EC-8 Responsiveness of trajectory modification decisions to 
inability to complete missions when a high-priority flight 
needs to be given precedence for mission completion   

 

As shown in Table 23, architecture option A1 exhibits more responsive decision making when 
making trajectory modifications to reduce the spacing between aircraft and to ensure that a high-
priority flight can complete its mission without interference from other, lower-priority air traffic. 
These two benefits of option A1 are achieved because, when Resp-1 is assigned to ATM (as it is 
in A1), ATM has broader situational awareness of the current and future state of the airspace. As 
a result, ATM is better equipped than the aircraft to make trajectory modification decisions to 
either make more efficient use of the airspace to accommodate more aircraft or prioritize a high-
priority flight.  

In addition, ATM’s role in the system is to serve the needs of all airspace users in a fair and 
consistent manner. Thus, ATM is less likely to act unfairly toward any particular airspace user and 
will prioritize flights that need that priority in a consistent manner. By contrast, if Resp-1 is 
assigned to the aircraft, some aircraft may select trajectory modifications that protect their own 
self-interest (e.g., efficiency of their own trajectory) at the expense of other NAS users. 

Feedback and Control Inputs Tradeoffs 

Another interesting finding from this comparison was that there is a tradeoff between 
needing to receive control inputs from other controllers (in the control structure) and the ability 
to receive timely environmental feedback to inform trajectory modification decisions. Table 24 
shows the comparison results for the five relevant evaluation criteria that illustrate this tradeoff. 
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Table 24: Comparison results showing feedback and control inputs tradeoffs 

The first three rows of Table 24 (EC-12, EC-13, and EC-14) show that when Resp-1 is assigned 
to the aircraft (as it is in architecture option A2), one of the benefits is that it is easier for the 
aircraft to obtain timely feedback on environmental or flight conditions such as aircraft 
capabilities, flight conditions, operational constraints, and ground hazards. This is especially 
important if operational constraints or flight conditions are changing frequently. Architecture 
option A2 exhibits this benefit because when Resp-1 is assigned to the aircraft, the aircraft have 
direct access to data about these conditions through on-board sensors (an assumption that is 
recorded in the comparison results of this architecture option) and direct communication with 
each other. By contrast, when Resp-1 is assigned to ATM, ATM is dependent on the aircraft or 
other third-party sources (e.g., weather providing services etc.) to provide feedback about these 
elements and therefore ATM’s ability to receive timely feedback is poorer compared to the 
aircraft. 

However, the last two rows of Table 24 (EC-15 and EC-16) shows that when Resp-1 is assigned 
to the aircraft (as it is in A2), one of the tradeoffs is that it becomes necessary to receive two 
control inputs before trajectory modifications can be selected. The first is confirmation of 
trajectory modifications. This input is necessary because coordination is needed between Resp-
1 and Resp-3 to ensure that a proposed set of trajectory modifications has alternate trajectories 
available before those trajectory modifications are provided to the aircraft. Recall that in both 
architecture options, Resp-3 is assigned to ATM. Thus, when Resp-1 is assigned to the aircraft, 
the aircraft need to wait for ATM to confirm their proposed trajectory modifications before they 
can execute them, and this could potentially slow down the ability of the aircraft to resolve a 
conflict.  By contrast, when Resp-1 is also assigned to ATM (as it is in A1), coordination between 
Resp-1 and Resp-3 occurs within ATM and input from another control element is not required.  

The other control input is mutual agreement between aircraft. This input is necessary 
because when Resp-1 is assigned to the aircraft, the aircraft must work together to coordinate 

ID Evaluation Criteria Benefit (+) or Tradeoff (-) 

A1 A2 

EC-12 Timeliness of ground hazards feedback to prevent loss 
of separation when resolving a conflict   

EC-13 Timeliness of operational constraints feedback to 
prevent loss of separation when operational 
constraints are changing frequently   

EC-14 Timeliness of aircraft capabilities, flight conditions and 
operational constraints feedback to prevent loss of 
separation when resolving a conflict   

EC-15 Use of “confirmation of trajectory modifications” input 
to prevent loss of separation when resolving a conflict   

EC-16 Use of “mutual agreement” input to prevent loss of 
separation when resolving a conflict involving 
numerous aircraft and/or densely populated airspace   
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their selection of trajectory modifications. This coordination ensures that the modifications they 
select do not conflict with each other in addition to not conflicting with other nearby aircraft. By 
contrast, when Resp-1 is assigned to ATM, this mutual agreement is not needed because ATM is 
the sole decision maker and need not coordinate its decision with any other control element. 

Control Path Benefits of Architecture Option A2 

The last interesting finding from this comparison was that there are some important control 
path benefits of architecture option A2 over option A1 that arise because the decision making 
associated with Resp-1 is distributed among the aircraft. Table 25 shows the evaluation criteria 
that illustrate these benefits.  

Table 25: Comparison results showing control path tradeoffs 

ID Evaluation Criteria Benefit (+) or Tradeoff (-) 

A1 A2 

EC-17 Vulnerability of providing trajectory modifications to 
prevent loss of separation when a component failure 
compromises decision making   

EC-18 Vulnerability of providing trajectory modifications to 
prevent loss of separation when errors with the 
communications path occurs   

EC-19 Responsiveness of execution of trajectory 
modifications to prevent loss of separation when 
trajectory modifications have been issued   

 

The first two rows of Table 25 (EC-17 and EC-18) show that when Resp-1 is assigned to the 
aircraft (as it is in A2), the control path is less vulnerable to communications errors or component 
failures that could lead to compromised decision making. Architecture A2 exhibits this benefit 
because, when Resp-1 is assigned to the aircraft (as it is in A2), the inability of one or a group of 
aircraft to resolve a conflict or accurately transmit trajectory modifications does not necessarily 
compromise the ability of other aircraft to do so. Thus, even if one aircraft is not communicating, 
the other aircraft have the capability to maneuver to avoid the non-communicative aircraft, 
thereby still successfully preventing a collision. By contrast, when Resp-1 is assigned to ATM, if 
ATM is unable to resolve a conflict or accurately communicate its trajectory modifications to the 
aircraft, the ability of architecture option A1 to perform adequate collision avoidance is 
significantly compromised because no one else is assigned the responsibility to resolve collisions.  

In addition, the third row of Table 25 (EC-19) shows that when Resp-1 is assigned to the 
aircraft, the aircraft are likely to be more responsive in executing the selected trajectory 
modifications. Architecture A2 exhibits this additional benefit because, when Resp-1 is assigned 
to the aircraft, they are the ones selecting trajectory modifications and therefore know that they 
will soon need to execute those trajectory modifications. By contrast, when Resp-1 is assigned to 
ATM, ATM could identify and resolve a conflict, but the aircraft may be delayed in executing 
ATM’s selected trajectory modifications if they are preoccupied with other tasks and do not 
attend to the trajectory modifications right away. 
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4.4 Evaluation of Comparison Results Against Existing Literature 

Having generated a set of benefits and tradeoffs by comparing a centralized and 
decentralized ATM architecture, the goal of this section is to evaluate whether the framework 
was able to identify relevant criteria for comparing architecture options. As discussed in Section 
2.2, one of the limitations of current architecture development methods is that they are heavily 
reliant on quantitative metrics, which are challenging to identify during the early stages of 
development for evaluating emergent properties like safety. Thus, this comparison seeks to 
determine if this framework overcomes this limitation and can generate relevant qualitative 
criteria for comparing architecture options. 

As discussed at the beginning of this chapter, although this research employs a novel, control-
oriented approach to compare architecture options, several studies in the existing literature have 
already compared centralized and decentralized ATM architectures. In the existing ATM 
literature, several simulation studies have compared the performance of today’s ATC system (a 
centralized architecture) with several proposed decentralized ATM architectures such as Free 
Flight and Distributed Air-Ground Traffic Management (DAG-TM). In this section, the benefits and 
tradeoffs discussed in Section 4.3.3 are compared to those identified in the existing literature to 
determine (1) if the benefits and tradeoffs found in previous simulation studies are also found 
using this approach and (2) if this approach is able to identify additional benefits and tradeoffs 
that are relevant for deciding how best to assign the control responsibilities to achieve emergent 
properties such as safety and efficiency.  

One of the challenges in performing this comparison of results is that the existing studies that 
this research is being compared to are not of the same type. The framework proposed in this 
research employs STPA (a qualitative analysis method) to analyze proposed architecture options 
whereas the existing ATM literature uses simulation studies (a quantitative analysis method). As 
a result, the centralized and decentralized architectures analyzed in this research are defined at 
a relatively high level of abstraction whereas the architectures analyzed in the existing ATM 
literature are defined at a much more detailed level to enable their implementation in a 
simulation. Consequently, the benefits and tradeoffs identified in this research are qualitative 
and less detailed while the benefits and tradeoffs identified in the existing literature are typically 
quantitative and more detailed. 

For these reasons, this comparison focuses primarily on the qualitative observations made in 
the existing literature rather than on the quantitative findings to ensure the same types of 
findings are being compared. However, to ensure this evaluation does not unfairly discount 
quantitative results, a qualitative finding is also considered to have been found by the existing 
literature if it could have reasonably been identified using the quantitative results of a research 
study. In addition, this comparison focuses only on qualitative observations that are at the same 
level of abstraction as those identified in this research. Thus, the more detailed benefits or 
tradeoffs that are identified in some of the existing literature are not considered.  

It is also worth noting that this evaluation only includes a limited number of existing research 
studies and is not meant to be an exhaustive comparison to all studies comparing centralized and 
decentralized ATM architectures. However, repetition of some of the findings across studies 
suggests that they are converging toward a common set of benefits and tradeoffs that will be 
used for this evaluation. 
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Quantitative Comparison of Benefits and Tradeoffs 

Table 26 shows the number of benefits and tradeoffs identified by the existing literature and 
using the framework developed in this research, grouped by the different aspects of control. 

Table 26: Comparing results identified in existing literature and this research 

Table 26 shows that of the nineteen benefits and tradeoffs identified using the architecture 
development framework developed in this research (Appendix D), only nine were also identified 
by the existing literature. At this level of abstraction, all the benefits and tradeoffs that were 
identified by the existing literature were also found using this framework. Furthermore, except 
for the control path, this framework identified more benefits and tradeoffs in each of the control 
aspects than the existing literature. In fact, benefits and tradeoffs related to feedback and 
external inputs are not identified at all in the existing literature whereas this research identifies 
five of them. Together, these results suggest that this framework identifies more benefits and 
tradeoffs with better coverage over the various aspects of control than the methods used in 
existing research.  

This is important because, as discussed at the beginning of Chapter 3, the ability of an 
architecture to achieve the desired emergent properties is dependent on its ability to adequately 
control the system’s behavior to avoid unsafe behavior. Thus, better coverage over the various 
aspects of control ensures that all aspects that contribute to achieving adequate control are 
considered when identifying the benefits and tradeoffs of each architecture option.  

While the quantitative differences shown in Table 26 are encouraging, they are not enough 
by themselves to establish the contributions of this research. This is because, in addition to being 
able to find more benefits and tradeoffs, it is also important to establish that the benefits and 
tradeoffs that are found are also relevant for understanding the behavior of an architecture to 
inform downstream design decisions. For this reason, the remainder of this section qualitatively 
compares the benefits and tradeoffs identified in this research to those identified in the existing 
literature. In the remainder of this section, three main qualitative benefits of this architecture 
development framework are discussed. 

Qualitative Comparison 1: Focus on Control-Related Differences 

One of the important qualitative differences between the benefits and tradeoffs identified in 
this research compared to those identified in the existing literature is that those identified in this 
research are more focused on control-related differences in behavior between the architecture 
options. To illustrate this, Table 27 shows several benefits and tradeoffs identified in the existing 
literature (left column) and the equivalent ones identified using this framework (right column). 

Control Aspect Found in Existing 
Literature 

Found Using This 
Framework 

Decision Making 5 8 

Process Models 1 3 

Feedback and External Inputs 0 5 

Control Path 3 3 

TOTAL 9 19 
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Table 27: Examples comparing degree of focus on control-related differences 

As shown in Table 27, the benefits and tradeoffs identified in the existing literature are 
typically focused on the aspects of an ATM system’s behavior that are quantifiable and 
observable. However, these quantifiable differences in behavior do not necessarily describe the 
control behavior of an architecture. For example, the left column of Table 27 shows that the 
differences between centralized and decentralized architectures are typically reported in terms 
of quantitative metrics such as the number or percentage of conflicts or collisions that were 
detected or the probability of collision.  

By contrast, the benefits and tradeoffs identified using this framework are more focused on 
the control-related differences in behavior between architecture options. For example, as shown 
in the first three rows of Table 27, instead of just observing that the decentralized architecture 
had more collisions or more secondary collisions than the centralized architecture, this 
framework identifies that it is ATM’s ability to make more responsive (i.e., more timely) decisions 
in a centralized architecture that enables it to more adequately resolve any potential conflicts. 
Similarly, in the last row of Table 27, instead of just observing that a decentralized architecture 
has a higher probability of collision, this framework identifies that it is because the aircraft have 
more limited situational awareness of the airspace state that they are more likely to inadequately 
resolve a conflict. 

Qualitative Comparison 2: Determining the Source of Observed Behavioral Differences 

Another important qualitative difference between the benefits and tradeoffs identified in this 
research compared to those identified in the existing literature is that it is easier to determine 

Benefit/Tradeoff Identified in Existing Literature Benefit/Tradeoff Identified  
Using This Framework 

“Decentralized approach had 229% more collisions 
than the centralized approach” [102, p. 192] In a centralized collision avoidance 

architecture, ATM makes more 
responsive trajectory modifications 
decisions to prevent loss of 
separation when the state of the 
airspace changes rapidly or a 
conflict involves restrictive 
operational constraints 

“The centralized strategy suppresses the [occurrence of 
secondary conflicts] over the entire range of traffic 
densities” [96, p. 325] 

“The centralized conflict resolution produced a total of 
3.2% of scenarios with losses of separation […] whereas 
the decentralized architecture produced a total of 3.4% 
of scenarios with losses of separation” [103, p. 7] 

For the decentralized free flight concept, “the 
estimated mean probability of collisions per 20 minutes 
aircraft flight equals 5.22×10-5, which is equal to a 
probability of collisions per aircraft flight hour of 
1.6×10-4 ” [104, p. 9], which the authors deem to be a 
high risk of collision  

In a decentralized collision 
avoidance architecture, the aircraft 
have more limited situational 
awareness of airspace state to 
prevent loss of separation selecting 
trajectory modifications under 
challenging air traffic conditions 
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what aspect of the ATM architecture contributed to the identified benefit or tradeoff.  To 
illustrate this difference, consider the following two examples from the existing literature.  

First, in [104], the authors offer the following explanation for their finding that the 
decentralized free flight concept has a high risk of collision: 

There appeared to be five different collision events. […] Four of the five collisions were 
due to a growing number of multiple conflicts that could not be solved in time under the 
operational concept adopted. [104, p. 9] 

In this first example, although the authors of [104] describe that the collisions occurred due 
to the growing number of multiple conflicts occurring, they don’t explain why their decentralized 
free flight concept could not resolve those conflicts. 

The second example is in [102], where the authors offer the following explanation for why 
the decentralized approach had more collisions than the centralized approach:  

This can be explained by the increased number of messages required by this approach, 
which [is] associated with the communications overhead, [resulting] in a larger time to 
reach an agreement [102, p. 192] 

In this example, the authors of [102] include in their explanation the element of their 
decentralized architecture that contributed to the observed increase in collisions (i.e., the 
communications overhead). However, they do not offer further explanation of why the 
communications overhead occurs.  

These two examples illustrate that in the existing literature, it can be difficult to determine 
what aspects of the ATM architecture contributed to those benefits and tradeoffs. By contrast, 
the framework developed in this research makes it easier to determine why an identified benefit 
or tradeoff occurs because each one is derived from a specific STPA causal scenario that includes 
details about what control structure elements are involved. Thus, each benefit and tradeoff can 
be easily traced to specific element(s) in the system architecture. For example, Table 28 shows 
one of the benefits of a centralized architecture that was identified in this research and the causal 
scenario that it was derived from. 

Table 28: Demonstration of how a causal scenario explains an identified benefit 

Benefit 

A centralized collision avoidance architecture exhibits more 
responsive trajectory modifications decisions to prevent loss of 
separation when the state of the airspace changes rapidly or a 
conflict involves restrictive operational constraints 

Associated STPA 
Causal Scenario 

Although the imminent collision is recognized, <controller(s) 
performing Resp-1> gets repeatedly interrupted by new conflicts due 
to the density of air traffic. As such, before the trajectory 
modifications can be issued, they need to be recalculated and thus 
the trajectories of aircraft are not modified until it is too late to enact 
the new trajectories to avoid a collision 

Comparison Result 
for This Scenario 

DOES NOT occur in architecture option A1 (centralized architecture) 

DOES occur in architecture option A2 (decentralized architecture) 
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Table 28 illustrates how the causal scenario associated with a benefit or tradeoff makes it 
easier to determine how one of the architectures might exhibit better or worse behavior. One of 
the benefits of a centralized collision avoidance architecture identified by this framework is that 
it exhibits responsive trajectory modification decisions when the state of the airspace changes 
rapidly or a conflict involves restrictive operational constraints. This benefit is observed because 
when ATM resolves conflicts centrally, it can pre-emptively resolve multiple conflicts 
simultaneously without needing to interrupt its decision making for each new conflict as they 
occur. Therefore, no unsafe behavior related to this causal scenario occurs in architecture option 
A1. By contrast, when the aircraft resolve their own conflicts, any new conflicts or changes to the 
conflicts they are resolving will interrupt their decision making and require them to re-evaluate 
their trajectory modification decisions. Thus, unsafe behavior related to this causal scenario does 
occur in architecture option A2. 

Qualitative Comparison 3: Consideration of Different Air Traffic Contexts 

Finally, the last qualitative difference between the benefits and tradeoffs identified in this 
research compared to those identified in the existing literature is that the ones identified in this 
research were derived from a broader consideration of different air traffic contexts. This 
difference was observed because many of the simulation studies in the existing literature that 
were considered in this comparison (e.g., [96, 102, 105, 106]) only considered nominal air traffic 
conditions involving varying levels of air traffic density. Only [97, 101, 103] considered off-
nominal conditions such as input/output errors, component failures, delays or flight crews not 
flying the aircraft according to the trajectories needed to prevent a collision. 

By contrast, the scenarios generated in the various STPA analyses performed in this design 
iteration included the following air traffic contexts: 

• High or low traffic density 

• Nominal, degraded, and emergency conditions 

• Interactions between different types of air traffic/aircraft (e.g., emergency response 
flights, high-priority flights, etc.) 

• Inclement weather conditions 

• Airspace that includes restrictions (e.g., temporary flight restrictions (TFRs)) 

This framework enables benefits and tradeoffs to be derived from a broader consideration of 
air traffic contexts because architecture options are compared based on the qualitative causal 
scenarios generated by STPA. Thus, different air traffic contexts (e.g., traffic density, weather 
conditions etc.) and different combinations of those contexts can be easily included in the UCAs 
and causal scenarios when performing STPA. This is more challenging to do in a simulation study 
because each new context or combination of contexts requires an additional execution of the 
simulation or additional development effort to incorporate the new context or combination of 
contexts into the simulation.  

4.5 Designing the Preferred Collision Avoidance Architecture 

Finally, to conclude this design iteration, a preferred collision avoidance architecture for 
managing UAM air traffic needs to be designed based on the insights gained from comparing 
architecture options A1 and A2.  
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As discussed in Section 4.3.3, architecture option A1 exhibits benefits that are desirable if the 
airspace is anticipated to routinely have high air traffic density or challenging air traffic 
conditions. This is because in architecture option A1, assigning Resp-1 to ATM centralizes the 
responsibility for resolving conflicts with ATM. This allows ATM to make better coordinated, more 
timely, and more responsive conflict resolution decisions because it has the necessary situational 
awareness of the overall state of the airspace to resolve multiple conflicts simultaneously. ATM 
can also more easily anticipate future changes to the state of the airspace and act accordingly to 
pre-empt future conflicts or problems before they occur.  

However, the tradeoffs associated with architecture option A1 are that ATM is required to 
make complex and frequent conflict resolution decisions because it is solely responsible for 
preventing all potential conflicts. In addition, the control path for issuing trajectory modifications 
is vulnerable to disruptions because ATM must make all conflict resolution decisions and be able 
to transmit appropriate trajectory modifications to the aircraft. Thus, any disruption in ATM’s 
ability to make timely decisions or transmit trajectory modifications to the aircraft would 
significantly compromise its ability to adequately resolve conflicts.  

On the other hand, Section 4.3.3 also identified that architecture option A2 exhibits benefits 
that are desirable if the airspace is anticipated to routinely have only low air traffic density. This 
is because when the air traffic density is low, less coordination is required to resolve different 
sets of conflicts. Thus, because architecture option A2 distributes the responsibility for conflict 
resolution to the aircraft, they can make less complex and less frequent conflict resolution 
decisions by resolving different sets of conflicts in parallel instead of resolving them all 
simultaneously. In addition, the control path is less vulnerable because the inability of some 
aircraft to perform adequate collision avoidance does not compromise the ability of other aircraft 
to do so. Furthermore, the aircraft can more easily receive timely feedback about aircraft 
capabilities, flight conditions, and operational constraints. They can therefore make quicker 
decisions to modify their trajectories in response to changing environmental conditions. 

However, the main tradeoff associated with A2 is the need for the aircraft to coordinate 
among themselves to select appropriate trajectory modification decisions. Because the aircraft 
must coordinate among themselves to select appropriate trajectory modifications, how quickly 
the aircraft can make trajectory modification decisions depends significantly on (1) the number 
of aircraft involved in the conflict, (2) the density of the surrounding airspace, and (3) the number 
of operational constraints of the aircraft involved in the conflict that must be considered. If any 
of these factors are high (e.g., conflict involving many aircraft, dense airspace, numerous tight 
operational constraints etc.), the aircraft may be significantly slower than ATM at making 
trajectory modification decisions because they need to coordinate those decisions.  

Unfortunately, the traffic conditions in UAM are unlikely to be predictably high density or low 
density at any given time. This is because the on-demand nature of UAM flights means that flights 
may occur with limited advance notice. As a result, there may be times when air traffic is 
unexpectedly light, and the behavior of the decentralized architecture would be preferable. 
However, there may be other times when a sudden unexpected surge in air traffic causes a period 
of very high traffic density, and the behavior of the centralized architecture would be preferable. 

For this reason, this research proposes a hybrid of the two architecture options. Instead of 
just selecting either A1 or A2, this research proposes a more flexible shared collision avoidance 
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architecture (designated as architecture option A3) where Resp-1 is assigned to either ATM or 
the aircraft. By sharing the collision avoidance responsibility between ATM and the aircraft, 
either ATM or the aircraft could decide to resolve a conflict depending on who is better equipped 
to make the necessary decisions in each situation. The full control structure for architecture 
option A3 is shown in Figure 33.  

 
Figure 33: Control structure for architecture option A3 

Because the traffic circumstances in UAM are likely to be dynamic and unpredictable, the 
benefit of architecture option A3 (where ATM and the aircraft share responsibility for preventing 
conflicts) is that it could dynamically allocate that responsibility depending on the prevailing air 
traffic circumstances. For example, when traffic density is high or an emergency arises, ATM 
could resolve conflicts instead of the aircraft. This would allow A3 to be capable of making 
responsive and better coordinated trajectory modification decisions in high density traffic 
situations like in A1. However, if only a few aircraft are involved in an isolated conflict, the aircraft 
could resolve that conflict instead of ATM. This would allow A3 to offer the same benefits as A2. 
These benefits include a reduction in decision making complexity and frequency when selecting 
trajectory modifications, the ability to receive timely feedback about environmental conditions 
and a less vulnerable control path for providing trajectory modifications. 

It is worth noting that these benefits of A3 are contingent on two key assumptions. First, it is 
assumed that A3 can be feasibly implemented during detailed system design and that none of the 
required system elements are impossible to design or implement. Second, it is also assumed that 
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there are no significant tradeoffs of A3 (e.g., mode confusion) that might negate the expected 
benefits. These two assumptions are important because if either of these assumptions are not 
true, the expected benefits of this shared collision avoidance architecture may not be realized, 
or it will require far more development effort to realize them than anticipated.  

These two design assumptions therefore represent two open design issues that need to be 
explored to confirm that architecture option A3 (the shared collision avoidance architecture) is 
the preferred ATM architecture for UAM. For this reason, a second design iteration was 
conducted in this research to refine the shared collision avoidance architecture to determine the 
feasibility of implementing it and better understand any potential tradeoffs. This work will be 
presented next in Chapter 5. 

4.6 Summary 

This chapter described the results of the first of two design iterations performed in this 
research. In this first design iteration, the goal was to apply the safety-driven architecture 
development framework described in Chapter 3 to develop an initial collision avoidance 
architecture that will be able to safely manage UAM air traffic. To do this, the NAS was first 
analyzed at a high level of abstraction to identify a set of system-level collision avoidance 
requirements. Those requirements were then used to create a conceptual architecture that 
defined the control behavior that would be needed to ensure safe operation with respect to 
collision avoidance.  

Two architecture options were then created and compared to determine the preferred way 
to implement the conceptual architecture in the ATM system architecture. Architecture option 
A1 was a centralized architecture option where ATM was responsible for collision avoidance, and 
architecture option A2 was a decentralized architecture option where the aircraft were 
responsible for collision avoidance.  

The comparison of these two architecture options showed that the preferred architecture 
option depended on the air traffic circumstances that would be encountered. If traffic density 
was expected to be high, architecture option A1 would ensure better coordinated and timely 
trajectory modification decisions. By contrast, if traffic density was expected to be low, 
architecture option A2 would enable reduced decision-making complexity and a less vulnerable 
control path for providing trajectory modifications.  

These benefits and tradeoffs were then compared to the benefits and tradeoffs identified by 
comparisons of centralized and decentralized ATM architectures in the existing literature. This 
comparison showed that this framework identifies more benefits and tradeoffs that covered 
more areas of control than the existing literature. In addition, a qualitative comparison of the 
benefits and tradeoffs identified by this research to those identified in the existing literature 
showed that this framework offers three additional benefits. First, this framework generates 
benefits and tradeoffs that are more focused on control-related differences which enhances 
safety understanding. Second, this framework makes it easier to determine what aspects of the 
architecture give rise to the observed benefits and tradeoffs. Third, this framework allows 
benefits and tradeoffs to be derived from a broader consideration of different air traffic contexts. 
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These results therefore provide support for hypothesis 1 of this dissertation and demonstrate 
that the framework developed in this research can identify relevant criteria for comparing 
architecture options and evaluating the architectures’ ability to achieve emergent properties. 

Hypothesis 1: A systems-theoretic approach can identify relevant criteria for comparing 
architecture options and evaluating their ability to achieve emergent properties 

Finally, to conclude this first design iteration, the preferred collision avoidance architecture 
for UAM was designed. Because UAM flights are expected to occur on-demand instead of being 
scheduled in advance, it is unlikely that traffic density will always be predictably high or low. Thus, 
based on the insights gained from comparing architecture options A1 and A2, architecture option 
A3 was proposed that assigns the responsibility for collision avoidance to both ATM and the 
aircraft. This architecture option would enable the ATM system to adapt its collision avoidance 
behavior and vary the extent to which identified conflicts are resolved by ATM or the aircraft to 
suit the prevailing air traffic circumstances.  

However, the selection of architecture option A3 assumes that it can be feasibly implemented 
and that there are no significant tradeoffs that would compromise the safety of A3 and negate its 
expected benefits. It is therefore important to validate these assumptions to confirm if A3 is 
indeed the preferred ATM architecture for UAM. Thus, a second design iteration is needed to 
refine architecture option A3 to better understand the feasibility of its implementation and its 
tradeoffs. The next chapter presents the results from this second design iteration.   
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Chapter 5 Design Iteration 2: Refining the Collision Avoidance 
Architecture 

In design iteration 1, the goal was to select the collision avoidance architecture for managing 
UAM air traffic in the NAS. By applying the architecture development framework developed in 
Chapter 3, a shared collision avoidance architecture was selected where the responsibility for 
resolving conflicts (Resp-1) is shared between ATM and the aircraft. However, the selection of 
this architecture as the preferred option was contingent on two key assumptions: that it could 
be feasibly implemented and that the tradeoffs would not outweigh the expected benefits. 

So, to investigate the validity of these assumptions, a second design iteration was conducted 
to refine the shared collision avoidance architecture that was created in design iteration 1. The 
goal of design iteration 2 can therefore be stated as follows: 

Iteration 2 Goal: Define how ATM and the aircraft will share responsibility for collision avoidance 
and work together to adequately resolve conflicts 

This chapter presents the results of this second design iteration. First, a past accident is 
introduced to illustrate how unsafe behavior can occur in an existing ATM architecture with 
shared responsibility for collision avoidance. Then, the shared collision avoidance architecture 
developed in design iteration 1 is analyzed using STPA to identify how unsafe behavior could 
occur. The results from this STPA analysis are then used to develop a refined conceptual 
architecture for shared collision avoidance. Next, potential architecture options for 
implementing this refined conceptual architecture are created and compared to identify the 
potential benefits and tradeoffs. Finally, the results from both design iterations are reviewed to 
evaluate the ability of the framework to help systems engineers incrementally refine a system 
architecture and make more informed design decisions. 

5.1 Illustration of Unsafe Behavior: The Uberlingen Accident 

 The shared collision avoidance architecture developed in design iteration 1 represents a 
more collaborative approach than exists today for sharing the responsibility for collision 
avoidance between ATM and the aircraft. However, the concept of sharing collision avoidance 
responsibility between a ground-based controller and an airborne controller is not entirely new. 
The use of the Traffic Collision Avoidance System (TCAS) onboard commercial aircraft to augment 
the collision avoidance capabilities of ground-based Air Traffic Control (ATC) is a simpler version 
of a shared collision avoidance architecture that is already operating in the NAS. Although this 
system has helped to prevent numerous mid-air collisions, some have still occurred. It is 
therefore informative to study what could go wrong in this simpler version of shared collision 
avoidance involving ATC and TCAS to inform the hazard analysis of what could go wrong in the 
more collaborative shared collision avoidance architecture that this research is proposing to use 
for UAM.  

Background: Brief Overview of TCAS 

TCAS is a collision avoidance system installed on commercial aircraft that is designed to help 
identify and prevent mid-air collisions between aircraft [107]. It does this by monitoring the 
airspace around an aircraft and warns pilots if a nearby aircraft presents a collision risk. Although 
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ATC’s primary role is to maintain separation between aircraft, TCAS was designed to serve as a 
backup collision avoidance system in cases when a conflict is not identified and resolved by ATC. 

When a potential conflict is identified by TCAS, there are two types of alerts it can issue [107]. 
The first is called a traffic advisory (TA) that simply warns the flight crew that a nearby aircraft 
may be a collision risk, but no action is required to be taken. The other type of alert is a resolution 
advisory (RA) that includes a recommended maneuver (to either climb or descend) to prevent a 
collision. FAA regulations and the operations manuals of many airlines require that if flight crews 
receive an RA from TCAS, they are to execute the recommended maneuver even if that RA is 
contradictory to an instruction provided by ATC. Figure 34 shows a simplified control structure 
that illustrates how TCAS works within the ATC system. 

 
Figure 34: Simplified control structure of today’s ATC including TCAS 

Although ATC and TCAS are both responsible for identifying and resolving collisions, their 
responsibilities are not completely overlapping because TCAS only attempts to resolve conflicts 
that might occur within a limited period of time. By contrast, ATC will attempt to resolve any 
conflict that it identifies. Thus, if ATC identifies a conflict well in advance of a collision occurring, 
ATC will provide directions (e.g., climbs, descents, turns) to the flight crew and the flight crew will 
provide control inputs to the aircraft to carry out ATC’s directions. However, if ATC does not 
identify a conflict soon enough, TCAS might identify that conflict and issue an RA to resolve the 
conflict. If an RA is issued, the flight crew similarly will need to provide control inputs to the 
aircraft to comply with the RA. 

Figure 34 illustrates two noteworthy features of how TCAS is integrated into the ATC system. 
First, there is no direct feedback or communication of any kind between TCAS and ATC. TCAS 
therefore operates entirely independently of ATC and the only way ATC receives feedback about 
a TCAS RA is when the flight crew provides that feedback verbally via radio communications. 

The other noteworthy feature is that this architecture makes it possible for flight crews to 
receive conflicting instructions about how to maneuver the aircraft and they must decide which 
instructions to execute. For example, if a conflict is identified at the same time by both ATC and 
TCAS, ATC and TCAS could choose different ways to maneuver the aircraft to resolve the conflict. 
This would result in the flight crews receiving conflicting instructions. To avoid confusion, flight 
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crews are expected (by procedure) to always comply with the TCAS RA, even if that means 
ignoring ATC instructions. This policy ensures a consistent set of instructions are executed. 

The Uberlingen Accident 

On 1 July 2002, Bashkirian Airlines flight 2937 and DHL flight 611 collided with each other 
over Uberlingen, Germany while under the control of Zurich Air Traffic Control [108]. Just prior 
to the accident, both aircraft were cleared to cruise at 36000 feet but the Zurich air traffic 
controller handling those flights did not realize that he had cleared two aircraft on conflicting 
flight paths to cruise at the same altitude. 

Less than a minute before the crash, the Zurich air traffic controller recognized that the two 
aircraft were in conflict and chose to resolve it by keeping flight 611 at 36000 feet and instructing 
flight 2937 to descend. This decision alone was adequate and would have resolved the conflict. 
However, very shortly after flight 2937 begins its descent, the TCAS on both aircraft identified 
the same conflict. Unfortunately, because TCAS operates independently of ATC, TCAS chose a 
different way to resolve the conflict and instructed flight 611 to descend while instructing flight 
2937 to climb. As a result, although the flight crew of flight 611 only received instructions from 
TCAS to descend, the flight crew of flight 2937 received conflicting instructions: an instruction 
from Zurich ATC to descend and an instruction from TCAS to climb [108]. This scenario is 
illustrated in the simplified control structure shown in Figure 35. 

 
Figure 35: Control structure showing conflicting instructions in the Uberlingen accident 

Faced with this scenario, the flight crew of flight 611 followed established procedures and 
complied with the RA from TCAS instructing them to descend. Unfortunately, because the flight 
crew of flight 2937 had been trained differently than the flight 611 flight crew, they did not follow 
the same procedure of always complying with the TCAS RA. Instead, they chose to ignore the 
TCAS RA and follow the instruction from Zurich ATC to descend. As a result, both aircraft 
descended toward each other, resulting in a mid-air collision [108]. 

As has been published in several reports following the accident [108, 109], there were 
numerous factors that contributed to the accident. However, focusing on the role of the ATC 
architecture in this accident, two factors are relevant. First, because TCAS and ATC operate 
independently of each other, TCAS provides no feedback to ATC if an RA is generated, and they 
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do not coordinate to decide if TCAS or ATC is resolving the conflict. Instead, both TCAS and ATC 
independently try to resolve the conflict and it is up to the flight crew to resolve any conflicting 
instructions that are provided to them.  

Second, this architecture for integrating ATC and TCAS depends on the flight crews 
consistently following a fixed procedure and always complying with the TCAS RA. Thus, when the 
flight crews do not follow this procedure consistently (in this case due to differences in training), 
this Uberlingen accident becomes possible. 

Implications for designing the shared collision avoidance architecture 

The Uberlingen accident illustrates how even in a relatively simple shared collision avoidance 
architecture, independent decision making and conflicting instructions can lead to unsafe conflict 
resolution decisions and inadequate collision avoidance. This suggests that for the more 
collaborative shared collision avoidance architecture selected in design iteration 1, it will be even 
more important to design it to avoid unsafe behavior because it contains more opportunities for 
inadequate collision avoidance than today’s ATC system. This is because, compared to TCAS, the 
shared collision avoidance architecture requires a more advanced airborne collision avoidance 
system that is given larger scope and expanded authority to resolve conflicts. Unlike TCAS, the 
shared collision avoidance architecture selected in design iteration 1 allows the aircraft to resolve 
any conflict in trajectories instead of just conflicts within a limited radius of the aircraft’s current 
position. In addition, aircraft can make any change to their trajectory instead of just climbs or 
descents. 

For these reasons, the purpose of the STPA analysis that will be presented in the next section 
is to analyze the shared collision avoidance architecture to obtain some initial information about 
how unsafe behavior like what happened in the Uberlingen accident could lead to inadequate 
collision avoidance. Those analysis results can then be used to refine the conceptual architecture 
to ensure that this shared collision avoidance architecture is designed to prevent accidents like 
the Uberlingen accident from occurring. 

5.2 STPA Analysis of Shared Collision Avoidance Architecture 

To refine the shared collision avoidance architecture, the STPA analysis that was performed 
in design iteration 1 is updated again to consider all the ways in which ATM and the aircraft might 
be unable to adequately resolve conflicts. As with previous STPA analyses in this research, the 
losses and hazards are the same as those identified in Table 7 and Table 8 respectively. However, 
a zoomed-in version of the control structure created in iteration 1 (shown in Figure 33) is used 
because the goal of this analysis is specifically to refine how ATM and the aircraft will need to 
work together to adequately resolve collisions. Figure 36 highlights the area of the control 
structure from iteration 1 that will be zoomed-in on and Figure 37 shows the zoomed-in version 
of the control structure that will be used in this design iteration. 
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Figure 36: Illustration of area in higher-level control structure that will be zoomed in on 

 
Figure 37: Zoomed-in control structure used in iteration 2 analyses 
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As shown in Figure 37, the zoomed-in control structure now models each aircraft as being 
comprised of an aircraft controller and the physical subsystems of the aircraft. This highlights the 
fact that to resolve a conflict in this shared collision avoidance architecture, the aircraft controller 
may either be given trajectory modifications selected by ATM or it may work with the controllers 
of other aircraft to select appropriate trajectory modifications for themselves. Regardless of how 
the trajectory modifications are selected, the aircraft controller eventually needs to decide what 
control inputs to provide to the aircraft subsystems to execute the trajectory modifications. Thus, 
by zooming in on the interactions between ATM and the aircraft, the control structure shown in 
Figure 37 better focuses the analysis on how the collective behavior of ATM and the aircraft may 
lead to inadequate resolution of conflicts.  

Because this architecture requires ATM and the aircraft to work together to resolve conflicts, 
ATM and the aircraft are essentially collaborative controllers working as a team. Thus, STPA-
Teaming [32] was used to analyze the Trajectory Modifications control action to determine how 
ATM and the aircraft collectively providing (or not providing) trajectory modifications could lead 
to unsafe behavior. The remainder of this section presents examples of the analysis results, and 
the full STPA-Teaming analysis can be found in Appendix E. 

Consistent with the STPA-Teaming process [32], after creating the control structure to model 
the system, the next step is to generate unsafe collaborative control actions (UCCAs). As shown 
in Figure 37, either ATM or the aircraft can provide the Trajectory Modifications control action. 
Table 29 shows the three main combinations of this control action that were considered to 
identify type 1-2 abstracted UCCAs. The far-right column of Table 29 also describes the types of 
unsafe behaviors that are covered by each combination. 

Table 29: Combinations of control actions considered to identify type 1-2 UCCAs 

For each of these combinations of control actions, multiple abstracted Type 1-2 UCCAs were 
identified and Table 30 shows examples of these UCCAs. Note that UCCA-17 is essentially the 
UCCA involved in the Uberlingen accident discussed in Section 5.1. 

 

# Either ATM or 
the aircraft 

While the other Unsafe Behaviors Covered 

1 
Does not provide 

Trajectory 
Modifications 

Does not provide 
Trajectory 

Modifications 

Identifies how a collision might remain 
unresolved by both ATM and the aircraft 

2 
Provides 

Trajectory 
Modifications 

Does not provide 
Trajectory 

Modifications 

Identifies how either ATM or the aircraft might 
provide unsafe trajectory modifications 

3 
Does not provide 

Trajectory 
Modifications 

Provides 
Trajectory 

Modifications 
Duplicate - Same as #2  

4 
Provides 

Trajectory 
Modifications 

Provides 
Trajectory 

Modifications 

Identifies how conflicts or inconsistencies in 
trajectory modifications might occur 



 

95 

 

Table 30: Example Type 1-2 UCCAs for shared collision avoidance architecture 

For UCCAs where neither ATM nor the aircraft provide trajectory modifications (e.g., UCCA-1 
and UCCA-3), no further refinement of these UCCAs is needed because no additional detail is 
required to identify scenarios for those UCCAs. However, the other UCCAs can be refined and 
Table 31 shows examples of refined UCCAs for UCA-11 and UCCA-17.  

Table 31: Example refined Type 1-2 UCCAs for shared collision avoidance architecture 

ID 
Either ATM or 
one of the aircraft 

While the others Context 

UCCA-1 Does not provide 
Trajectory 
Modifications 

Does not provide 
Trajectory 
Modifications 

when the trajectories of two aircraft are 
in conflict [H-1] 

UCCA-3 
when the trajectory of an aircraft 
conflicts with an obstacle or terrain [H-1] 

UCCA-11 Provides 
Trajectory 
Modifications 

Does not provide 
Trajectory 
Modifications 

when the modifications will result in a 
secondary collision with another aircraft 
[H-1] 

UCCA-14 
when the modifications will cause a 
collision with an obstacle or terrain [H-1] 

UCCA-17 
Provides 
Trajectory 
Modifications 

Provides 
Trajectory 
Modifications 

when the trajectory modifications 
conflict with each other [H-1] 

ID Sub-ID ATM Aircraft 1 Aircraft n Context 

UCCA-11 

UCCA-11.1 
Provides 
Trajectory 
Modifications 

Does not 
provide 
Trajectory 
Modifications 

 
when the 
modifications 
will result in a 
secondary 
collision with 
another 
aircraft [H-1] 

UCCA-11.2 

Does not 
provide 
Trajectory 
Modifications 

Provides 
Trajectory 
Modifications 

 

UCCA-17 

UCCA-17.1 
Provides 
Trajectory 
Modifications 

Provides 
Trajectory 
Modifications 

Does not 
provide 
Trajectory 
Modifications when the 

trajectory 
modifications 
conflict with 
each other 
[H-1] 

UCCA-17.2 

Does not 
provide 
Trajectory 
Modifications 

Provides 
Trajectory 
Modifications 

Provides 
Trajectory 
Modifications 

UCCA-17.3 
Provides 
Trajectory 
Modifications 

Provides 
Trajectory 
Modifications 

Provides 
Trajectory 
Modifications 
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As shown in the first two rows of Table 31, UCCAs where either ATM or the aircraft (but not 
both) provide trajectory modifications can be refined to consider UCCAs where ATM provides the 
unsafe control action (and the aircraft do not) and UCCAs where the aircraft provide the unsafe 
control action (and ATM does not). In Table 31, UCCA-11.1 is an example of the former and UCCA-
11.2 is an example of the latter.  

Similarly, UCCA-17 can also be refined to consider three UCCAs:  

1. ATM and one of the aircraft provide conflicting trajectory modifications (UCCA-17.1) 
2. Two aircraft select conflicting trajectory modifications (UCCA-17.2) 
3. ATM and the aircraft all select conflicting trajectory, some or all of which are 

conflicting (UCCA-17.3) 

For Type 3-4 UCCAs, this analysis assumes that Trajectory Modifications is a discrete control 
action that simply indicates to aircraft what their new trajectory should be. Thus, only one type 
of Type 3-4 UCCA was considered: one controller provides trajectory modifications before the 
other controller provides trajectory modifications. Table 32 shows two examples of Type 3-4 
UCCAs and Table 33 shows the three refined UCCAs identified for UCCA-18. 

Table 32: Example Type 3-4 UCCAs for shared collision avoidance architecture 

# Either ATM 
or the 

aircraft 

Then the 
other 

Context 

UCCA-18 Provides 
Trajectory 
Modifications 

Provides 
Trajectory 
Modifications 

when ATM and the aircraft are attempting to 
resolve the same conflict [H-1] 

UCCA-19 
When ATM and the aircraft are modifying 
trajectories for different reasons [H-1] 

 
Table 33: Examples of refined type 3-4 UCCAs for UCCA-18 

Sub-ID 
Trajectory Modifications 

provided by 
Then trajectory 

Modifications provided by 
Context 

UCCA-18.1 ATM Aircraft n when ATM and the 
aircraft are attempting 
to resolve the same 
conflict [H-1] 

UCCA-18.2 Aircraft n ATM 

UCCA-18.3 Aircraft 1 Aircraft n 

 

Once the UCCAs have been identified, causal scenarios can then be developed. To illustrate 
how this was done for the shared collision avoidance architecture, example scenarios for three 
UCCAs are presented in this section.  
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Example scenarios for UCCA-1 

UCCA-1: Neither ATM nor the aircraft provide trajectory modifications when the trajectories of 
two aircraft are in conflict [H-1] 

 

CS-2.1.1-1: The aircraft attempt to resolve the conflict and ATM does not. However, when the 
aircraft attempt to verify with ATM that their selected trajectory modifications will have alternate 
trajectory options available, ATM does not confirm this and therefore the aircraft are unable to 
select trajectory modifications before the collision occurs.   

CS-2.1.1-2: ATM allows the aircraft to resolve the conflict. However, if the conflict involves a large 
number of aircraft or numerous operational constraints, it may take too long for the aircraft to 
coordinate among themselves to resolve the collision. As a result, neither ATM nor the aircraft 
issue trajectory modifications to prevent the conflict. 

CS-2.1.1-4: ATM and the aircraft both assume the other is better equipped to resolve the conflict 
or they each wrongly believe the other will resolve the conflict. As a result, each waits for the 
other to resolve the conflict and neither of them selects trajectory modifications to prevent it. 

Example scenarios for UCCA-11.1 

UCCA-11.1: ATM provides trajectory modifications (and the aircraft do not) when the 
modifications will result in a collision [H-1] 

 

CS-2.11.1.1-1: ATM selects trajectory modifications that contain secondary conflicts. It does this 
believing that it would be faster to issue these first and then resolve the secondary conflicts later. 
However, ATM becomes busy resolving other conflicts and does not return in time to resolve 
these secondary conflicts before a collision occurs. Furthermore, the aircraft believe ATM will 
resolve them and don't try to resolve them on their own. 

CS-2.11.1.2-2: Other aircraft are about to but have not yet modified their trajectories and 
therefore ATM has not received any feedback that the trajectories of some aircraft are about to 
be modified when it begins to identify its own trajectory modifications. If it does not receive and 
process feedback later that the trajectories of some aircraft have been modified, ATM will 
identify trajectory modifications based on the outdated aircraft trajectories and select trajectory 
modifications that it does not realize are in conflict with the updated trajectories of some aircraft. 

CS-2.11.1.3-1: ATM correctly selects trajectory modifications that will not result in a collision. 
However, during transmission to the aircraft, some of the trajectory modifications are dropped 
(e.g., due to a communications error) and only some of the aircraft receive trajectory 
modifications. As a result, aircraft that did receive trajectory modifications may now conflict with 
those that did not receive trajectory modifications. However, since the aircraft believe that ATM 
is managing the collision, they do not check these modifications and simply execute them. 
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Example scenarios for UCCA-17.1 

UCCA-17.1: ATM and the aircraft both provide trajectory modifications when they conflict with 
each other [H-1] 

 

CS-2.17.1.1-1: Both ATM and a UAM aircraft identify a potential conflict with another aircraft 
that is not equipped to perform self-separation. The UAM aircraft proceeds to resolve the conflict 
under the assumption that the other aircraft will not change trajectory and are able to identify a 
solution first. However, ATM can control that other aircraft (e.g., by coordinating with 
conventional ATC). Thus, although ATM knows the aircraft has already selected trajectory 
modifications, ATM provides what it believes to be a better solution but that conflicts with those 
of the aircraft. 

CS-2.17.1.1-6: Multiple sets of conflicts are occurring and ATM and the aircraft have received 
feedback about them and are attempting to resolve them. While the aircraft are each only 
attempting to resolve their own local conflict, ATM is resolving all these conflicts together 
because it believes it can resolve them more efficiently. As a result, although the aircraft have 
selected trajectory modifications already, ATM provides a conflicting set to the aircraft.    

CS-2.17.1.2-1: Both ATM and the aircraft identify a potential conflict and attempt to resolve it. If 
they both select trajectory modifications at about the same time, neither ATM nor the aircraft 
will receive feedback that the other has already selected trajectory modifications before they 
provide their own. Thus, they both provide trajectory modifications that conflict with each other. 

5.3 Developing the Shared Collision Avoidance Conceptual Architecture 

Having analyzed the shared collision avoidance architecture using STPA-Teaming, the 
identified scenarios can be used to refine the conceptual architecture created in design iteration 
1 to define the control elements that are needed to adequately manage shared collision 
avoidance. Because this design iteration is focused on deciding how to implement shared 
collision avoidance, Resp-1 (the responsibility for resolving conflicts) will be refined in this design 
iteration to determine the more detailed sub-responsibilities that will need to be performed. 
Figure 38 shows a refocused version of the conceptual architecture created in design iteration 1 
that highlights Resp-1 that will be refined. 
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Figure 38: Iteration 1 conceptual architecture with Resp-1 highlighted for refinement 

This section describes how this refinement of Resp-1 is done. First, additional system 
requirements are generated that define the additional safety constraints necessary to ensure 
safe shared collision avoidance. The augmented set of system requirements are then used to 
define a refined set of sub-responsibilities of Resp-1 and the process model parts, control actions 
and feedback that are needed for each sub-responsibility. Finally, the sub-responsibilities are 
assembled to create the refined conceptual architecture.  

5.3.1  Additional System Requirements for Shared Collision Avoidance 

Based on the scenarios identified using STPA-Teaming, additional system requirements can 
be generated that describe the additional safety constraints needed to ensure safe shared 
collision avoidance. Table 34 shows three examples of how requirements are derived from the 
scenarios and Table 35 shows several more examples of system requirements generated to 
prevent unsafe behavior arising from shared collision avoidance. The full set of additional system 
requirements generated in this design iteration are listed in Appendix F. 

Note that CS-2.17.1.2-1 (second row of Table 34) is essentially the scenario that occurs in the 
Uberlingen accident. Thus, by identifying that scenario now during development, the necessary 
system requirements can be generated and the right control elements can be designed into the 
ATM architecture to prevent an accident like the Uberlingen accident from occurring. 
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Table 34: Examples of derived system requirements for shared collision avoidance 

Scenario Derived Requirement 

CS-2.1.1-4: ATM and the aircraft both assume the other is 
better equipped to resolve the conflict or they each wrongly 
believe the other will resolve the conflict. As a result, each 
waits for the other to resolve the conflict and neither of them 
selects trajectory modifications to prevent the conflict. 

Req-121: An explicit decision 
must be made about who is 
resolving a potential conflict 

CS-2.17.1.2-1: Both ATM and the aircraft identify a potential 
conflict and attempt to resolve it. If they both select 
trajectory modifications at the same time, neither receives 
feedback that the other has already selected trajectory 
modifications before they select their own. Thus, they provide 
trajectory modifications that conflict with each other. 

Req-123: If multiple 
potential resolutions to a 
conflict are identified, an 
explicit decision must be 
made about which trajectory 
modifications to execute 

CS-2.17.1.1-6: Multiple conflicts occur, and ATM and the 
aircraft are attempting to resolve them. While the aircraft are 
each only attempting to resolve their own local conflict, ATM 
is resolving all these conflicts together because it believes it 
can resolve them more efficiently. As a result, although the 
aircraft have selected trajectory modifications already, ATM 
provides a conflicting set to the aircraft.    

Req-124: Under <TBD> 
conditions, to better 
coordinate the resolution of 
conflicts, it must be possible 
to temporarily require that 
all trajectory modification 
decisions be made centrally. 

 
Table 35: Additional examples of system requirements for shared collision avoidance 

ID Requirement 

Req-103 If either ATM or the aircraft is unable to resolve a potential conflict, the other 
must be able to take over and resolve it. 

Req-104 Conflicts must continue to be resolved even if the ability of ATM or one aircraft to 
do so is compromised. 

Req-108 Any aircraft within <TBD> distance of an identified conflict must be included in 
coordination to ensure secondary collisions are avoided. 

Req-136 Trajectory modification decisions must account for aircraft changing trajectories 

Req-144 Air traffic priorities must be determined and adhered to consistently when making 
trajectory modification decisions 

Req-145 The ability of aircraft to execute their planned trajectory to the required 
navigational performance must be monitored and modifications reconsidered if 
they are unable to execute their planned trajectories sufficiently accurately 

5.3.2 Creating the Refined Conceptual Architecture for Shared Collision Avoidance 

Once these additional system requirements have been generated, refined responsibilities can 
then be identified. To do this, the additional requirements derived from the STPA-Teaming results 
are combined with the original requirements used to define Resp-1 to create an expanded set of 
requirements.  
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From this expanded set of requirements, new requirements groups are formed. As was done 
in iteration 1, each requirement group is defined by a control requirement and the constraint 
requirements that apply to it. The difference in this iteration is that the control requirements are 
more detailed than those in iteration 1. More detailed control responsibilities and associated 
responsibility constraints can then be generated for each group.  

Table 36 shows an example of one requirement group and the refined responsibility and 
constraints that were derived. Table 37 summarizes the six responsibilities that were identified 
in this iteration to refine Resp-1. The full set of control actions and feedback for all six 
responsibilities in this design iteration are shown in Appendix F. 

Table 36: Example derivation of refined responsibility and associated constraints 

Requirements Group 

Req-121: An explicit decision must be made about who is resolving a potential conflict 

Req-103: If either ATM or the aircraft is unable to resolve a potential conflict, the other 
must be able to take over and resolve it. 

Req-104: Conflicts must continue to be resolved even if the ability of ATM or one 
aircraft to do so is compromised. 

Req-108: Any aircraft within <TBD> distance of an identified conflict must be included 
in coordination to ensure secondary collisions are avoided. 

Req-109: A potential conflict that remains unresolved after <TBD> of being identified 
must be prioritized and resolved within <TBD> time. 

Control Responsibility (Resp) and Associated Constraints (RC) 

Resp-1.2: Decide which controller is resolving a conflict [Req-121] 

RC-78: Allow ATM and the aircraft to take over from each other to resolve a conflict 
[Req-103] 

RC-79: Continue preventing conflicts even if the ability of ATM or one of the aircraft to 
do so is compromised [Req-104] 

RC-83: Aircraft within <TBD> of an area where a potential conflict might occur should 
be included in coordination [Req-108] 

RC-84: Prioritize and resolve any conflict within <TBD> time that remains unresolved 
after <TBD> of being identified [Req-109] 
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Table 37: The six refined sub-responsibilities of Resp-1 

Control Requirement Control Responsibility 

Req-4*: ATM system shall identify and resolve any 
conflict with an aircraft’s trajectory including conflicts 
between two aircraft trajectories or a conflict of an 
aircraft trajectory with terrain 

Resp-1.1: Identify and resolve 
potential conflicts 

Req-121: There must be an explicit decision on who will 
be resolving a conflict 

Resp-1.2: Decide which 
controller is resolving a conflict 

Req-123: If multiple potential resolutions to a conflict are 
identified, an explicit decision must be made about which 
trajectory modification instructions to execute 

Resp-1.3: Arbitrate conflicting 
conflict resolution proposals 

Req-145: The ability of aircraft to execute their planned 
trajectory to the required navigational performance must 
be monitored and trajectory modifications reconsidered 
if they are unable to execute their planned trajectories 
sufficiently accurately 

Resp-1.4: Ensure aircraft are 
adequately following their 
planned trajectory and any 
modifications made to it 

Req-144: Air traffic priorities must be determined and 
adhered to consistently when making trajectory 
modification decisions 

Resp-1.5: Prioritize air traffic to 
inform trajectory modification 
decisions 

Req-124: Under <TBD> conditions, to better coordinate 
the resolution of conflicts, it must be possible to 
temporarily require that all trajectory modification 
decisions be made centrally. 

Resp-1.6: Establish when 
trajectory modification decisions 
need to be made centrally 

* Note: In iteration 1, Req-4 was used to derive Resp-1. In iteration 2, it is used again to derive the 
more detailed responsibility Resp-1.1 

At this point, it is worth noting that this process has identified control responsibilities that 
could help to prevent accidents like the Uberlingen accident from occurring if they were 
implemented in the ATC system architecture.  For example, consider Resp-1.2. As discussed in 
Section 5.1, the ATC system that existed at the time of the Uberlingen accident was designed 
such that TCAS and ATC operated independently with no direct communication between them. 
Thus, a responsibility like Resp-1.2 was not included because federal regulations and FAA 
guidance prescribe that ATC and TCAS are both responsible for resolving any conflict that they 
identify. Even in today’s ATC system, a responsibility like Resp-1.2 does not exist even though it 
could help to prevent unsafe independent conflict resolution decisions being made by ATC and 
TCAS by clarifying which of them will make the resolution decision for a given conflict.  

For this shared collision avoidance architecture, however, Resp-1.2 is critically needed 
because it will enable the active decision making necessary to allow the ATM system to adapt its 
collision avoidance behavior to the prevailing air traffic circumstances. Thus, this architecture 
development framework can help to design the behavior of this responsibility and decide how to 
incorporate it into the ATM architecture. 
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Having defined these six refined responsibilities, the required process model parts, control 
actions and feedback as well as the control action targets and feedback sources for each refined 
responsibility can then be defined using the same process that was used in iteration 1 (and 
described in Section 3.3). Table 38 shows an example of how these control elements were 
defined for Resp-1.2 to enable it to adequately manage and coordinate the conflict resolution 
efforts of ATM and the aircraft. Each control element is traced to the responsibility or constraint 
that it was derived from to record the rationale for including each control element. The control 
elements for all six refined responsibilities can be found in Appendix F. 

Table 38: Identifying process model parts, control actions and feedback for Resp-1.2 

Once the required control elements are defined for all the refined responsibilities, they can 
be assembled to create the refined shared collision avoidance conceptual architecture shown in 
Figure 39. 

Resp-1.2: Decide which controller is resolving a conflict 

RC-78: Allow ATM and the aircraft to take over from each other to resolve a conflict 

RC-79: Continue preventing conflicts even if the ability of ATM or one of the aircraft to 
do so is compromised 

RC-83: Aircraft within <TBD> of an area where a potential conflict might occur should 
be included in coordination 

RC-84: Prioritize and resolve any conflict within <TBD> time that remains unresolved 
after <TBD> of being identified 

Summary of 
Desired 
Behavior  

When a potential conflict is identified, consider the conditions under which 
the conflict will occur and decide if it would be more easily resolved by 
ATM or the aircraft. Once a decision is made, inform both ATM and the 
aircraft of who is assigned to resolve the conflict. The conditions might 
include: 

1. Current workload of ATM and the aircraft 
2. Traffic density and number of aircraft involved in the conflict 
3. Urgency of the conflict 

Process Model 
Parts & 
Required 
Feedback/Inputs  

• Feedback from Resp-1.1: 
o Identified conflicts [Resp-1.2] 
o Requested controller to resolve a conflict [RC-78, RC-85] 
o Unable to resolve conflict [RC-78, RC-79] 

• Input from Resp-4: Anticipated airspace state [Resp-1.2, RC-83] 

• Feedback from Resp-1.4: Unresolved collisions [RC-79, RC-84] 

Required 
Control 
Actions/Outputs  

• Control actions to Resp-1.1:  
o Assigned controller resolving conflict [Resp-1.2] 
o Aircraft involved in conflict [RC-83] 
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Figure 39: Refined shared collision avoidance conceptual architecture 

As shown in Figure 39, this refined conceptual architecture still contains all the 
responsibilities and interactions that were defined in the conceptual architecture that was 
created in the first design iteration. Because of the design decisions made in this design iteration, 
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Resp-1 (the responsibility for resolving conflicts) has now been refined into six more detailed 
responsibilities with a more detailed set of control actions and feedback between them. 

Per the decision made in design iteration 1, both ATM and UAM are responsible for 
identifying and resolving conflicts (Resp-1.1). Therefore, Resp-1.1 is depicted in Figure 39 with 
multiple boxes to represent that there are multiple copies of this responsibility in the conceptual 
architecture. Above that are the other five sub-responsibilities that control the various aspects 
of when and how Resp-1.1 is carried out. These responsibilities include deciding who should 
resolve an identified conflict (Resp-1.2), arbitrating conflicting trajectory modifications (Resp-1.3) 
and ensuring that potential conflicts are resolved or re-evaluated if they remain unresolved 
(Resp-1.4). In addition, above Resp-1.2 are two higher-level traffic management responsibilities. 
Resp-1.5 prioritizes the air traffic involved in a conflict to ensure that air traffic is prioritized 
appropriately, and those priorities are followed consistently when resolving conflicts, regardless 
of whether ATM or the aircraft resolve the conflict. Resp-1.6, then, monitors the state of the 
airspace and the collisions that are occurring to decide when it might be beneficial to temporarily 
resolve all conflicts centrally to minimize the amount of coordination required before a conflict 
is resolved. Resp-1.6 can then implement this centralized decision making “mode” using its 
control action to Resp-1.2. 

Figure 39 therefore shows that this behavioral design process enables systems engineers to 
refine a conceptual architecture and define the control behavior needed to prevent accidents 
like the Uberlingen accident from occurring. For example, responsibility Resp-1.2 (discussed 
earlier in this section) now has its control actions and feedback defined and the conceptual 
architecture shows how its behavior, in conjunction with other responsibilities, ensures that the 
efforts of ATM and the aircraft to identify and resolve conflicts are adequately coordinated.   

5.4 Comparing Architecture Options for Implementing Shared Collision Avoidance 

Having defined this conceptual architecture for shared collision avoidance, it can then be 
analyzed using STPA to generate scenarios that can inform what architecture options should be 
considered to implement it. This section discusses how the STPA results were used to create 
architecture options for comparison and the full STPA analysis of the refined conceptual 
architecture can be found in Appendix G. 

Of the six refined responsibilities, three of them have relatively straightforward assignments. 
Per the decision made in iteration 1, Resp-1.1 should be assigned to both ATM and the aircraft 
since this shared collision avoidance architecture intends for both ATM and the aircraft to be able 
to resolve conflicts. For Resp-1.5 and Resp-1.6, because they essentially involve making higher-
level traffic management decisions such as prioritizing air traffic and deciding when conflicts 
should all be resolved centrally, it is likely that assigning them to ATM will be the best option (of 
course, other assignment options could be explored if desired).  

However, it is less clear if Resp-1.2, Resp-1.3, and Resp-1.4 should be assigned to ATM or the 
aircraft. Given the relevance of Resp-1.2 to the Uberlingen accident, this research therefore 
focuses on using the results from the STPA analysis of the refined conceptual architecture to 
explore different architecture options for assigning Resp-1.2.  
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5.4.1 Identifying Assignment Constraints and Creating Architecture Options 

Based on the STPA analysis of the refined conceptual architecture, several scenarios 
suggested that there could be potential benefits to assigning Resp-1.2 to either ATM or the 
aircraft. Table 39 shows examples of these scenarios, the assignment constraints derived from 
them, and the reason for that preferred assignment. 

Table 39: Examples of assignment constraints derived from STPA scenarios 

The preferred assignments in Table 39 suggest that there are potential benefits to assigning 
Resp-1.2 to either ATM or the aircraft as described by the reason for each assignment constraint. 
These two assignments are therefore worth exploring to determine the benefits and tradeoffs 
between them. For this reason, this design iteration explores these two potential architecture 
options for implementing Resp-1.2 in the ATM architecture.  

Table 40 provides an overview of how each of the six refined responsibilities are assigned in 
these two architecture options. As in design iteration 1, only one responsibility’s assignment is 
changed (Resp-1.2). The assignments for the other responsibilities are kept the same for both 

Scenario 
Assignment 
Constraint 

Reason for Assignment 
Constraint 

CS-3.1.1-5: Neither ATM nor the aircraft are assigned 
to resolve a conflict. This could occur if the aircraft 
identify an urgent conflict but need to wait for a 
decision on who should resolve the conflict. By the 
time they receive that decision, there is not enough 
time to select trajectory modifications before the 
conflict occurs. Resp-1.2 = 

Aircraft 

This assignment 
ensures that the 
aircraft can respond to 
urgent conflicts quickly 
when they identify 
them 

CS-3.11.1.1-2: ATM is inappropriately assigned to 
resolve a conflict based on outdated feedback about 
flight conditions or aircraft capabilities. It therefore 
selects trajectory modifications that the aircraft 
cannot adequately execute and a collision occurs. 

The aircraft have more 
timely access to 
feedback about flight 
conditions or aircraft 
capabilities to inform 
decision making 

CS-3.1.2-1: ATM is inappropriately assigned to 
resolve a conflict even though it is already under a 
high workload. Thus, the additional conflict 
assignment exceeds ATM’s capabilities and it is 
unable to make an adequate trajectory modification 
decision in time. Resp-1.2 = 

ATM 

It is easier for ATM to 
know its own workload 
than for the aircraft to 
estimate that  

CS-3.1.2-4: The aircraft are assigned to resolve a 
conflict based on the urgency of the conflict but 
using outdated information about its context. 
However, at least one of them is in a critical phase of 
flight (high workload) and they do not select 
trajectory modifications before a collision occurs. 

ATM has broader 
situational awareness 
of the state of the 
airspace and the 
trajectory constraints 
for each aircraft 
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architecture options. So, Resp-1.1 is assigned to both ATM and the aircraft (consistent with the 
decision in design iteration 1) and Resp-1.3, Resp-1.4, Resp-1.5, and Resp-1.6 are all assigned to 
ATM only. Simplified control structures for each of these two architecture options are shown in 
Figure 40 and Figure 41. 

Table 40: Two architecture options for assigning Resp-1.2 

Resp. ID Responsibility 

Option A4 

Centralized 
Allocation of 

Conflicts 

 Option A5 

Airborne 
Allocation of 

Conflicts 

Resp-1.1 Identify and resolve potential conflicts ATM & Aircraft ATM & Aircraft 

Resp-1.2 Decide which controller is resolving a conflict ATM Aircraft 

Resp-1.3 
Arbitrate any conflicting conflict resolution 
proposals 

ATM ATM 

Resp-1.4 Ensure identified conflicts are resolved ATM ATM 

Resp-1.5 Prioritize air traffic ATM ATM 

Resp-1.6 Establish centralized conflict resolution ATM ATM 

 

 

 
Figure 40: Architecture option A4 with Resp-1.2 control actions and feedback highlighted 
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Figure 41: Architecture option A5 with Resp-1.2 control actions and feedback highlighted 

As shown in Figure 40, architecture option A4 assigns Resp-1.2 to ATM. Thus, in this 
architecture option, the aircraft can provide feedback to ATM of any identified conflicts. ATM can 
then decide to resolve the conflict itself or assign it to the aircraft to resolve. However, the aircraft 
do not resolve a conflict until ATM assigns the conflict to them. 

By contrast, architecture option A5 (Figure 41) assigns Resp-1.2 to the aircraft, thus essentially 
inverting the relationship between ATM and the aircraft when performing Resp-1.2. In this 
architecture option, ATM can indicate to the aircraft any identified conflicts. The aircraft can then 
decide to resolve the conflict themselves or request ATM’s assistance to resolve it. However, 
ATM does not resolve a conflict until an aircraft makes the request for it to do so.  

5.4.2 Evaluating and Comparing Architecture Options 

As was done in iteration 1, STPA can then be used to analyze and compare these two 
architecture options. Table 43 shows two example scenarios that illustrate two tradeoffs that 
were identified. The remainder of this section discusses several other benefits and tradeoffs that 
were identified from this comparison. The full comparison table showing all the STPA scenarios 
that were used to compare these two architecture options can be found in Appendix H.  
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Table 41: Architecture comparison table for four example scenarios 

The two scenarios in Table 41 show that the assignment of Resp-1.2 changes the ability of 
ATM or the aircraft to make timely trajectory modifications decisions to resolve a conflict. This 
observation can be made by comparing how architecture options A4 and A5 behave in each of 
these two scenarios. Figure 42 illustrates their behavior in scenario 1 and Figure 43 illustrates 
their behavior in scenario 2. 

 
Figure 42: Behavior of A4 (left) and A5 (right) in scenario 1 in Table 41 

# Scenario 

Scenario 
Occurs? 

Evaluation Criteria 

A4 A5 

1 

ATM identifies an urgent conflict that needs 
to be resolved. However, <controller 
performing Resp-1.2> takes too long to 
decide who should resolve a conflict. By the 
time ATM receives that decision, there is not 
enough time to select trajectory 
modifications before the conflict occurs 

No Yes 

Responsiveness of 
trajectory modification 
decisions to prevent loss 
of separation when ATM 
resolves an urgent conflict 

2 

The aircraft identify an urgent conflict that 
needs to be resolved. However, <controller 
performing Resp-1.2> takes too long to 
decide who should resolve a conflict. By the 
time the aircraft receive that decision, there 
is not enough time to select trajectory 
modifications before the conflict occurs 

Yes No 

Responsiveness of 
trajectory modification 
decisions to prevent loss 
of separation when the 
aircraft resolves an urgent 
conflict 
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Figure 43: Behavior of A4 (left) and A5 (right) in scenario 2 in Table 41 

In both scenarios, either ATM or the aircraft identifies and then resolves an urgent conflict. 
The difference between the two scenarios is which of them identifies the conflict and how quickly 
they can resolve it. In scenario 1 (Figure 42), ATM identifies the conflict and wants to resolve it. 
For this scenario, no unsafe behavior is observed for option A4 because Resp-1.2 is assigned to 
ATM. Thus, ATM can immediately begin resolving the conflict as soon as they identify it. By 
contrast, in option A5, Resp-1.2 is assigned to the aircraft and therefore ATM cannot resolve the 
conflict as soon as it identifies it. This is because, as designed in the conceptual architecture, a 
decision must be made about who should resolve the conflict before any controller can start 
resolving a conflict. Thus, ATM must first indicate the conflict to the aircraft and then wait for the 
aircraft to allocate the conflict to ATM. Only once the aircraft provide feedback requesting ATM 
to resolve the conflict can ATM start resolving it. This results in a delay in ATM selecting trajectory 
modifications and therefore a delay before the aircraft can execute those trajectory 
modifications. Depending on the urgency of the conflict, that delay could be large enough that 
the conflict is not resolved before a collision occurs. 

Comparing the behavior of architecture options A4 and A5 in this first scenario shows that the 
main behavioral difference between them is the responsiveness (i.e., timeliness) with which ATM 
can resolve a conflict. Specifically, architecture option A4 enables more responsive trajectory 
modification decisions by ATM than A5. This therefore leads to the formulation of the evaluation 
criterion for scenario 1 as shown in Table 41. 

The opposite behavior is seen when comparing the behavior of both architecture options in 
scenario 2 (Figure 43). In this scenario, the aircraft identify and want to resolve an urgent conflict. 
However, in option A4, because Resp-1.2 is assigned to ATM, the aircraft must first provide 
feedback to ATM about the conflict and then wait for ATM to assign the conflict to them to 
resolve. This results in a delay before the aircraft can coordinate to select trajectory modifications 
and therefore a delay before they can maneuver to resolve the conflict. As in scenario 1, 
depending on the urgency of the conflict, that delay could be large enough that the aircraft 
cannot resolve the conflict in time before a collision occurs. By contrast, in option A5, because 
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Resp-1.2 is assigned to the aircraft, the aircraft can resolve a conflict as soon as they identify it. 
Thus, no unsafe behavior occurs for option A5. 

Comparing the behavior of architecture options A4 and A5 in this second scenario, the main 
behavioral difference between them is the responsiveness with which the aircraft (instead of 
ATM) can resolve a conflict. Specifically, architecture option A5 enables more responsive 
trajectory modification decisions by the aircraft than A4. This therefore leads to the formulation 
of the evaluation criterion for scenario 2 as shown in Table 41. 

These differences in behavior therefore show that the benefit of option A4 is that ATM is more 
responsive (i.e., timely) in resolving an urgent conflict whereas the benefit of A5 is that the aircraft 
are more responsive in resolving an urgent conflict. These findings also highlight an important 
relationship between Resp-1.1 and Resp-1.2: more responsive resolution of a conflict is achieved 
when the same controller can identify a conflict (Resp-1.1) and decide who resolves it (Resp-1.2). 

By following this process for the remaining scenarios in the comparison, additional benefits 
and tradeoffs can be identified. As an example, Table 42 illustrates these and several other 
benefits and tradeoffs of architecture options A4 and A5 that were identified in this design 
iteration. The full set of benefits and tradeoffs can be found in Appendix H. 

Table 42: Examples of benefits and tradeoffs of A4 and A5 

Table 42 shows that there are three main benefits of architecture option A4. First, ATM can 
make more responsive trajectory modifications when it must resolve an urgent conflict (EC-2.4). 
As discussed earlier in this section, this is because, when Resp-1.2 is assigned to ATM (as it is in 
A4), ATM can immediately begin resolving a conflict if it decides to do so. By contrast, when Resp-
1.2 is assigned to the aircraft, ATM may be delayed in resolving the conflict because it needs to 
wait for the aircraft to request its assistance before it can resolve the conflict. 

The second benefit of A4 is that it is easier to coordinate decisions about when to implement 
centralized decision making (Resp-1.5) and which controller to assign to conflicts (Resp-1.2) (EC-

ID Evaluation Criteria Benefit (+) or Tradeoff (-) 

A4 A5 

EC-2.4 
Responsiveness of trajectory modification decisions 
when ATM resolves an urgent conflict   

EC-2.7 
Ease of coordinating centralization and conflict 
assignment decisions when switching to centralized 
decision making   

EC-2.14 
Ability to maintain alignment of Controller Assigned 
to Conflict when deciding who is resolving a conflict   

EC-2.1 
Responsiveness of trajectory modification decisions 
when the aircraft resolve an urgent conflict   

EC-2.12 
Ability to maintain alignment of Controller Assigned 
to Conflict when receiving conflict assignment   

EC-2.18 
Ability to process identified conflicts inputs when the 
workload of the controller processing that input is high   
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2.7). This coordination is necessary because, as shown in the refined conceptual architecture 
(Figure 39), conflict assignment decisions made in Resp-1.2 depend on the decision made in Resp-
1.5 to implement centralized conflict resolution. When centralized decision-making is 
implemented, then all conflicts should be assigned to ATM. However, when centralized decision-
making is not implemented, the prevailing air traffic circumstances should inform a decision 
about whether ATM or the aircraft should resolve an identified conflict. Thus, coordinating 
decisions between Resp-1.2 and Resp-1.5 is easier when they are both assigned to ATM (as they 
are in A4) because the coordination can occur within ATM. By contrast, when Resp-1.2 is assigned 
to the aircraft and Resp-1.5 is assigned to ATM (as they are in A5), this coordination is more 
difficult because it requires adequate and timely communication between ATM and the aircraft 
for adequate coordination to occur.  

Finally, the third benefit of option A4 is that it is easier to maintain process model alignment 
of which controller is assigned to a conflict when deciding who is resolving a conflict (EC-2.14). 
This is because when Resp-1.2 is assigned to ATM (as it is in A4), ATM is the sole decision maker 
for Resp-1.2. By contrast, when Resp-1.2 is assigned to the aircraft, each aircraft maintains its 
own belief about who they are collectively deciding should resolve a conflict. Although the 
aircraft are coordinating to make this decision, there are more opportunities in option A5 for the 
beliefs of each aircraft about who they are assigning to resolve a conflict to become misaligned. 

On the other hand, Table 42 also shows that there are three benefits for architecture option 
A5. The first is that the aircraft can make more responsive trajectory modification when they must 
resolve an urgent conflict (EC-2.1). As discussed earlier in this section, this is because, when Resp-
1.2 is assigned to the aircraft (as it is in A5), the aircraft can immediately begin resolving a conflict 
if they decide to do so. By contrast, when Resp-1.2 is assigned to ATM, the aircraft may be 
delayed in resolving the conflict because they must wait for ATM to assign the conflict to them 
before they can resolve it. 

The second benefit of A5 is that it is easier to maintain process model alignment of which 
controller is assigned to a conflict when receiving conflict assignments (EC-2.12). This is because 
when Resp-1.2 is assigned to the aircraft (as it is in A5), ATM is the only controller that receives 
conflict assignments from the aircraft. By contrast, when Resp-1.2 is assigned to ATM, the aircraft 
are the ones receiving assignments from ATM. Because the aircraft each maintain their own 
process model about what conflicts are assigned to them, there are more opportunities for their 
process models to become misaligned with respect to which conflicts they need to resolve. 

Finally, the last benefit of A5 is that the aircraft are better able to process inputs from ATM 
about any identified conflicts when their workload is high (EC-2.18). This benefit is observed 
because when Resp-1.2 is assigned to the aircraft (as it is in A5), even if one aircraft is too busy to 
attend to an input from ATM about an identified conflict, other aircraft can attend to that input. 
By contrast, when Resp-1.2 is assigned to ATM, ATM is the sole decision maker and must attend 
to all feedback from any aircraft about an identified conflict. 

 

5.5 Evaluating Support Provided by Framework for Incremental Refinement 

Having now completed two iterations of refinement of the ATM architecture for UAM, the 
goal of this section is to evaluate the ability of this framework to support systems engineers in 
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iteratively refining a system architecture. This comparison therefore evaluates the ability of this 
framework to address the two other limitations of current approaches for architecture 
development that were discussed in Section 2.2. First, this framework needs to provide more 
support to systems engineers than current methods to help them reason about the functions and 
interactions that need to be included in the system design. Second, this framework also needs to 
provide better design guidance to support systems engineers in making more informed design 
decisions. 

This framework provides two main types of design support to systems engineers. First, it uses 
iterative STPA analyses to support incremental learning about how each design decision changes 
the behavior of the system architecture. Second, the framework provides structured processes 
for using the insights gained from the STPA analyses to refine the system architecture, enabling 
more informed downstream design decisions. Figure 44 illustrates how the framework enables 
these two types of support. 

 
Figure 44: Diagram showing how STPA enables informed architectural design decisions 

As shown at the top of Figure 44, STPA provides a structured process for identifying causal 
scenarios based on the defined losses and hazards for a system. Thus, by using STPA iteratively 
in this framework to analyze the conceptual architecture as well as each of the architecture 
options, an analyst or systems engineer can obtain safety-relevant information about the 
behavior of the conceptual architecture or the architecture options as they design it. 
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The lower half of Figure 44 then illustrates how the framework helps systems engineers to 
make more informed design decisions based on what they learn from an STPA analysis. In this 
architecture development framework, there are three main types of design decisions that are 
made to create a system architecture, and this framework provides support in making each type 
of design decision.  

The first type of design decisions are the ones that define the required control elements and 
the relationships between them that are needed to create the conceptual architecture. As shown 
on the left column of Figure 44, the framework helps systems engineers to make these design 
decisions by deriving system requirements from the causal scenarios identified by STPA and then 
deriving the control elements and relationships between them from those system requirements. 
Only once those control elements and relationships are defined is a conceptual architecture 
created. This process therefore ensures that every system requirement is informed by a causal 
scenario that needs to be prevented or mitigated and every element in the conceptual 
architecture is created to satisfy one or more system requirements. It was this process that 
informed the creation of a high-level collision avoidance conceptual architecture in Section 4.2 
(design iteration 1) and the creation of a refined shared collision avoidance conceptual 
architecture in Section 5.3 (design iteration 2). 

The second type of design decisions are the ones that define what responsibility assignments 
and therefore which architecture options are worth exploring and evaluating. As shown in the 
center column of Figure 44, the framework supports the creation of architecture options by 
deriving assignment constraints from the causal scenarios identified by STPA and then using 
those assignment constraints to generate architecture options. Thus, the decision to explore each 
architecture option is informed by the causal scenarios that could be mitigated or prevented by 
that architecture option. It was this process that informed the creation of architecture options in 
Section 4.3.1 and Section 4.3.2 (design iteration 1) as well as Section 5.4.1 (design iteration 2). 

Finally, the third type of design decisions are the ones made about the preferred way to assign 
each control responsibility to create a system architecture that best achieves the desired 
emergent properties. As shown in the right column of Figure 44, the framework supports the 
selection of a preferred architecture by using the causal scenarios identified by STPA for each 
architecture option to perform a scenario-based comparison. This comparison helps to identify 
evaluation criteria and the control-related benefits and tradeoffs of one architecture option 
compared to another. It is these control-related benefits and tradeoffs that inform decisions 
about how best to assign the control responsibilities to create the preferred system architecture. 
Thus, this process ensures that each decision about how best to assign the control responsibilities 
is informed by the different causal scenarios associated with each architecture option. It was this 
process that informed the selection of a shared collision avoidance architecture in design 
iteration 1 based on the benefits and tradeoffs identified in Section 4.3.3. A similar decision could 
be made for design iteration 2 based on the benefits and tradeoffs identified in Section 5.4.2. 

Thus, by applying the framework developed in this dissertation over two design iterations, 
the results show that this framework can help a systems engineer to start with a very abstract 
model of a system and incrementally refine and add detail to it while learning about how the 
architecture’s behavior evolves with each design iteration. For the case study used in this 
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research, Figure 45 summarizes how this refinement was done over the two design iterations to 
create incrementally more refined versions of an ATM architecture for enabling UAM. 

 
Figure 45: Iterative refinement of the ATM architecture across design iterations 

The first design iteration (presented in Chapter 4) started with an abstract ATM control 
structure and applied the framework to determine that a shared collision avoidance ATM 
architecture would be preferable for UAM. This shared collision avoidance ATM architecture 
therefore refined the initial abstract ATM control structure by defining more specific control 
responsibilities and more detailed control actions and feedback that will be needed to safely 
manage UAM air traffic.  
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Then, the second design iteration (presented in Chapter 5) started with the shared collision 
avoidance ATM architecture developed in iteration 1 and further refined it by identifying two 
possible options for implementing Resp-1.2 (the responsibility for assigning conflicts to 
controllers to resolve). Either of these options is a further refinement of the shared collision 
avoidance ATM architecture chosen in iteration 1 because they define a more detailed set of 
control responsibilities that are needed to enable shared collision avoidance. In addition, they 
define more specific control actions and feedback that need to be exchanged between ATM and 
the aircraft as well as between the aircraft to enable adequate coordination between them.  

These two design iterations therefore demonstrate that the structured processes provided 
by this framework provide support to help systems engineers refine a system architecture and 
learn about the system architecture they are developing as they create it.  

In addition to being able to refine the system architecture incrementally over time, an 
additional capability offered by this framework is the ability to reconsider and revise past 
decisions. This capability is achieved because of the incremental way that a system architecture 
is refined when applying this framework and the traceability that is maintained during each step. 

For example, recall that the purpose of performing design iteration 2 was to confirm the 
feasibility of implementing a shared collision avoidance architecture and to learn more about the 
potential tradeoffs of a shared collision avoidance architecture. When architecture options 4 and 
5 (created in design iteration 2) are analyzed and compared, a systems engineer could make one 
of two choices based on those comparison results. One choice they could make is that the 
benefits of implementing a shared collision avoidance architecture are worth the tradeoffs that 
have been identified and they can continue to refine the ATM architecture as was done in this 
research.  

However, a systems engineer could also decide that the comparison results show that a 
shared collision avoidance architecture introduces too many risks or implementation challenges. 
As a result, contrary to what was initially believed, they might decide that the benefits are not 
worth the tradeoffs or the effort required to address the risks. If such a decision is made, the 
traceability that is maintained when applying this framework would allow a systems engineer to 
return to the comparison performed in iteration 1, re-examine the comparison results, and 
decide that a different architecture option may be preferable instead. This revision of a past 
decision is illustrated in Figure 46. 

 
Figure 46: Revising a past architecture option selection 
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As shown in Figure 46, although an initial decision was made to select architecture option A3 
in design iteration 1, a systems engineer could return to that decision at any point and re-evaluate 
their architecture preferences based on what was learned about the shared collision avoidance 
architecture. A revised decision can then be made. For example, architecture option A1 might be 
considered preferable now in light of what was learned about the challenges and risks involved 
in implementing a shared collision avoidance architecture. Thus, the traceability provided by this 
framework enables revisions and reconsiderations such as this one.  

 

5.6 Summary 

This chapter described the results of the second design iteration performed in this research. 
The goal of this second design iteration was to refine the high-level shared collision avoidance 
architecture that was selected in design iteration 1 to better define how ATM and the aircraft will 
share responsibility for collision avoidance and work together to adequately resolve conflicts. 
Although this architecture represents a more collaborative approach to shared collision 
avoidance than what exists in today’s ATC system, the Uberlingen mid-air collision in 2002 
showed what could go wrong when shared responsibility for collision avoidance is not adequately 
controlled in the system architecture.  

This second design iteration therefore began with an analysis of the high-level shared collision 
avoidance architecture using STPA-Teaming to analyze how ATM and the aircraft might 
collectively be unable to adequately resolve conflicts. Based on the results from this analysis, 
additional system requirements were generated that described the additional safety constraints 
necessary to ensure adequate control over the shared responsibility for collision avoidance. 
These additional requirements were then used in conjunction with the requirements identified 
during iteration 1 to create a refined conceptual architecture that defined the control behavior 
needed to prevent unsafe collective decision making by ATM and the aircraft when resolving 
conflicts.  

Based on the refined conceptual architecture, two architecture options for implementing 
Resp-1.2 were compared. Architecture option A4 represented a ground-based conflict 
assignment architecture where ATM decides whether it or the aircraft should resolve an 
identified conflict. Architecture option A5 represented an airborne conflict assignment 
architecture where the aircraft decide whether they want to resolve a conflict themselves or 
request the assistance of ATM to resolve it. By comparing these two architecture options, a series 
of benefits and tradeoffs of each option were identified. 

Finally, the full set of results from both design iterations were used to evaluate whether the 
framework provides better support to systems engineers in reasoning about what needs to be 
included in their system design and to help them make more informed decisions. The results from 
both design iterations showed that the use of iterative STPA analyses and the structured 
processes provided by this framework allows systems engineers to incrementally learn about the 
architecture they are creating and make more informed design decisions as they refine the 
system architecture. In addition, because the rationale for each design decision is maintained at 
each step of the framework, it is easier for systems engineers to revisit and revise past design 
decisions. These findings therefore provide support for hypothesis 2 of this dissertation and 
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demonstrate that the framework can be used to iteratively develop and refine the architecture 
for a system.   

Hypothesis 2: A systems-theoretic approach can support making informed design 
decisions to iteratively develop and refine the architecture for a system 

In both design iterations conducted in this research, there are numerous assumptions that 
underlie the design decisions that were made and the comparison results that were generated. 
While some of these assumptions were highlighted in this chapter and the previous one, little 
was done to account for them and ensure they are not violated as architecture development 
progresses. In the next chapter, a supporting framework for identifying and ensuring the validity 
of underlying assumptions that was developed in this research will be described and 
demonstrated.  
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Chapter 6 Ensuring the Validity of Underlying Assumptions 
In the prior chapters of this dissertation, the importance of identifying underlying 

assumptions and ensuring they remain valid over time has been emphasized. However, no 
guidance was provided as to how to identify assumptions or what to do with the identified 
assumptions to ensure they remain valid. To address these challenges, this research developed 
a supporting framework for identifying underlying assumptions and accounting for them during 
architecture development to help systems engineers avoid flaws arising because of assumptions 
becoming invalid.  

This chapter develops and demonstrates this supporting assumptions framework and is 
organized as follows. Section 6.1 provides an overview of the role of assumptions in architecture 
development. Section 6.2 describes the guiding prompts that were developed to provide systems 
engineers with guidance for identifying assumptions at each step of architecture development. 
Section 6.3 then demonstrates how these guiding prompts can be applied to identify assumptions 
underlying the various design decision made to create and refine the ATM architecture for the 
UAM case study presented in Chapter 4 and Chapter 5. These examples illustrate the different 
types of assumptions that can be identified. Finally, Section 6.4 describes how to ensure that the 
identified assumptions are accounted for and monitored over time as architecture development 
proceeds. 

6.1 The Role of Assumptions in Architecture Development 

There are several reasons why we make assumptions during system design. Sometimes, 
assumptions record important information that explains the reasoning behind a design decision 
[110]. For example, when deciding whether a design decision will be adequate in preventing 
unsafe or undesirable behavior, analysts or systems engineers might make assumptions to justify 
that decision. Alternatively, assumptions can also be used to capture a designer’s expectation or 
prediction about what might happen in the future [111]. This includes assumptions about what 
the system’s operating environment might be once the system is fielded or how that 
environment might evolve over time. It also includes assumptions about how the system might 
interact with or impact its operating environment once it is operational.  

Regardless of the reason they are made, assumptions play an important role in design, 
especially during the early stages, because they allow a systems engineer to make design 
decisions despite the uncertainties they might face during the development process. These 
uncertainties might occur because some aspects of the system design have not yet been 
determined or the system’s impact on its environment is not yet known with certainty. In 
addition, because designing a complex system can be considered to be a “wicked” planning 
problem [112, 113], a systems engineer may not know all the factors that will be important to 
consider about the design until they start the design process itself. 

Although assumptions help to mitigate these sources of uncertainty, it is important to 
recognize that the design decisions made using these assumptions become contingent on those 
assumptions remaining valid [16]. This is because the design decisions will only have their 
intended effect if the assumption remains valid. Once an assumption becomes invalid, any design 
decisions made based on it may now be flawed. 
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The NTSB emphasizes this important aspect of assumptions in a safety recommendation 
report they published for the 737 MAX accidents in 2019 [114]. In the report, the NTSB found 
that Boeing made flawed assumptions about the behavior of the Maneuvering Characteristics 
Augmentation System (MCAS) and the ability of the flight crew to respond in the event of 
unintended MCAS activation. As a result of the flawed assumptions Boeing made, flight crews 
were unable to recover control of the aircraft as Boeing had assumed when unintended MCAS 
activations actually occurred [114]. Thus, the 737 MAX accidents illustrate the importance of 
being able to make explicit the assumptions underlying the system design and ensure that their 
validity can be verified and monitored over time [16, 111]. 

Despite the importance of these underlying assumptions, current methods for architecture 
development provide minimal, if any, guidance on how to identify these underlying assumptions 
or how to account for them during architecture development. To address these limitations, 
better guidance must first be provided to help systems engineers identify assumptions underlying 
their architectural design decisions.  

6.2 A Framework for Identifying Underlying Assumptions  

To determine how to provide such guidance, a method called Assumptions-Based Planning 
(ABP) [34] serves as a useful reference. ABP was created to identify the assumptions underlying 
a business or organizational plan and develop a plan for ensuring the validity of those 
assumptions over time [111]. In ABP’s taxonomy, assumptions can be classified into two 
categories: (1) assumptions about problems and (2) assumptions about solutions [111]. The first 
category consists of assumptions an organization makes about the problems it believes it will 
encounter and these typically describe the environment in which it expects to be conducting its 
business. By contrast, the second category consists of assumptions an organization makes about 
how it will address those problems (i.e., the solutions).  

These two categories of assumptions can be extended to engineered systems as well. Instead 
of making assumptions about “problems” and “solutions”, systems engineers make assumptions 
about (1) the environment that the future system will operate in and (2) how the system itself 
will solve a problem or meet a set of needs. For example, the creation of UAM to provide 
transportation services in urban areas assumes that UAM provides a useful mode of 
transportation for an urban community (a system assumption) and that the public will need and 
be willing to use UAM services (an environmental assumption). Thus, when identifying 
assumptions during architecture development, it can be helpful to consider if either of these 
types of assumptions are being made. 

 Another key aspect of ABP is the methods for identifying assumptions. [111] suggests three 
methods: (1) telling actions the long way, (2) strategic assumption surfacing and testing, and (3) 
discovery-driven planning. Although these methods use different guidewords and processes, the 
fundamental strategy for helping an analyst identify assumptions is the same: rationalize the 
action or design decision and determine what needs to be true for the decision to have the 
desired effect or outcome. 

This research applies this strategy to create a set of guiding prompts to help systems 
engineers consider any assumptions they might be making about the system or environment that 
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need to remain valid for the system to behave as intended. These guiding prompts are shown in 
Table 43.  

Consistent with the strategy used by ABP, the guidance in Table 43 prompts systems 
engineers to consider what needs to be true or what needs to exist for the design decision to 
have the desired effect. These are the assumptions that, if invalid, might compromise the ability 
of the system to adequately enforce the safety constraints or achieve adequate control over the 
behavior of the system or its components. Because each step of architecture development 
involves different types of design decisions, these guiding prompts are tailored to the various 
steps in the architecture development framework described in Chapter 3.  

Table 43: Guiding prompts for identifying underlying assumptions 

Architecture 
Development Step 

Guidance for Identifying Assumptions  
(Either system or environment assumptions) 

Performing STPA 
Analyses 

• What assumptions is the system boundary based on?  

• What assumptions is the STPA control structure based on? 

• What assumptions are being made when generating the UCAs and 
scenarios? 

Identifying System 
Requirements 

• What assumptions must be true for the requirements to be 
effective at preventing undesirable behavior? 

Developing the 
Conceptual 
Architecture 

• What is being assumed about the behavior of a responsibility for it 
to meet the system requirements? 

• What assumptions must be true for the process model parts to be 
maintained and kept updated? 

• What is assumed to be available to receive as feedback from the 
environment? 

• What is being assumed for the defined control actions to be 
effective? 

Exploring and 
Comparing 
Architecture 
Options 

• What must be true for the architecture to implement the system-
level behavior?  

• What is being assumed about how the architecture will be 
implemented during detailed system design? 

• What is being assumed to decide if an architecture will resolve a 
given scenario? 

6.3 Using the Framework for Identifying Underlying ATM Assumptions 

To illustrate how the guidance shown in Table 43 should be used during architecture 
development, this section presents examples of assumptions identified at each step of the 
architecture development process. Each identified assumption is labeled in square braces as 
either an environmental or system assumption. These labels illustrate that throughout the 
architecture development process, both types of assumptions can be identified. 
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6.3.1 Assumptions Underlying Initial STPA Analysis 

When performing an STPA analysis, underlying assumptions primarily serve to justify the 
elements of the control structure as well as rationalize the identification of UCAs and scenarios. 
In this section, examples of assumptions made during an STPA analysis are shown for the initial 
STPA analysis of the NAS that was described in Chapter 4. 

The first place in the initial STPA analysis where assumptions are made is when creating the 
abstract NAS control structure (Figure 24). Because this future NAS does not yet exist, these 
assumptions represent expectations about how ATM and regulators would interact with both 
existing aviation and UAM air traffic and inform the control actions and feedback that are 
included in the control structure. Table 44 shows examples of modeling decisions made to create 
the NAS control structure shown in Figure 24 and their underlying assumptions. 

Table 44: Example assumptions underlying the NAS control structure 

Once the control structure was created, assumptions were also made to identify UCAs and 
scenarios. Like when creating the control structure, these UCAs and scenarios describe unsafe 
behavior that is expected to occur in the NAS that would exist in the future with UAM integrated 
into it. Thus, assumptions were made to inform the various contexts and operating conditions 
contained in UCAs in which UAM air traffic might be managed. Similarly, assumptions also 
informed the different types of interactions that UAM air traffic might have with each other or 
with other air traffic. Table 45 shows examples of UCAs and scenarios identified in the initial STPA 
analysis and the underlying assumptions used to generate them. 

 

 

 
 

Modeling Decision Underlying Assumption 

Control actions and feedback 
between existing aviation operations 
and ATM and regulators are modeled 
to be similar to those today 

It is assumed that aviation will follow ATC and FAA 
rules that are fundamentally similar to those used 
today (e.g., ADS-B equipage requirements) 
[Environment assumption] 

Sharing of position/ID/speed data 
between aircraft 

It is assumed that, at a minimum, ADS-B-like data 
will need to be shared between aircraft to ensure 
that UAM aircraft can safely interact with existing 
aviation operations [Environment assumption] 

Control actions and feedback 
between ATM and UAM operations 

It is assumed that UAM air traffic will need to 
operate on or near conventional airports. ATM will 
therefore need some control over UAM aircraft to 
manage their arrival/departure alongside existing 
aviation operations [System assumption] 

Control actions and feedback 
between regulators and UAM 
operations 

It is assumed that, like commercial air carriers today, 
UAM operations and aircraft will be certified by 
regulators [System assumption] 
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Table 45: Example assumptions underlying UCAs and scenarios identified in initial STPA 

Unsafe Control Action (UCA) or Causal Scenario 
(CS) 

Underlying Assumption 

UCA-1.5: Air Traffic Management does not 
coordinate the movements of UAM aircraft when 
they are about to fly into a section of airspace 
where air traffic must be excluded (e.g., for safety 
or security reasons) 

UAM traffic flow will need to be changed 
or restricted at times to meet demands 
imposed by the environment. These 
include but are not limited to: clearing 
path of first responders to emergencies, 
and Temporary Flight Restrictions (TFR) 
for major public events, VIP protection, 
and other circumstances [Environment 
assumption] 

UCA-1.13: Air Traffic Management does not 
coordinate UAM aircraft when inclement weather 
is approaching that could interfere with flight 
operations 

UAM operations will experience the span 
of year-round weather conditions, 
visibility conditions as well as both day 
and night operations [Environment 
assumption] 

CS-1.8.1-4: Air Traffic Management does not 
realize that another NAS user has a time-critical 
mission to execute (e.g., emergency medical 
flight) and believes that the other NAS user’s 
mission can be delayed for the UAM aircraft and 
therefore wrongly decides not to provide 
coordination to avoid the delay for the other NAS 
user 

UAM aircraft will operate in urban areas 
where public safety and other missions 
may also be operating at similar altitudes 
as UAM flights [Environment assumption] 

CS-1.8.4-1: Air Traffic Management is notified of a 
UAM flight shortly before its departure time and 
there is not enough time for it to issue adequate 
coordination before the departure time. As a 
result, a UAM aircraft interferes with the 
operations of another airspace user. 

Although some UAM air traffic may be 
predictable (e.g., regularly scheduled 
shuttle flights), many UAM flights will 
occur on an on-demand basis with little 
regularity [Environment assumption] 

6.3.2 Assumptions Underlying System Requirements and Conceptual Architecture 

When identifying system requirements, underlying assumptions describe what must be true 
for the requirements to have the desired effect of mitigating or preventing the identified UCAs 
or scenarios. Sometimes, these assumptions describe certain aspects of a system’s environment 
that are needed for a requirement to be implementable. Other times, these assumptions 
describe certain aspects of a system’s behavior that are needed for a requirement to be sufficient 
at preventing an STPA scenario. Table 46 shows some examples of system requirements 
identified in Chapter 4 and their underlying system and environmental assumptions. 
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Table 46: Examples of system requirements and their underlying assumptions 

Similarly, when developing the conceptual architecture, underlying assumptions describe 
what must be true for the various control responsibilities and their associated control actions and 
feedback in the conceptual architecture to meet the system requirements. Figure 47 and Figure 
48 show example assumptions identified for two different responsibilities and their associated 
control actions and feedback. 

  

System Requirement Underlying Assumptions 

Req-3: ATM system shall 
ensure that sufficient 
capacity is available to 
detect and coordinate all 
aircraft that have or will 
need access to the airspace 

• Assumes that surges in demand for flights will occur with 
at least <TBD mins> of advance notice for the NAS to 
implement plans to mitigate system impacts [Environment 
Assumption] 

• Assumes that this requirement is carried out in 
conjunction with the airspace access management 
requirement, especially whenever demand nears capacity 
limits [System Assumption] 

Req-4: ATM system shall 
coordinate the movement of 
aircraft to resolve any 
potential conflicts 

• Assumes that UAM flights are known within <TBD> time of 
desired departure [Environment Assumption] 

• Assumes coordination decision can be made within <TBD> 
time [System Assumption] 

Req-8: ATM system shall 
only allow as many users to 
access the airspace as it is 
capable of detecting, 
tracking and coordinating 

• Assumes that this requirement is used in conjunction with 
capacity management to ensure that all aircraft can be 
adequately coordinated (e.g., during surge times) [System 
Assumption] 

Req-10: ATM system shall 
account for intended 
movements of aircraft in 
addition to current 
trajectories to detect 
potential collisions 

• Assumes that aircraft are willing to share their intended 
trajectories for at least <TBD time> into the future (e.g., 
no privacy concerns) [Environment Assumption] 
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Responsibility Resp-1: Coordinate the movement of aircraft to prevent undesirable 
interactions 

Summary of Desired Behavior: A conflict is defined as a situation where two aircraft will pass 
within <TBD> distance horizontally or vertically of each other.  

If a potential collision is detected, aircraft should be provided with new/updated trajectories 
that minimize delays or mission impact while resolving the potential collision/interference. 
Coordination should account for aircraft capabilities, mission constraints, delays in executing 
coordination as well as the future movements of/coordination provided to other aircraft.  

If an aircraft is non-communicative, use its last communicated trajectory to coordinate the 
movements of other aircraft to prevent collision 

System Assumption: Assumes that an aircraft experiencing an emergency will be 
granted highest priority access to the airspace they need to address the emergency 

System Assumption: Assumes that access priorities are considered when coordinating 
aircraft movements to prevent collisions and when managing airspace access 

System Assumption: Assumes that coordination decisions can be made within <TBD> 
time 

 

Control Actions: Trajectory modifications 

Environmental Assumption: Assumes that UAM will be best served by moving toward 
trajectory-based operations (TBO) 

 

Feedback: Basic aircraft telemetry, aircraft type and capabilities, future trajectory 

Environmental Assumption: ADS-B-like tracking data will be available on all aircraft in 
UAM airspace 

Figure 47: Example 1 of assumptions underlying the definition of Resp-1 
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Responsibility Resp-4: Only allow as many users to access the airspace as it is capable of 
detecting, tracking and coordinating 

Summary of Desired Behavior: Approve/decline requests for access to airspace based on 
how many active flights have already been approved and the established airspace access 
priorities for different users/missions. Requests should be managed to avoid exceeding the 
maximum capacity of the NAS to track and coordinate them as well as ensure that sufficient 
space is available for alternative movement options for each aircraft.  This includes both 
immediate approval/denial of access as well as longer-term access planning 

System Assumption: Assumes this responsibility is coordinated with the responsibility 
for determining alternative movement options to ensure that access management 
considers the space needed for alternative movement options 

Environmental Assumption: Assumes at least some flights are known with at least 
<TBD> advanced notice so that there is time to negotiate changes to the flight plan 

 

Control Actions: Approve/decline access request, Flight plan modification options 

Environmental Assumption: Assumes that UAM flights will have some amount of 
operational flexibility to allow ATM to propose flight plan modifications such as 
departure time changes or flight route changes that are acceptable 

 

Feedback: Flight plan, mission and operational constraints, possible movement options, 
capacity of ATM, Congestion level 

Environmental Assumption: Assumes that UAM aircraft will be willing to share flight 
plans and mission and operational constraints to enable this feedback 

Figure 48: Example 2 of assumptions underlying the definition of Resp-4 

 

6.3.3 Assumptions Underlying Comparison of Architecture Options 

Finally, when exploring and comparing architecture options, one of the main steps where 
assumptions play a critical role is in the comparison of architecture options. As described in 
Chapter 3, comparing architecture options involves deciding whether a given STPA scenario 
occurs for each architecture option. However, at this stage in the architecture development 
process, some design details needed to inform this decision may not have been made yet. Thus, 
assumptions may need to be made about the environment or the behavior of the system to 
decide if a scenario is mitigated or prevented by that architecture option.  

As a result, however, the ability of that architecture option to prevent each scenario becomes 
contingent on those assumptions remaining valid. Especially if one of these architecture options 
is chosen for further development, it is extremely important to ensure that any downstream 
design decisions do not violate the assumptions associated with that architecture option. This is 
because if an assumption does become violated, then the architecture might have a flaw or 
unsafe behavior that was assumed not to exist. 
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In Section 4.3.3, Table 21 showed examples of assumptions made when comparing the 
centralized and decentralized collision avoidance architecture options to decide whether a 
scenario was resolved by an architecture option. Table 47 replicates the assumptions shown in 
Table 21 and labels each assumption as either a system assumption or an environmental 
assumption to show that both system and environmental assumptions can be identified. 

Table 47: Examples of assumptions underlying comparison decisions 

6.4 Deriving Requirements from Underlying Assumptions 

Having identified the underlying assumptions, a process is now needed to ensure that these 
assumptions are not violated at any point during the system’s lifecycle and the methods available 
for doing so depend on the type of assumption being made as shown in Figure 49. 

 
Figure 49: Methods for ensuring the validity of underlying assumptions 

ID Assumption Assumption 
Type 

A-1 

It is assumed that ATM will not have to coordinate conflicts as 
frequently because it has broader situational awareness of the future 
state of the airspace and can better anticipate and resolve multiple 
conflicts in a more coordinated fashion. 

System 
Assumption 

A-2 
It is assumed that UAM aircraft would have onboard sensing capable 
of detecting ground hazards with enough range to allow time for the 
aircraft to respond to avoid a collision with the ground hazard 

Environmental 
Assumption 

A-3 

It is assumed that with the aircraft sharing responsibility for 
preventing conflicts with ATM, a component failure (e.g., on ATM or 
on one of the aircraft) should not compromise the ability of other 
aircraft to prevent conflicts 

System 
Assumption 

A-4 

It is assumed that even if an initial set of aircraft are preoccupied with 
resolving a set of conflicts, any new aircraft would identify the conflict 
and coordinate its own set of trajectory modifications to avoid the 
other group of aircraft 

System 
Assumption 
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For both assumptions about the environment and assumptions about the system, they should 
be monitored during operations using assumptions-based leading indicators [16]. These 
indicators essentially serve as warning signs indicating when an underlying assumption may be 
close to or already violated so that decision makers can take corrective action to prevent an 
actual accident or loss from occurring.  

For assumptions about the system, however, more can be done besides just monitoring them 
during operations. Their validity can also be enforced during development because the system’s 
design is under the control of the systems engineer. Thus, a requirement can be derived from 
each underlying system assumption that describes a constraint that will prevent the assumption 
from being violated. Table 48 shows examples of system assumptions and the system 
requirements derived from them. 

These additional derived requirements can then be used in two ways to ensure they remain 
valid as system development progresses. First, the architecture development framework can be 
applied to these derived requirements so that the conceptual architecture and system 
architecture are modified to account for them. Figure 50 illustrates how additional control 
elements are derived from the derived requirements. 

Second, during verification and validation (V&V) of the system after design is complete, these 
additional derived requirements can be verified to check the validity of the underlying 
assumptions. If the additional derived requirements are all verified successfully, that would imply 
the underlying assumptions have not been violated. 

Table 48: Examples of system assumptions and derived requirements 

System Assumption Derived Requirement 

Assumes that access priorities are considered 
when coordinating aircraft movements to 
prevent collisions and mitigate congestion as 
well as when managing airspace access  

Req-20: ATM system shall consider access 
priorities when selecting trajectory 
modifications or managing access to the 
airspace 

Assumes that trajectory modification 
decisions can be made within <TBD> time 

Req-49: ATM system shall be able to make 
trajectory modification decisions within 
<TBD> time  

Assumes that if selected trajectory 
modifications are found to not be adequate, 
those trajectory modifications are evaluated 
again to ensure that collision risks are 
adequately mitigated 

Req-50: ATM system shall ensure that if 
selected trajectory modifications are found 
to not be adequate, those trajectory 
modifications are evaluated again to ensure 
that collision risks are adequately mitigated 

Assumes there is enough space available to 
keep other aircraft away from a non-
communicative aircraft 

Req-69: ATM system shall ensure that there 
is enough spare airspace available to keep 
other aircraft away from a non-
communicative aircraft  

Assumes that if trajectory modifications are 
not acknowledged within <TBD> time, the 

Req-93: ATM system shall re-evaluate 
trajectory modification(s) associated with a 
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conflict associated with that modification will 
be flagged for re-evaluation 

conflict if the trajectory modification(s) are 
not acknowledged within <TBD> time 

 
Figure 50: Accounting for underlying assumptions during development 

As shown in Figure 50, once system requirements have been derived from the underlying 
system assumptions, they can then be used to generate either (1) new responsibility constraints 
associated with an existing control responsibility or (2) new control responsibilities. New control 
actions and feedback or new responsibilities can then be added to the conceptual architecture 
to account for these new responsibilities or responsibility constraints.  

To illustrate how this is done, consider the derived requirement Req-50 in Table 48. This 
requirement was generated in design iteration 1 and was derived from an assumption that if 
trajectory modifications are found to be inadequate for preventing a conflict, those trajectory 
modifications will be re-evaluated to identify revised trajectory modifications for preventing that 
conflict. It is therefore important that this requirement is met by the conceptual architecture to 
ensure its associated underlying assumption remains valid as architecture development 
proceeds.  

Although Req-50 was generated in design iteration 1, it was used to inform the inclusion of 
some control elements in the refined conceptual architecture in design iteration 2. Figure 51 
illustrates part of the conceptual architecture created in design iteration 2 (originally shown in 
Figure 39) and highlights the control elements that were included to meet Req-50. 
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Figure 51: Accounting for Req-50 in design iteration 2 conceptual architecture 

Req-50 describes what needs to happen if a conflict is found to have not been adequately 
resolved. Thus, Req-50 is categorized as a constraint requirement (not a control requirement) 
and the responsibility constraint RC-27 is generated and associated with Resp-1.4 (the 
responsibility for ensuring that conflicts are adequately resolved).  

Then, to ensure that Resp-1.4 meets the constraint RC-27, two control elements were added: 
(1) a control action called Unresolved collision risk was added between Resp-1.4 and Resp-1.1 
and (2) a piece of feedback called Persistent unresolved conflicts is added between Resp-1.4 and 
Resp-1.2. Together, these two control elements allow Resp-1.4 to notify or prompt the relevant 
responsibilities to reconsider their control decisions to ensure that some action is taken to 
adequately resolve the conflict. The control action Unresolved collision risk ensures that the 
controller assigned to resolve that conflict (i.e., either ATM or the aircraft) are notified to revise 
their selected trajectory modifications if the one they chose originally did not adequately resolve 
the conflict. Similarly, the feedback Persistent unresolved conflicts ensures that if a conflict 
remains unresolved after several attempts to select revised trajectory modifications, Resp-1.2 
can be prompted to re-evaluate the controller that it assigned to the conflict to determine if an 
alternative controller would be better equipped to resolve the conflict. 

Although the example shown in Figure 51 is relatively simple, it illustrates how underlying 
system assumptions made in an earlier iteration of design can be accounted for in the conceptual 
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architecture and appropriate control elements added in later iterations to ensure those 
assumptions remain valid as the system architecture is refined.    

6.5 Summary 

This chapter developed and demonstrated a supporting framework to help systems engineers 
more easily identify the assumptions they are making and account for them during the 
architecture development process. Recognizing that identifying assumptions is a challenging 
task, this supporting framework provides specific guidance for identifying assumptions that is 
tailored to the different steps in the safety-driven architecture development framework 
developed in this research. By using this framework, assumptions about both the system and 
environment can be identified when performing STPA analyses, identifying system requirements, 
developing the conceptual architecture, and exploring and comparing architecture options. 

Once assumptions are identified, one way to ensure their validity over time is to generate 
assumptions-based leading indicators to monitor them during system operation. Assumptions 
about the system can also be accounted for during architecture development by deriving 
additional system requirements from these underlying system assumptions. These additional 
derived requirements can then be used to inform the addition of control elements to the 
conceptual and system architecture. In addition, the validity of these assumptions can be more 
easily checked during system verification and validation when the derived requirements are 
verified.  
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Chapter 7 Conclusions & Future Work 
Developing complex systems today is becoming more challenging than ever before. Not only 

is greater functionality and productivity being demanded from these systems, but there is also 
an increasing desire to use automation and software to enhance their capabilities. As a result, 
systems have gotten more complex, interconnected, and reliant on software while being 
increasingly expected to exhibit emergent properties such as safety and security. Unfortunately, 
designing these systems to exhibit these properties is challenging because existing methods do 
not provide the necessary design support to help systems engineers design these properties into 
their system architectures. 

The objective of this dissertation was to address this problem by creating an architecture 
development framework that provides structured and systematic processes for creating and 
assessing system architectures. Unlike current methods, this architecture development 
framework was developed based on Systems Theory and provides appropriate types of support 
to help systems engineers incrementally develop and refine a system architecture for their 
system.  

The key idea underlying this new framework is that a system should be designed to prevent 
unsafe or undesirable behavior. Thus, the first part of the framework involves performing an 
initial STPA that identifies preliminary scenarios describing how unsafe behavior could occur. 
Then, the behavioral design process provides a structured way to use these STPA scenarios to 
derive system requirements and a conceptual architecture that describes the control behavior 
needed to prevent unsafe behavior from occurring. Finally, the structural design process provides 
a systematic method for exploring and comparing possible architecture options to implement 
the conceptual architecture. By comparing these architecture options, control-related benefits 
and tradeoffs between the architecture options are identified. Ultimately, these benefits and 
tradeoffs can be used by systems engineers to inform their decisions about how to architect the 
system to best achieve the desired emergent properties such as safety. When this framework is 
applied iteratively, the system architecture can be incrementally refined in a top-down manner 
and safety can be designed into it from the beginning. 

This architecture development framework was applied over two design iterations to develop 
an ATM architecture for the NAS that can manage UAM air traffic alongside existing air traffic. 
The first design iteration focused on developing a high-level collision avoidance architecture for 
UAM and two opposing architecture options were compared: a centralized collision avoidance 
architecture and a decentralized collision avoidance architecture. The benefits and tradeoffs that 
were identified demonstrated that this architecture development framework enables a 
comparison of architecture options that is more focused on control-related benefits and 
tradeoffs.  

Based on these benefits and tradeoffs, a preferred collision avoidance architecture was 
chosen for UAM. Because UAM flights are expected to be on demand, traffic circumstances are 
expected to be more unpredictable. Thus, a shared collision avoidance architecture was 
proposed for UAM because it provides the necessary flexibility to enable the ATM system to 
adapt its behavior to the prevailing air traffic circumstances as they change.  
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The second design iteration then focused on refining this high-level shared collision 
avoidance architecture developed in iteration 1 to obtain a more detailed definition of that 
architecture. Thus, the architecture development framework was applied again to refine both 
the conceptual architecture and the system architecture for implementing shared collision 
avoidance. The results from both iterations demonstrated that this architecture development 
framework can be applied iteratively to incrementally refine an ATM architecture for UAM. This 
is achieved through the iterative use of STPA analyses and the structured processes provided by 
the framework that enables systems engineers to make more informed early architectural design 
decisions driven by safety considerations. 

Finally, this research also developed a supporting framework for identifying the assumptions 
underlying design decisions made during architecture development and ensuring that they 
remain valid over time. This supporting framework included guiding prompts to help systems 
engineers consider any assumptions they might be making at each step of architecture 
development. These assumptions can then be used to generate either system requirements or 
assumptions-based leading indicators to account for these assumptions in downstream design 
decisions and monitor their validity over time. This supporting framework was demonstrated for 
the UAM case study to show how different types of assumptions about the ATM system or the 
airspace environment can be identified at each step of architecture development 

The remainder of this chapter summarizes each of the three research contributions, discusses 
their limitations, and describes potential avenues for future work. 

7.1 Contribution 1: Safety-Relevant Criteria for Comparing Architecture Options 

The first contribution of this research is that this architecture development framework 
supports the identification of safety-relevant evaluation criteria for comparing architecture 
options and this was demonstrated in Chapter 4. Two main parts of the framework enable this. 
First, the framework provides a process for performing an STPA scenario-based comparison of 
the architecture options. By analyzing each architecture option using STPA and then comparing 
the identified scenarios across the different options, analysts or systems engineers can more 
easily determine the control-related behavioral differences between the architecture options 
and the architectural elements (e.g., control actions, feedback) that give rise to those differences.  

Second, once these behavioral differences have been identified, this architecture 
development framework then provides a structure for generating evaluation criterion – a short 
phrase that describes a control-related difference in behavior between the architecture options. 
Thus, the evaluation criteria are qualitative and highlight the aspects of an architecture option’s 
behavior that contribute to better or worse control behavior.  

The structure of an evaluation criterion consists of four main parts, each of which provides 
control-relevant information to support the comparison of architecture options:  

1. Characteristic: An attribute (e.g., responsiveness, timeliness) of the control behavior 
being described 

2. Control Aspect: The aspect of control being described – Decision making, Process models, 
Feedback and control inputs, or Control path 

3. Hazard: The hazard that the control behavior being described is intended to control 
4. Scenario Context: The context under which the control behavior being described occurs 
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This structure not only helps guide an analyst or systems engineer in generating an evaluation 
criterion, but it also ensures better consistency and uniformity across the various evaluation 
criteria, especially when different criteria are generated by different people. Based on these 
evaluation criteria, benefits and tradeoffs can be more easily identified for each architecture 
option. These benefits and tradeoffs can then be used to inform decisions about what 
architecture would best achieve the desired emergent properties. 

To evaluate if the evaluation criteria generated by this framework are relevant for comparing 
architecture options in terms of emergent properties like safety, two opposing ATM architecture 
options were compared in design iteration 1 of the case study: (1) a centralized collision 
avoidance architecture and (2) a decentralized collision avoidance architecture. The benefits and 
tradeoffs identified using this framework were then compared to those found by similar studies 
conducted in the existing literature. This comparison found that the evaluation criteria identified 
by this framework can identify more control-related benefits and tradeoffs that cover more areas 
of control. This gives an analyst or systems engineer a broader understanding of how the various 
control-related aspects of an architecture option contribute to better or worse control behavior. 
The benefits and tradeoffs are also more focused on the control-related differences between 
architecture options, and it is easier to identify the architectural elements that give rise to those 
differences. In addition, the benefits and tradeoffs are derived from a broader consideration of 
different air traffic contexts. These findings therefore provide support for Hypothesis 1: A 
systems-theoretic approach can identify relevant criteria for comparing architecture options and 
evaluating their ability to achieve emergent properties. 

There are several limitations that must be acknowledged for this part of the work. First, the 
comparison of benefits and tradeoffs against existing literature is subject to some author bias. As 
discussed at the beginning of Section 4.4, most of the benefits and tradeoffs of centralized and 
decentralized architectures that were identified by the existing literature were quantitative 
whereas those identified by this framework are qualitative. Thus, the author had to apply 
engineering judgement to interpret the quantitative results in the existing literature and 
determine the implied qualitative benefit or tradeoff. However, every effort was made to ensure 
that any qualitative benefit or tradeoff that could reasonably have been identified based on the 
quantitative results were included in the comparison.  

Another limitation of this part of the work is that comparing STPA scenarios across 
architecture options to generate the evaluation criteria depends heavily on the analyst being 
familiar with the behavior of each architecture option. This is because the analyst needs to be 
able to determine how each architecture might behave under a given scenario. Although the 
control structure model for each architecture option is available, the comparison process does 
not describe how to use it to more carefully consider the behavioral differences between 
architecture options. Future work could therefore consider developing a more systematic 
process for deriving or generating the evaluation criterion that makes better use of the control 
structures for each architecture option to better support identifying the control-related 
behavioral differences between architecture options. 

The third limitation of this part of the work is that the formulation of evaluation criteria can 
still vary significantly depending on the analyst who is generating it. While the structure for 
formulating evaluation criteria helps to reduce some of that variability, it does not eliminate it. 
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In addition, the example characteristics provided in this dissertation were not intended to be 
exhaustive. Future work could therefore consider performing a more thorough characterization 
of the different types of control attributes that are commonly seen in systems. Such a 
characterization would provide a more comprehensive set of attributes to help systems 
engineers generate a more consistent set of evaluation criterion. 

Finally, the work in this dissertation focused on generating the evaluation criteria but did not 
consider prioritization of those criteria. Especially when numerous evaluation criteria are 
identified, being able to prioritize the evaluation criteria would help analysts and systems 
engineers to focus on the most important benefits and tradeoffs when comparing architecture 
options and deciding what the preferred system architecture should be. Future work could 
therefore consider how to prioritize the evaluation criteria. For example, this prioritization could 
be informed by the priority order of the associated hazards (or losses). 

One other possible direction of future work is to consider different ways in which the 
evaluation criteria can be grouped and analyzed to identify architectural patterns – assignments 
of responsibilities that consistently give rise to favorable system behavior. In this dissertation, 
evaluation criteria were grouped and analyzed by control aspect, but other groupings are 
possible that could generate other types of insights. For example, the evaluation criteria could 
be grouped by hazard or by context to identify differences in behavior associated with a particular 
hazard or differences in behavior in a certain context. 

7.2 Contribution 2: Structured Processes for Developing the System Architecture  

The second contribution of this research is that this architecture development framework 
provides appropriate types of support for developing and refining both the behavior of a system 
and its system architecture. This was demonstrated in Chapter 5 and two main aspects of the 
framework enable this. First, the framework makes use of iterative STPA analyses to provide 
safety-relevant information about the behavior of the conceptual architecture (in the behavioral 
design process) or the architecture options (in the structural design process) as they are created. 
This iterative analysis of the system using STPA allows analysts or systems engineers to 
incrementally learn about how the behavior of the system evolves as they make design decisions. 

Second, the framework provides structured processes for using the STPA analysis results to 
support making informed design decisions. In this architecture development framework, there 
are three main types of design decisions that a systems engineer makes: 

1. Decisions to identify the control elements needed to create the conceptual 
architecture 

2. Decisions to create architecture options based on the responsibility assignments that 
can mitigate or prevent unsafe behavior 

3. Decisions to develop the preferred system architecture based on the control-related 
benefits and tradeoffs identified for the various architecture options  

Thus, using the structured processes provided by this framework, each of these design 
decisions are informed by what is needed to prevent unsafe or undesirable behavior that are 
identified using STPA. 

To evaluate if these processes provide the necessary support to systems engineers to enable 
them to iteratively refine a system architecture, the results from the two design iterations 
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performed for the UAM case study were reviewed. This review demonstrated that these 
structured processes provided by this framework do enable incremental refinement of the ATM 
architecture for UAM. The first design iteration started with an abstract control structure of the 
ATM system and developed a shared collision avoidance architecture as the preferred 
architecture for UAM. Then, the second design iteration refined this shared collision avoidance 
architecture to define more specific control responsibilities for safely managing shared collision 
avoidance. Architecture options were then considered for how to implement one of these more 
specific control responsibilities in the ATM system architecture. Thus, these results show that the 
structured processes discussed earlier in this section enable systems engineers to make more 
informed early design decisions driven by safety considerations. 

In addition, traceability is maintained between the various design artifacts created using this 
architecture development framework. This traceability not only enables forward refinement of 
the system architecture to incrementally add detail to it, but it also allows systems engineers to 
reconsider and revise past design decisions when needed. These findings therefore provide 
support for Hypothesis 2: A systems-theoretic approach can support making informed design 
decisions to iteratively develop and refine the architecture for a system. 

There are several limitations that must be acknowledged for this part of the work. First, 
although the goal of the structural design process is to incrementally improve the system 
architecture by exploring different architecture options, incremental improvements do not 
necessarily always lead to identifying the best system architecture. This is because the 
responsibilities defined in the conceptual architecture do not behave independently of one 
another. As a result, the relationship between responsibility assignments and the resulting 
system behavior is not monotonic. Even if earlier design iterations identify incrementally better 
architecture options, it is possible that later iterations identify and evaluate architecture options 
that were thought to be better but ultimately show significantly worse behavior than those 
evaluated in prior iterations.  

Another related limitation is that the comparison of architecture options performed using 
this framework does not allow an analyst or systems engineer to create an absolute rank ordering 
of the architecture options (e.g., from best to worst). This is because the comparisons performed 
using this framework only generate relative differences between architecture options, not 
absolute differences. Although these comparisons might allow an analyst or systems engineer to 
rank architecture options compared in the same iteration, architecture options from different 
iterations cannot be ordered the same way without performing additional analyses and 
comparing those additional results. 

The third limitation of this part of the work is that although this dissertation has 
demonstrated that the framework enables architecture refinement, there is no guarantee that 
this refinement can continue all the way to detailed system design and allow systems engineers 
to generate a physical architecture. This is because this work was primarily focused on early-stage 
architecture development where the system architecture is primarily functional. Physical 
components are essentially only represented in terms of groups of assigned functions or 
responsibilities. Thus, one avenue for future work is to perform further design refinement using 
this framework to determine the extent to which the architecture of a system can be 
incrementally refined. 



 

137 

 

Finally, one other limitation of this part of the work is that it can be challenging to keep track 
of the STPA results between iterations and maintain traceability between abstract UCAs and 
scenarios and the more detailed UCAs and scenarios. This can be especially difficult when large 
numbers of UCAs and scenarios are generated for multiple losses and hazards. In addition, when 
design decisions are revised, it can be difficult to determine which STPA results are affected by 
the revision. Thus, another avenue for future work could investigate how to organize and keep 
track of the results obtained from different iterations of STPA analyses and make it easier to 
determine how revising a design decision impacts the STPA analyses that have already been 
conducted. 

The refinement that is enabled by this architecture development framework provides one 
other interesting direction for future work. By refining a system architecture using this 
framework, a systems engineer can design the refined version of an architecture to meet the 
goals of the more abstract version. For example, in the case study described in this dissertation, 
the refined ATM architecture developed in design iteration 2 was designed to meet the goal of 
implementing the shared collision avoidance architecture developed in design iteration 1.  

This suggests that this type of refinement could be applied to create an architecture-based 
certification process. For example, a regulator could be responsible for developing the system 
architecture up to a certain level of abstraction to establish the requirements and goals for that 
system. Then, individual companies (e.g., vehicle manufacturers) could continue refining the 
architecture to create their own implementation of the higher-level architecture created by the 
regulator. Certification of those individual implementations would then involve regulators 
verifying that each lower-level refined architecture is consistent with the abstract architecture 
and meets all its requirements.  

7.3 Contribution 3: Identifying and Accounting for Underlying Assumptions 

The last contribution of this research is the development of a supporting framework for 
identifying and accounting for underlying assumptions during architecture development. This 
supporting framework was developed because it is important to ensure that any assumptions 
underlying design decisions made during architecture development remain valid both during 
system development and once the system is placed into operation. This is because assumptions 
that are invalidated could lead to flaws in the system design. Thus, the goal of this supporting 
framework is to help systems engineers identify any assumptions they are making as they 
develop a system architecture and account for them as architecture development proceeds.  

This supporting framework was developed in Chapter 6 and consisted of two main parts. First, 
guiding prompts that are tailored to each step of the architecture development framework help 
systems engineers consider what must be true about the system or the environment for the 
system to behave as intended. Second, once the underlying assumptions have been identified, 
they can be monitored and accounted for in the system design. For both assumptions about the 
environment or the system, assumptions-based leading indicators can be generated to monitor 
their validity over time, especially during operations. In addition, assumptions about the system 
can be used to derive additional system requirements that the system will have to meet. This 
ensures that downstream design decisions do not violate assumptions made earlier in the design 
process. Furthermore, the validity of these system assumptions can be verified at the end of 
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development using the verification and validation process for a system because a verified derived 
requirement implies a validated assumption.  

Although no evaluation was performed for this part of the work, this supporting framework 
was demonstrated for the UAM case study. The case study results showed how underlying 
assumptions about both the environment and system could be identified throughout the 
development process including during each of the STPA analyses, the generation of 
requirements, the development of the conceptual architecture and the comparison of 
architecture options.  

There are several limitations that should be acknowledged for this part of the work. First, only 
a demonstration of this supporting framework was performed, and no evaluation of this 
supporting framework was done. However, such an evaluation could be done in the future using 
data about assumptions identified using an alternate process to compare to the assumptions 
identified by this supporting framework.  

Another limitation is that the identification of underlying assumptions is done only using 
guiding questions as prompts instead of being supported by an analysis of the system or the 
design decision being made. Thus, future work could investigate a more rigorous method of 
analysis to more systematically capture underlying assumptions instead of only relying on guiding 
prompts. Especially for assumptions about the system, this analysis method could help analysts 
or systems engineers identify assumptions that are more closely linked to specific elements or 
behavioral aspects of an architecture or control structure. 

Finally, a third limitation of this part of the work is that the guiding prompts were not 
intended to be a complete or exhaustive list of things to consider when identifying underlying 
assumptions. In addition, these guiding prompts were developed based only on the case study in 
this dissertation. As a result, the broader applicability of the guiding prompts to other types of 
systems has not been evaluated and is likely limited. Thus, future work could perform a more 
rigorous characterization of the types of assumptions made when developing different types of 
systems. This characterization could then be used to develop more general guidance on the types 
of assumptions to look for at each step of architecture development. 
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Abbreviations and Acronyms 
ABP: Assumptions-Based Planning 

ATM: Air Traffic Management 

ATC: Air Traffic Control 

ConOps: Concept of Operations 

DSM: Design Structure Matrix 

FAA: Federal Aviation Administration 

IFR: Instrument Flight Rules 

IMLEO: Initial Mass to Low Earth Orbit 

INCOSE: International Council on Systems 
Engineering 

MBSE: Model-Based Systems Engineering 

MCAS: Maneuvering Characteristics 
Augmentation System 

MVC: Model/View/Controller Framework 

NAS: National Airspace System 

NASA: National Aeronautics and Space 
Administration 

OOSEM: Object-Oriented Systems 
Engineering Methodology 

PBSE: Pattern-Based Systems Engineering 

RA: Resolution Advisory 

SDADF: Safety-Driven Architecture 
Development Framework 

STECA: Systems-Theoretic Early Concept 
Analysis 

STAMP: Systems Theoretic Accident Model 
and Processes 

STPA: Systems Theoretic Process Analysis 

SysML: Systems Modeling Language 

TA: Traffic Advisory 

TCAS: Traffic Collision Avoidance System 

TFR: Temporary Flight Restriction 

UAM: Urban Air Mobility 

UCA: Unsafe Control Action 

UCCA: Unsafe Collaborative Control Action 

Glossary 

Term Definition 

Architecture Option 
One possible way to assign the responsibilities (and their 
associated control actions and feedback) to either existing or 
new controllers in the system. 

Architecture Tradespace 
The set of all possible assignments of responsibilities defined 
in the conceptual architecture to controllers in the system. 

Assignment Constraints 
A preferred responsibility assignment that could mitigate or 
eliminate a causal scenario that was identified using STPA. 

Causal/Loss Scenario 
A description of the causal factors that can lead to the unsafe 
control actions and to the hazards [89, p. 42]. 

Conceptual Architecture 
A functional control structure that models the desired 
control behavior of a system in terms of the required 
responsibilities, control actions, and feedback. 
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Term Definition 

Conflict  
(e.g., between aircraft) 

A situation where there is a risk for collision between aircraft 
and/or vehicles [115]. 

Constraint Requirement 

A system requirement that describes restrictions on 
acceptable ways that a control decision should be made or 
the expected response of the controlled process (used to 
derive responsibility constraints). 

Control Requirement 
A system requirement that describes a control decision or 
control function that needs to be performed (used to derive 
responsibilities) 

Evaluation Criteria 
A short phrase describing a control-related difference in 
behavior between the architecture options being compared. 

Hazard 
A system state or set of conditions that, together with a 
particular set of worst-case environmental conditions, will 
lead to a loss [89, p. 17]. 

Loss Something of value to stakeholders [89, p. 16]. 

Process Model Parts 
Information needed by a controller to make appropriate 
decisions when carrying out a responsibility. 

Responsibility 
A control function to be performed or a control decision that 
needs to be made to enforce a safety constraint. 

Responsibility Constraint 
A restriction on how the associated responsibility should be 
performed. 

Safety Constraint  

(also referred to as a system-
level constraint in [89]) 

A specification of system conditions or behaviors that need 
to be satisfied to prevent hazards (and ultimately prevent 
losses) [89, p. 20]. 

System Architecture 
An abstract description of the entities of a system and the 
relationships between them [9, p. 2]. 

Unsafe Control Action (UCA) 
A control action that, in a particular context and worst-case 
environment, will lead to a hazard [89, p. 35]. 
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Appendix A Design Iteration 1 – Initial STPA Analysis of NAS 
This appendix contains the STPA results for the initial analysis of the NAS that was performed 

at the beginning of design iteration 1 (shown in Section 4.1).  For this STPA analysis, the losses, 
hazards, and control structure were already presented in Table 7, Table 8, and Figure 24 
respectively. This appendix presents the full set of UCAs and scenarios that were generated for 
the abstract Coordination control action in that control structure. In Table A-1 and Table A-2, 
UCAs for which causal scenarios were generated are highlighted in blue. 

 

A.1    Unsafe Control Actions (UCAs) for Coordination Control Action 
Table A-1: Providing and not providing UCAs for Coordination Control Action 

Not Providing Providing 

UCA-1.1: Air Traffic Management does not 
coordinate the interaction between two UAM 
aircraft or a UAM aircraft and another airspace 
user when a collision between them is imminent 
[H-1, H-3] 

UCA-1.15: Air Traffic Management coordinates air 
traffic to allow UAM aircraft to access the airspace 
when the NAS does not have sufficient capacity 
[H-1, H-3, H-4] 

UCA-1.2: Air Traffic Management does not 
coordinate air traffic in the airspace to assist 
UAM aircraft in an emergency [H-1, H-2, H-3] 

UCA-1.16: Air Traffic Management coordinates the 
movement of UAM aircraft when UAM aircraft 
need to access an airport and that coordination 
interferes with approach/arrival traffic for a 
nearby airport [H-1, H-3, H-6] 

UCA-1.3: Air Traffic Management does not 
coordinate the movement of UAM aircraft when 
UAM aircraft are interfering with 
approach/arrival traffic for a nearby airport [H-1, 
H-3] 

UCA-1.17: Air Traffic Management coordinates air 
traffic to give UAM aircraft access to the airspace 
when UAM aircraft do not meet the necessary 
criteria for access to an airspace [H-1, H-2, H-3, H-
6] 

UCA-1.4: Air Traffic Management does not 
coordinate air traffic to allow UAM aircraft to 
access the airspace when UAM aircraft need to 
execute a mission and meet the criteria for 
access to that airspace [H-3] 

UCA-1.18: Air Traffic Management coordinates 
UAM aircraft when their flight paths will result in 
excessive environmental effect [H-4] 

UCA-1.5: Air Traffic Management does not 
coordinate the movements of UAM aircraft 
when they are about to fly into a section of 
airspace where air traffic must be excluded (e.g., 
for safety or security reasons) [H-5] 

UCA-1.19: Air Traffic Management coordinates 
UAM aircraft such that they interfere with the 
operations of other NAS users [H-3, H-6] 

UCA-1.6: Air Traffic Management does not 
coordinate UAM air traffic to reduce the number 
of aircraft using the airspace when it exceeds 
the capacity of Air Traffic Management to 
coordinate them [H-1, H-3, H-4, H-5] 

UCA-1.20: Air Traffic Management provides 
coordination that UAM aircraft are not fully 
capable of executing [H-1, H-2, H-3, H-6]  



 

150 

 

Not Providing Providing 

UCA-1.7: Air Traffic Management does not 
coordinate UAM air traffic when demand for a 
particular part of the airspace exceeds 
acceptable levels of use [H-4] 

UCA-1.21: Air Traffic Management provides 
coordination that causes a collision with an 
obstacle or terrain [H-1, H-2, H-3, H-5] 

UCA-1.8: Air Traffic Management does not 
coordinate the movements of UAM aircraft 
when they interfere with the operations of other 
NAS users [H-1, H-3] 

UCA-1.22: Air Traffic Management provides 
coordination that causes a collision with another 
aircraft [H-1, H-2, H-3] 

UCA-1.9: Air Traffic Management does not 
coordinate UAM aircraft when their operation 
has an excessive environmental effect [H-4] 

UCA-1.23: Air Traffic provides coordination when 
two UAM aircraft are departing or arriving at the 
same location at the same time [H-1, H-3, H-5, H-
6] 

UCA-1.10: Air Traffic Management does not 
coordinate UAM aircraft when they need to 
access a conventional airport [H-3] 

UCA-1.24: Air Traffic Management provides 
coordination that causes unnecessary or 
unacceptable operational impacts (e.g., delays) to 
the flight [H-3, H-6] 

UCA-1.11: Air Traffic Management does not 
coordinate UAM aircraft when two aircraft want 
access to the same location at the same time [H-
3] 

UCA-1.25: Air Traffic Management provides 
coordination when that coordination leads the 
aircraft toward inclement weather that could 
interfere with flight operations [H-1, H-2, H-3, H-5] 

UCA-1.12: Air Traffic Management does not 
coordinate UAM aircraft when they are close to 
an obstacle or terrain [H-1] 

UCA-1.26: Air Traffic Management provides 
coordination to restrict UAM flights when the 
restrictions cause travel time using UAM to 
increase beyond acceptable levels [H-3] 

UCA-1.13: Air Traffic Management does not 
coordinate UAM aircraft when inclement 
weather is approaching that could interfere with 
flight operations [H-1, H-2, H-3] 

UCA-1.27: Air Traffic Management provides 
coordination to UAM traffic that forces them to 
use airspace where the ride is unpleasant or 
unsafe for passengers [H-2, H-6] 

UCA-1.14: Air Traffic Management does not 
coordinate UAM aircraft when congestion has 
increased beyond acceptable levels [H-1, H-3, H-
4] 

UCA-1.28: Air Traffic Management provides 
coordination to UAM aircraft that does not satisfy 
priority needs (e.g., an aircraft running out of fuel 
needs access to an airport sooner than one that 
has plenty of fuel) [H-1, H-2, H-3] 
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Table A-2: Too early/late and applied too long/stopped too soon UCAs for Coordination Control Action 

Too Early / Too Late Applied Too Long / Stopped Too Soon 

UCA-1.29: Air Traffic Management coordinates 
the interaction between two UAM aircraft or a 
UAM aircraft and another airspace user too late 
to prevent violation of minimum separation 
between them [H-1, H-2, H-3] 

UCA-1.35: Air Traffic Management provides 
coordination to UAM aircraft in the airspace too 
long when conditions have changed such that the 
coordination provided is no longer valid [H-1, H-2, 
H-3, H-4, H-6] 

UCA-1.30: Air Traffic Management coordinates 
UAM aircraft too late to assist them in an 
emergency [H-1, H-2, H-3] 

UCA-1.36: Air Traffic Management stops 
coordinating air traffic in the airspace too soon 
before the emergency experienced by UAM aircraft 
is resolved [H-1, H-2, H-3] 

UCA-1.31: Air Traffic Management coordinates 
air traffic to allow UAM aircraft access to the 
airspace too late after the time window in 
which UAM aircraft need that access [H-3] 

UCA-1.37: Air Traffic Management stops 
coordinating UAM aircraft too soon to prevent 
UAM aircraft from entering a restricted section of 
airspace when air traffic still needs to be excluded 
from that section of airspace [H-2, H-4, H-6]  

UCA-1.32: Air Traffic Management coordinates 
UAM aircraft too late after environmental 
effects of UAM operations have exceeded 
acceptable levels [H-4] 

UCA-1.38: Air Traffic Management stops 
coordinating UAM aircraft too soon before 
environmental effects of system operation have 
returned to acceptable levels [H-4] 

UCA-1.33: Air Traffic Management provides 
coordination too late after congestion has 
exceeded acceptable levels [H-1, H-3, H-4, H-6] 

UCA-1.39: Air Traffic Management restricts air 
traffic for too long after environmental effects of 
system operation have returned to acceptable 
levels [H-3] 

UCA-1.34: Air Traffic Management provides 
coordination too late after UAM aircraft 
interfere with the operations of another 
airspace user [H-3, H-6] 

UCA-1.40: Air Traffic Management provides 
coordination to restrict UAM flights for too long 
after congestion is within acceptable levels but 
travel time remains unacceptable or service 
consistency remains unacceptable [H-3] 

 

UCA-1.41: Air Traffic Management stops providing 
coordination too soon when there is pressure to 
allow more flights to take place but UAM cannot be 
safely operated with a higher traffic density [H-1, H-
3, H-4, H-6] 
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A.2    Causal Scenarios for Selected UCAs 

This section shows the causal scenarios that were identified for select UCAs highlighted in 
blue in Table A-1 and Table A-2. Note that each scenario is also traced to the system requirement 
generated to mitigate or prevent it using the requirement links in square braces included at the 
end of each requirement. 

 

Scenarios for UCA-1.1: Air Traffic Management does not coordinate the interaction between two 
UAM aircraft or a UAM aircraft and another airspace user when a collision between them is 
imminent [H-1, H-3]  

 

CS-1.1.1.  Air Traffic Management does not provide coordination when a collision is 

imminent. Air Traffic Management has received feedback of the potential conflict, but does 

not issue coordination because: 

CS-1.1.1-1.  The Air Traffic Management believes at least one of the aircraft is a false positive 

and therefore ignores the feedback and wrongly believes that a collision is not actually 

imminent [ Req-1, Req-2] 

CS-1.1.1-2.  Alternatively, Air Traffic Management is pre-occupied (either in the human or 

automated sense) with other tasks and does not have the capacity to recognize or handle the 

potential collision and provide coordination to prevent it [ Req-3, Req-4] 

CS-1.1.1-3.  The Air Traffic Management wrongly believes that the aircraft involved have 

already been provided coordination and therefore wrongly believes that it does not need to 

provide further coordination to prevent the collision [ Req-5] 

CS-1.1.1-4.  The Air Traffic Management believes at least one of the aircraft will recognize the 

potential collision and change its path to avoid the collision and therefore the Air Traffic 

Management wrongly believes that it does not need to provide coordination to prevent the 

collision [ Req-5] 

CS-1.1.1-5.  The Air Traffic Management is unable to select an acceptable coordination 

solution because the environment is constrained and there are no options available to the 

Air Traffic Management to coordinate the aircraft that does not cause another violation of 

minimum separation [ Req-6] 

CS-1.1.2. Air Traffic Management does not receive feedback of the potential conflict 

because: 

CS-1.1.2-1. Equipment used to detect and identify aircraft in the airspace has failed or is 

delayed and either only partial information about an aircraft is received by Air Traffic 

Management or no information at all is received by Air Traffic Management [ Req-4, Req-7]  

CS-1.1.2-2. There are more aircraft in the airspace than Air Traffic Management is capable of 

detecting and tracking simultaneously. As a result, it receives incomplete feedback about the 

aircraft present in the airspace. [ Req-8] 

CS-1.1.2-3. Equipment used by the Air Traffic Management to detect and track aircraft is 

insufficiently performant (e.g., insufficient resolution or update rate). As a result, information 
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regarding the position, speed or intent of the aircraft are inaccurate or incomplete. 

Alternatively, certain parts of that information might be missing. In either case, the Air Traffic 

Management therefore does not receive all the information needed to recognize potential 

conflict. [ Req-4] 

CS-1.1.2-4. Traffic data is manipulated such that at least one of the aircraft is removed and 

therefore the Air Traffic Management is unaware of the presence of that aircraft and 

therefore does not recognize the potential conflict [ Req-9] 

CS-1.1.2-5. The Air Traffic Management is not aware of future intended movements of the 

aircraft (e.g., about to turn left into the path of another aircraft) and wrongly assumes that 

the aircraft will continue on their current trajectories. Air Traffic Management therefore 

wrongly believes that a collision is not imminent. [ Req-10, Req-11] 

CS-1.1.2-6. The Air Traffic Management has wrong or out-of-date information about the 

future intended movements from either or both aircraft and wrongly believes based on that 

intent information that a collision is not imminent [ Req-11] 

CS-1.1.3. Air Traffic Management provides coordination when a collision is imminent. 

However, that control is not received by the aircraft because: 

CS-1.1.3-1. The method for communicating that coordination to the aircraft has failed, is 

unavailable or is degraded by environmental conditions [ Req-12, Req-13] 

CS-1.1.3-2. The coordination channel is over capacity and Air Traffic Management is unable 

to transmit its coordination to the aircraft [ Req-3, Req-5, Req-12, Req-13] 

CS-1.1.3-3. The communication channel used by Air Traffic Management to transmit its 

coordination does not match the channel that the aircraft is listening on to receive that 

coordination [ Req-13] 

CS-1.1.3-4. Air Traffic Management transmits coordination to the wrong aircraft and 

therefore the intended aircraft does not receive that coordination [ Req-14] 

CS-1.1.3-5. Air Traffic Management transmits coordination to the correct aircraft but a 

different aircraft wrongly believes the coordination is for them and executes the coordination 

[ Req-13] 

CS-1.1.4. Air Traffic Management provides coordination when a collision is imminent. The 

coordination is received by the aircraft but it is not effective in preventing violation of minimum 

separation because: 

CS-1.1.4-1. The aircraft is unable to execute the coordination provided by Air Traffic 

Management to avoid violation of minimum separation. This might occur if: 

CS-1.1.4-1.1. The coordination provided by Air Traffic Management exceeds the 

capabilities of the aircraft [ Req-15] 

CS-1.1.4-1.2. The aircraft is preoccupied with another task and does not attempt to 

execute the coordination before the aircraft violates minimum separation. It may 

also occur if the provided coordination is incorrect or insufficient for resolving the 

conflict. [ Req-5, Req-12] 
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CS-1.1.4-1.3. The aircraft might believe that coordination provided by the Air Traffic 

Management would result in another violation of minimum separation and 

therefore choose to ignore the Air Traffic Management’s coordination and make an 

independent decision which results in a violation of minimum separation anyway [ 

Req-6, Req-17] 

CS-1.1.4-1.4. The coordination provided by Air Traffic Management resolves the original 

imminent collision but causes another violation of minimum separation [ Req-6, 

Req-17] 

CS-1.1.4-2. There is insufficient time after the Air Traffic Management provides coordination 

for the aircraft to execute the coordination to avoid violation of minimum separation [ Req-

18] 

CS-1.1.4-3. The aircraft believes that it has executed the coordination even though it has not 

actually done so. [ Req-5] 

CS-1.1.4-4. The aircraft receives the coordination but deliberately chooses to ignore it (e.g., 

hijacking or other malicious activity) [ Req-80] 

 

Scenarios for UCA-1.8: Air Traffic Management does not coordinate the movements of UAM 
aircraft when they interfere with the ability of other NAS users to achieve their missions [H-4] 

 

CS-1.8.1. Air Traffic Management has received feedback that UAM aircraft are interfering 

with the operations of other NAS users but does not issue coordination because: 

CS-1.8.1-1. Air Traffic Management is preoccupied addressing higher priority tasks (e.g., 

assisting an aircraft experiencing an emergency) and does not have the capacity to 

provide coordination to reduce the impact of UAM aircraft on other NAS users [ Req-3, 

Req-4] 

CS-1.8.1-2. Air Traffic Management wrongly believes that UAM aircraft’s impact on other NAS 

users is negligible or tolerable by the other NAS users and therefore there is no need to 

issue coordination to reduce the impact [ Req-20, Req-21] 

CS-1.8.1-3. Air Traffic Management does not recognize that the operation of UAM aircraft is 

negatively affecting a mission to fulfill a public benefit (e.g., search & rescue, medevac, 

public safety operations) and instead believes that the mission only fulfills 

commercial/private interests and therefore wrongly decides to allow the UAM aircraft 

to interfere with the operation of the other NAS users without providing coordination [ 

Req-20, Req-21] 

CS-1.8.1-4. Air Traffic Management does not realize that another NAS user has a time-critical 

mission to execute (e.g., cargo that needs to be delivered to the destination by a certain 

time) or a time-critical need (e.g., running out of fuel and cannot maintain a hold) and 

believes that the other NAS user’s mission can be delayed for the UAM aircraft and 

therefore wrongly decides not to provide coordination to avoid the delay for the other 

NAS user [ Req-20, Req-21] 
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CS-1.8.1-5. Air Traffic Management is unable to find a coordination solution that avoids 

interference with the operations of other NAS users because there is insufficient capacity 

in the system to prevent NAS users affecting each other’s operations [ Req-3, Req-66] 

CS-1.8.1-6. Air Traffic Management is told by federal regulators to prioritize the UAM aircraft 

over other NAS users and the Air Traffic Management therefore chooses to ignore the 

feedback and does not issue coordination to avoid interference with the other NAS users 

[ Req-20, Req-21, Req-22, Req-39] 

CS-1.8.1-7. Air Traffic Management has incorrect information about the flight plans and 

acceptable interference limits of other airspace users and therefore do not realize that a 

UAM flight will interfere with it [ Req-11, Req-21] 

CS-1.8.2. Air Traffic Management has not received feedback that UAM aircraft are 

interfering with the operations of other NAS users because: 

CS-1.8.2-1. Air Traffic Management does not have sufficient information about the mission or 

intentions of other NAS users or the UAM aircraft to know that UAM aircraft are 

interfering with their operations.  [ Req-11] 

CS-1.8.2-2. Air Traffic Management does not have sufficiently performant detection or 

reporting mechanisms to identify instances when UAM aircraft are interfering with the 

operations of other NAS users [ Req-22] 

CS-1.8.2-3. Detection or reporting mechanisms available to Air Traffic Management only 

report interferences with a delay large enough that by the time Air Traffic Management 

receives feedback that UAM aircraft are interfering with the operations of other NAS 

users, the interference is no longer occurring [ Req-4, Req-22] 

CS-1.8.2-4. The impact to operations of other NAS users occurs slowly/gradually or there is a 

small impact to a large number of NAS users and Air Traffic Management does not 

receive feedback about the overall extent of the impact to the operations of other NAS 

users [ Req-22] 

CS-1.8.2-5. Air Traffic Management does not receive direct feedback about interference and 

only uses UAM congestion level as their measure of whether the flight operations of 

other airspace users might be impacted by UAM flights. Thus, when other airspace users 

are impacted while UAM congestion is below threshold, Air Traffic Management wrongly 

believes there is no need to issue coordination [ Req-22] 

CS-1.8.3. Air Traffic Management provides coordination when UAM aircraft interfere with 

the operations of other NAS users. Scenarios are similar to those for CS-1.1.3. 

CS-1.8.4. Air Traffic Management provides coordination to prevent a UAM aircraft from 

interfering with the operations of other NAS users. The coordination is received by UAM 

aircraft but is not effective in preventing interference because: 

CS-1.8.4-1. The Air Traffic Management identifies or is alerted to the impending interference 

at the last minute and does not provide the coordination with enough time for UAM 

aircraft to respond before they interfere with the operation of other NAS users [ Req-

18, Req-22, Req-23] 
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CS-1.8.4-2. Air Traffic Management changes its coordination to avoid an interference and 

provides that coordination at the last minute. [ Req-18, Req-23] 

 

Scenarios for UCA-1.14: Air Traffic Management does not coordinate UAM aircraft when 
congestion has increased beyond acceptable levels [H-1, H-3, H-4] 

 

CS-1.14.1. Air Traffic Management receives feedback that congestion has increased beyond 

acceptable levels but does not coordinate UAM aircraft because: 

CS-1.14.1-1. Air traffic management believes that although congestion has increased 

beyond acceptable levels, the accident risk has not increased because UAM aircraft are 

also improving their collision avoidance capabilities. As a result, they believe that they 

do not need to coordinate UAM aircraft to prevent a collision. [ Req-36, Req-37] 

CS-1.14.1-2. Although congestion has exceeded threshold levels along certain routes, 

Air Traffic Management wrongly believe and assume that UAM operators will gradually 

reroute aircraft along other routes to reduce congestion. As a result, they do not issue 

coordination themselves [ Req-30, Req-39] 

 

Scenarios for UCA-1.32: Air Traffic Management coordinates UAM aircraft too late after 
environmental effects of UAM operations have exceeded acceptable levels [H-4] 

 

CS-1.32.1. Air Traffic Management received feedback on time indicating that 

environmental effects have exceeded acceptable levels but provide coordination too late 

because: 

CS-1.32.1-1. They have the wrong mental model of the acceptable level of 

environmental effect and wrongly believe that the environmental effect is still 

acceptable. As a result, they do not issue coordination to limit further increase in 

environmental effects [ Req-25] 

CS-1.32.1-2. Although they recognize that the environmental effect has been exceeded, 

they wrongly believe that UAM operators will curb further increase in environmental 

effects themselves and therefore do not take any action themselves [ Req-30, Req-31] 

CS-1.32.1-3. Air Traffic Management wrongly believes that UAM traffic will reduce soon 

(e.g., peak period will end, surge will subside) and therefore believes that a momentary 

exceedance of acceptable environmental effects can be tolerated [ Req-27] 

CS-1.32.1-4. Congestion is not at unsafe limits and ridership is high. As such, Air Traffic 

Management attempts to continue to allow flights to depart, hoping to meet as much of 

the demand for flights as possible. As a result, they do not start to restrict flights to curb 

environmental effects until they have exceeded acceptable levels [ Req-27] 

CS-1.32.2. Air Traffic Management does not receive feedback that the environmental effect 

of UAM operations have exceeded acceptable levels because 
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CS-1.32.2-1.  There is a delay reporting these environmental effects to Air Traffic 

Management (e.g., reports must be manually made by community members). As a result, 

by the time Air Traffic Management is aware of these reports, acceptable levels have 

already been exceeded [ Req-25] 

CS-1.32.2-2. Air Traffic Management only receives feedback when levels have been 

exceeded and therefore is unable to take action before levels have been exceeded [ 

Req-26] 

CS-1.32.2-3. Air Traffic Management has erroneous data about the current state of the 

airspace and the future intent of aircraft and therefore have the wrong mental model of 

what the anticipated environmental effect of UAM will be in the future. As a result, they 

do not issue coordination to limit the environmental impact of UAM operations until the 

tolerable threshold has already been exceeded [ Req-7] 

 

Scenarios for UCA-1.33: Air Traffic Management provides coordination too late after congestion 
has exceeded acceptable levels [H-1, H-3, H-4, H-6] 

 

CS-1.33.1. Air Traffic Management has received feedback that congestion has exceeded 

acceptable levels but provides coordination too late after congestion has exceeded 

acceptable levels because: 

CS-1.33.1-1. There is pressure from UAM operators not to restrict flights to avoid 

increasing the level of ride sharing amongst passengers. As a result, Air Traffic 

Management chooses to wait to impose restrictions on flights [ Req-28, Req-29] 

CS-1.33.1-2. Air Traffic Management believes that the demand surge (e.g., caused by 

rush hour, a major sporting event) will shortly subside and therefore believes traffic 

volume will reduce without requiring additional intervention [ Req-30, Req-31] 

CS-1.33.1-3. Air Traffic Management has the wrong mental model of the threshold 

congestion at which coordination is needed and therefore wrongly believes that 

congestion needs to worsen further before they need to provide coordination [ Req-

26, Req-31, Req-32] 

CS-1.33.1-4. Air Traffic Management is busy coordinating non-UAM aircraft and does 

not process the feedback showing UAM congestion has increased beyond acceptable 

levels until the congestion level has exceeded acceptable levels [ Req-4] 

CS-1.33.2. Air Traffic Management does not receive feedback indicating that congestion 

has exceeded acceptable levels on time because: 

CS-1.33.2-1. Data indicating the level of UAM congestion is reported to Air Traffic 

Management with a delay. As a result, Air Traffic Management does not recognize that 

coordination is needed to reduce the level of congestion until congestion has exceeded 

acceptable levels [ Req-1] 

Scenarios for UCA-1.34: Air Traffic Management provides coordination too late after UAM 
aircraft interfere with the operations of another airspace user [H-3, H-6] 



 

158 

 

 

CS-1.34.1. Air Traffic Management receives feedback that indicated that UAM aircraft 

are/will interfere with the operations of other airspace users on time. However, they 

provide coordination too late because: 

CS-1.34.1-1. The other airspace user (e.g., a public safety flight, private jet flight) is also 

conducting a short-notice/on-demand operation and Air Traffic Management does not 

have sufficient time to provide adequate coordination to prevent the impact of UAM 

aircraft on their operation before it occurs [ Req-41, Req-42] 

CS-1.34.1-2. The other airspace user changes their flight plan at the last minute such 

that Air Traffic Management does not have sufficient time to provide adequate 

coordination to prevent the impact of UAM aircraft on their operation before it occurs 

[ Req-41, Req-42] 

CS-1.34.1-3. Air Traffic Management receives feedback of the interference with very 

short notice to when the interference will occur (e.g., because the UAM flight was being 

performed on-demand). As a result, there is insufficient time to make a coordination 

decision before the flight is performed and the interference occurs [ Req-23] 

 

Scenarios for UCA-1.41: Air Traffic Management stops providing coordination too soon when 
there is pressure to allow more flights to take place but UAM cannot be safely operated with a 
higher traffic density [H-1, H-3, H-4, H-6] 

 

CS-1.41.1. Air Traffic Management received feedback on time that UAM cannot be safely 

operated with a higher traffic density but still decide to stop coordinating aircraft because: 

CS-1.41.1-1. Air Traffic Management believes that UAM traffic density will soon 

decrease significantly (e.g., as rush hour ends) and therefore believes that allowing a 

temporary rise in UAM flights to reduce delays is permissible [ Req-30] 

CS-1.41.1-2. Air Traffic Management assumes that unexpected incidents or 

emergencies will not arise and believes they can handle a higher density of UAM aircraft. 

However, when an emergency arises, they are unable to safely coordinate all of the 

aircraft while addressing the emergency [ Req-34] 

CS-1.41.2. Air Traffic Management does not receive feedback that indicates that UAM 

cannot be safely operated with a higher traffic density because: 

CS-1.41.2-1. Under pressure to improve profitability and serve more passengers, UAM 

operators provide feedback to Air Traffic Management that indicates that the capabilities 

of their aircraft are sufficient for operating at a higher traffic density even though they 

are not. Without verifying this feedback, Air Traffic Management uses it to and update 

its process model of the level of UAM traffic that UAM operators can handle safely make 

its decisions [ Req-35]  
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Appendix B Design Iteration 1 – Requirements and Control 
Elements 

 

In this appendix, the system requirements and control elements that were identified to create 
the iteration 1 conceptual architecture (shown in Figure 28) are presented. In addition, any 
underlying assumptions associated with the requirements or control elements are included. Note 
that this appendix shows just the final set of requirements and control elements that were 
identified after several iterations and does not show how the requirements and control elements 
evolved between iterations.  

 

B.1    NAS System-Level Collision Avoidance Requirements 

Req-1. ATM system shall be able to track all aircraft in the airspace to ensure sufficient separation [ RC-
1] 

System Assumption: Assumes it is possible to achieve tracking performance of <relevant minimum 
tracking performance specifications> 

Req-2. ATM system shall verify erroneous detections within <TBD time> before choosing to ignore them 

[ RC-74] 

Environment Assumption: Assumes that flights are known within <TBD> time of desired departure 

System Assumption: There will always be at least 1 alternative option for tracking aircraft in the 
airspace that can be used to verify a suspected erroneous detection [Req-46] 

Req-3. ATM system shall ensure that sufficient capacity is available to detect and coordinate all aircraft 

that have or will need access to the airspace [ Resp-2] 

Environment Assumption: Assumes that surges in demand for flights will occur with at least <TBD 
mins> of advance notice for the NAS to implement plans to mitigate system impacts 

System Assumption: Assumes that Req-8 is also carried out at the same time whenever demand 
nears capacity limits [Req-61] 

Req-4. ATM system shall coordinate the movement of aircraft to resolve any potential conflicts either 

between two aircraft or a conflict of an aircraft trajectory with terrain [ Resp-1 (iteration 1), Resp-
1.1 (iteration 2)] 

Environment Assumption: Assumes that flights are known within <TBD> time of desired departure 

System Assumption: Assumes coordination decisions can be made within <TBD time> [Req-49] 

System Assumption: Assumes that there is coordination with Req-3 to ensure sufficient capacity is 
available to manage the current or anticipated future level of traffic [Req-48] 

Req-5. ATM system shall ensure that aircraft that need coordination have received coordination, are 

executing it correctly and that the risk of collision or interference is no longer present [ RC-6 
(iteration 1), Resp-1.4 (iteration 2)] 

System Assumption: Assumes that there is coordination between this requirement and Req-4, and 
Req-27 to ensure that coordination is effective [Req-31, Req-50] 

Req-6. ATM system shall ensure that acceptable coordination options are always available for aircraft to 

avoid violation of minimum separation [ Resp-3] 
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System Assumption: Assumes that there is sufficient airspace available (low enough density) to 
allow alternative movement options to be established [Req-51] 

System Assumption: Assumes that there is coordination with Req-8 to manage airspace usage to 
ensure sufficient airspace is available for this [Req-52] 

Req-7. ATM system shall detect when information needed to identify and track aircraft is missing, 

delayed, erroneous or not available and take action to restore that information [ RC-75] 

System Assumption: Alternative options are available for obtaining tracking information or 
checking the status of tracking equipment [Req-46] 

System Assumption: Assumes there is coordination with Req-4 to account for information being 
out-of-date when making coordination decisions [Req-53] 

Req-8. ATM system shall only allow as many users to access the airspace as it is capable of detecting, 

tracking and coordinating [ Resp-4] 

System Assumption: Assumes Req-3 is also performed to manage capacity (e.g., during surge 
times) [Req-47] 

Req-9. ATM system shall prevent the manipulation or tampering of data used for detecting and tracking 

aircraft [ RC-19] 

System Assumption: Assumes Req-3 is also performed to manage capacity (e.g., during surge 
times) [Req-47] 

Req-10. ATM system shall account for intended movements of aircraft in addition to current trajectories 

to detect potential collisions [ RC-2] 

Environment Assumption: Assumes that aircraft are willing to share their intended trajectories for 
at least <TBD time> into the future (e.g., no privacy concerns) 

Req-11. ATM system shall ensure that information about the intent, mission, acceptable operational 
impacts and future intended movements of aircraft is available, does not contain errors and is kept 

updated [ RC-32] 

Environment Assumption: Assumes users are willing to share mission and intent information  

System Assumption: Assumes there is coordination with Req-4 to account for intent information 
being out-of-date when making coordination decisions [Req-56] 

Req-12. ATM system shall coordinate the movements of other aircraft to prevent violation of minimum 

separation with an aircraft that is unable to communicate or not responding [ RC-15] 

System Assumption: Assumes coordination with Req-6 where the availability of alternative 
movement options is already being assured [Req-57] 
System Assumption: Assumes that when it is discovered that an aircraft is unable to communicate, 
new coordination decisions can be made within <TBD> time to resolve any imminent collisions 
[Req-58] 

Req-13. ATM system shall ensure that aircraft have received the coordination being communicated [ RC-
26] 

Req-14. ATM system shall ensure that coordination is communicated to the correct aircraft [ RC-117] 

Req-15. ATM system shall ensure that coordination provided to the aircraft is within the capabilities of the 

aircraft [ RC-3] 

Req-17. ATM system shall ensure that coordination provided to the aircraft does not cause another 

violation of minimum separation [ RC-4] 
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Req-18. ATM system shall provide coordination that allows for and accounts for delays due to response 

time of <TBD> to enact the coordination [ RC-5] 

Req-20. ATM system shall consider access priorities when issuing coordination or managing access to the 

airspace [ RC-118] 

Req-21. ATM system shall account for any users’ constraints on mission execution in addition to access 

priorities to determine which impacts to operations are acceptable when coordinating aircraft [ RC-
7] 

Req-22. ATM system shall notify users if their operations will be impacted beyond acceptable [ RC-43] 

Req-23. ATM system shall be able to detect any unexpected operational impacts experienced by an 

airspace user within <TBD> time of the interference occurring [ RC-24] 

Req-24. ATM system shall respond to impending interference and issue coordination instructions within 

TBD period of time [ RC-8] 

Environment Assumption: Assumes that flights are known within <TBD> time of desired departure 

System Assumption: Assumes that flight operations can respond to last-minute coordination 
within <TBD> time [Req-18] 

Req-25. ATM system shall establish and maintain acceptable levels of noise and visual pollution levels as 
well as emissions levels 

Req-26. ATM system shall be able to monitor environmental effects with acceptable levels of performance 

to enable high levels of environmental effects to be detected before the exceedance occurs [ RC-
17] 

Req-27. ATM system shall be able to make preemptive coordination decisions based on trends in 
environmental effects and congestion to help prevent acceptable thresholds from being exceeded 

System Assumption: It is assumed that this requirement is performed in coordination with Req-4 
(coordination for collision avoidance) [Req-55] 
System Assumption: It is assumed that thresholds defined in Req-25 and Req-32 are used in this 
requirement [Req-33] 

Req-28. ATM system shall prioritize flight safety over UAM passenger safety if both cannot be assured [ 
RC-9] 

Environment Assumption: This assumes that UAM operators will be able to work with other NAS 
stakeholders to manage passenger safety even if flights need to be restricted to maintain airspace 
safety 

Req-29. ATM system shall ensure that ride sharing does not exceed levels necessary to ensure safety of 
UAM riders 

Req-30. If anticipated conditions are used to make coordination decisions, ATM system shall confirm that 
the anticipated conditions do occur 

System Assumption: Assumes that if anticipated conditions do not occur within <TBD time>, 
coordination decisions are re-evaluated via Req-4 and Req-27 [Req-31] 

Req-31. If anticipated conditions do not occur within <TBD> time, ATM system shall re-evaluate its 

coordination decisions [ RC-37] 

Req-32. ATM system shall establish and maintain clear and measurable specifications for the threshold 
congestion that is acceptable 

Req-33. ATM system shall make use of threshold congestion and environmental effects when making 

preemptive coordination decisions [ RC-16] 
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Req-34. Air Traffic Management must always have some amount of reserve capacity set aside to provide 

additional coordination during unexpected emergencies or incidents [ RC-21] 

Req-35. ATM system shall consider the capabilities of the UAM aircraft and operators (e.g., pilot training, 

aircraft equipage etc) when establishing or re-evaluating threshold congestion levels [ RC-39] 

Req-36. ATM system shall ensure that all aircraft have the capabilities required for new threshold 

congestion levels when new congestion thresholds are introduced [ SR-21] 

System Assumption: Assumes there is coordination with changes to congestion level thresholds to 
ensure they are rolled out synchronously [Req-62] 

Req-37. ATM system shall ensure that current congestion threshold levels are enforced even if some 

aircraft are capable of operations at higher congestion levels [ RC-38] 

Req-38. ATM system shall ensure that any event that will result in significant operational impacts to 
airspace users is communicated to users with <TBD> advanced notice so that airspace users can 

adjust their plans [ RC-35] 

Req-39. If assuming that another aircraft or controller will take an action when deciding on coordination, 
ATM system shall confirm with the aircraft or controller that the action will be taken prior to 

implementing coordination [ RC-36] 

Req-40. ATM system shall manage both demand for flights in addition to the ability of flights to access the 
airspace when mitigating congestion and vehicle sharing 

System Assumption: Assumes that this requirement is coordinated with Req-8 so that demand or 
airspace access is managed both by managing how many flights are needed and how many flights 
can be accepted [Req-63] 

Req-41. ATM system shall ensure that UAM aircraft abide by the TFR associated with the public safety 
events to ensure that UAM aircraft do not interfere with public safety flights 

Environment Assumption: Assumes that public safety events will continue to be accompanied by 
a TFR that will ensure that aircraft stay away and therefore avoid interference 
System Assumption: This is coordinated with Req-4 (for collisions) and Req-27 (for avoiding 
negative environmental or congestion effects) [Req-64] 

Req-42. ATM system shall establish a minimum notification window within which avoidance of operational 

impact cannot be guaranteed [ RC-42] 

Req-43. ATM system shall ensure that routes of flight used by UAM aircraft minimize time spent over 
residential neighborhoods and other community spaces, especially during periods when occupancy 

is high [ RC-18] 

Environment Assumption: Assumes that the concerns that the public would have against UAM 
(e.g., noise, visual pollution, public safety) would stem from UAM operating around neighborhoods 
when occupancy is high 

Req-44. At key choke/convergence points (e.g., airports, vertiports), ATM system shall ensure that the 
UAM aircraft do not interfere with conventional air traffic flights 

Environment Assumption: Assumes that regular UAM passenger flights will be required to work 
around scheduled commercial aircraft since they have fixed schedules known well in advance and 
serve larger quantities of passengers with each flight 
Environment Assumption: Assumes that the main areas in which interference between UAM and 
conventional air traffic might occur is at/around airports and vertiports 

Req-45. ATM system shall ensure that capacity determinations account for both traffic density and 

coverage area [ RC-22] 



 

163 

 

Req-46. ATM system shall have at least 2 options for tracking aircraft (current position, speed, heading, 

ID) in the airspace to verify erroneous detections [ RC-20] 

Req-47. ATM system shall ensure that aircraft trajectories do not consume more airspace than is 
reasonable to allocate for that aircraft 

Req-48. ATM system shall coordinate between capacity management and traffic management to ensure 

that sufficient capacity exists to manage the current or anticipated future level of traffic [ RC-12] 

Req-49. ATM system shall be able to make coordination decisions within <TBD> time [ RC-10] 

Req-50. ATM system shall ensure that if coordination was not effective, coordination is evaluated again 

to ensure that collision risks are adequately mitigated [ RC-27] 

Req-51. ATM system shall ensure that there is sufficient airspace available (or low enough density) 

available to allow alternative movement options to be established [ RC-25] 

Req-52. ATM system shall ensure that access to the airspace is managed in accordance with what is 

needed to ensure that acceptable coordination options are always available [ RC-28] 

Req-53. ATM system shall ensure that coordination decisions account for whether information is 

missing/out-of-date [ RC-29] 

Req-55. ATM system shall ensure that coordination issued to aircraft consider both potential future 

environmental impact as well as more immediate conflict avoidance [ RC-11] 

Req-56. ATM system shall ensure that coordination decisions account for whether intent information is 

missing/out-of-date [ RC-30] 

Req-57. ATM system shall ensure that alternative movement options can be used to coordinate aircraft 

[ RC-31] 

Req-58. ATM system shall ensure that coordination decisions can be made within <TBD> time after an 

aircraft is discovered to be unable to communicate to resolve any imminent collisions [ RC-13] 

Req-59. ATM system shall ensure that there are at least two methods for communicating coordination 

with aircraft [ RC-14] 

Req-61. ATM system shall modify how aircraft trajectories are modified, alternative trajectories are 

selected and airspace access is managed based on an initiated traffic management program [ RC-
54] 

Req-62. ATM system shall ensure that new congestion thresholds are coordinated with ensuring that 
aircraft have the capabilities needed for those new congestion thresholds to ensure that they are 

rolled out synchronously [ RC-40] 

Req-63. ATM system shall coordinate between management of flight demand and management or 

airspace access [ RC-41] 

Req-64. ATM system shall ensure that UAM aircraft abide by public safety event TFRs while also avoiding 

collisions and negative environmental effects or congestion [ RC-42] 

Req-65. ATM system shall require regular UAM passenger flights to work around scheduled commercial 

aircraft [ RC-34] 

Req-66. ATM system shall ensure that unexpected operational impacts are detected and mitigated where 
necessary to prevent them from occurring again 

Req-68. ATM system shall grant an aircraft experiencing an emergency the highest priority access to the 

airspace they need to address the emergency [ RC-44] 
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Req-69. ATM system shall ensure that there is enough spare airspace available to keep other aircraft away 

from a non-communicative aircraft [ RC-45] 

Req-70. When making preemptive coordination decisions to prevent environmental or congestion 
exceedances, ATM system shall manage capacity and airspace access in addition to issuing modified 

trajectories [ RC-46] 

Req-71. ATM system shall ensure that erroneous detections are made known to Resp-1 so that conflict 

resolution accounts for errors in detections [ RC-47] 

Req-72. ATM system shall use an alternative location source for tracking aircraft that does not suffer from 

the same inaccuracy limitations as the primary source [ RC-48] 

Req-73. ATM system shall manage generate alternate trajectories and manage air traffic in accordance 

with ATM capacity using a consolidated view of the airspace [ RC-23] 

Req-74. ATM system shall recompute alternative movement options within <TBD> time so that re-

evaluations can happen continuously [ RC-50] 

Req-75. ATM system shall monitor the movements of aircraft that are unable to communicate to ensure 

they are behaving as expected [ RC-51] 

Req-76. ATM system shall ensure that any new capacity expansion or airspace access management plans 

are implemented [ RC-52] 

Req-77. ATM system shall coordinate ride demand management with congestion and environmental 

effects management [ RC-53] 

Req-78. ATM system shall ensure that the overall operational impact incurred by an aircraft is considered 

and minimized when making coordination decisions [ RC-59] 

Req-79. ATM system shall inform airspace users if they will be significantly affected by a TFR [ RC-55] 

Req-80. ATM system shall be able to prevent an aircraft that is not communicating and/or disobeying 
coordination instructions from causing damage or harm to people or property on the ground 

Req-81. ATM system shall coordinate between ensuring behavior of aircraft matches issued coordination 

and addressing aircraft behaving erratically [ RC-56] 

Req-82. ATM system shall coordinate between ride demand and flight dispatch to ensure ride demand is 

coordinated with flight dispatch [ RC-57] 

Req-83. ATM system shall ensure that any proposed coordination has new alternative trajectories 

available before issuing the proposed coordination [ RC-58] 

Req-84. If a trajectory modification is not effective at resolving the collision, the reason for the 
modification not being effective must be determined so that an updated trajectory modification can 

account for it [ RC-60] 

Req-85. ATM system shall account for reasons that a trajectory modification was ineffective when 

selecting new trajectory modifications [ RC-61] 

Req-86. ATM system shall check in with affected aircraft on preferred trajectory modification if unable to 
meet all operational constraints 

Req-87. ATM system shall ensure that tracking and trajectory information is available for all aircraft within 

<TBD distance> of the UAM operating environment [ RC-62] 

Req-88. ATM system shall ensure that tracking and trajectory information is available for all aircraft before 

the aircraft has entered the UAM operating environment [ RC-63] 
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Req-89. ATM system shall ensure that a conflict-free trajectory is available for an aircraft (either from the 

ground or in the air) prior to allowing it to enter UAM airspace [ RC-64] 

Req-90. ATM system shall monitor and confirm that an aircraft is following its planned trajectory to the 

accuracy specified with that trajectory [ RC-65] 

Req-91. ATM system shall re-evaluate an aircraft’s trajectory and issue trajectory modifications if needed 

if an aircraft deviates from its planned trajectory by more than <TBD> [ RC-66] 

Req-92. ATM system shall ensure that all trajectory modifications are transmitted and acknowledged 

within <TBD> time [ RC-67] 

System Assumption: Assumes that if trajectory modifications are not acknowledged within <TBD> 
time, the conflict associated with that modification will be flagged for re-evaluation [Req-93] 

Req-93. ATM system shall re-evaluate trajectory modification(s) associated with a conflict if the trajectory 

modification(s) are not acknowledged within <TBD> time [ RC-68] 

Req-94. ATM system shall provide accompanying navigation accuracy and expected response time 
parameters when deciding trajectory modifications to ensure navigation accuracy and response time 

expectations are made explicit [ RC-69] 

Req-95. ATM system shall ensure that any changes to relevant operational constraints are accounted for 

when issuing trajectory modifications [ RC-70] 

Req-96. ATM system shall ensure that any tall obstacles of at least <TBD> in height that could interfere 
with flight operations have their presence and duration (if temporary) reported and disseminated to 
aircraft and operators 

Req-97. ATM system shall discuss other flight plan options (e.g., earlier departure, different 

arrival/departure aerodrome) with aircraft if an excessive operational constraint will be incurred [ 
RC-72] 

Req-98. ATM system shall account for anticipated weather and potential future air traffic needs in 

addition to already filed flights when making trajectory modifications [ RC-49] 

Req-99. ATM system shall ensure that operational impacts incurred for collision avoidance and congestion 

management are considered in total and not separately [ RC-73] 

Req-100. ATM system shall maintain a consolidated state of the airspace to ensure synchronized traffic 

management decision-making [ Resp-5] 

 

B.2    Defining Control Elements to Meet System Requirements 

The figures in this section show how the requirements defined in the previous section were 
used to generate the five control responsibilities and their associated control actions and 
feedback identified in design iteration 1. Each of these responsibilities and a simplified version of 
their corresponding control actions and feedback were shown on the revised conceptual 
architecture shown in Figure 28 in Section 4.2.4. Each control element is traced to the constraint 
or requirement used to generate it using the links in square braces. 
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Resp-1: Coordinate the movement of aircraft to prevent conflicts [Req-4] 

 RC-2: Account for planned trajectory when 
identifying conflicts [Req-10] 

RC-3: Ensure that coordination provided to the 
aircraft is within the capabilities of the aircraft 
[Req-15] 

RC-4: Ensure coordination decisions do not cause 
secondary conflicts [Req-17] 

RC-6: Ensure that aircraft have received 
coordination, are executing it correctly and that 
the risk of collision is no longer present [Req-5] 

RC-7: Account for any users’ constraints on 
mission execution in addition to access priorities 
when coordinating aircraft [Req-21] 

RC-8: Respond to impending interference and 
issue coordination instructions within <TBD> time 
[Req-24] 

RC-15:   Continue resolving conflicts even if one 
or more aircraft are unable to communicate or 
are not responding [Req-12] 

RC-26: Ensure that aircraft have received the 
coordination being communicated [Req-13] 

RC-27: If coordination was not effective, 
coordination is evaluated again to ensure 
that risks are adequately mitigated [Req-50] 

RC-31: Ensure that alternative movement 
option are considered when coordinating 
aircraft [Req-57] 

RC-54: Ensure that initiated traffic 
management plans are used to influence 
trajectory modifications, alternative 
trajectory selection, and airspace access 
management [Req-61] 

RC-58: Confirm alternative trajectories are 
available for any proposed coordination 
[Req-83] 

RC-61: Account for reasons that a trajectory 
modification was ineffective when selecting 
new trajectory modifications [Req-85] 

RC-71: Check in with affected aircraft on 
preferred trajectory modification if unable 
to meet all operational constraints [Req-86] 

Process Model Parts & Required Feedback/Inputs 

Feedback from the aircraft: 

• Acknowledgement of trajectory modifications 
[RC-26] 

• Reason for trajectory deviation [RC-61] 

• Preferred trajectory modification [RC-71] 

Input from Resp-2: Active traffic management 
program [RC-54] 

Input from Resp-3:  

• Confirm trajectory modifications [RC-58]  

• Alternate trajectories [RC-31, RC-58] 

Input from Resp-5: 

•  Aircraft not communicating [RC-15] 

• Consolidated airspace state [RC-2, RC-3, 
RC-4, RC-7, RC-27] 

Input from Regulators: Airspace access 
priorities [RC-7] 

Internal process model variables: Unresolved 
conflicts [RC-6] 

Required Control Actions/Outputs 

Control actions to the aircraft:  

• Trajectory modifications [Resp-1] 

• Request acknowledgement of trajectory 
modifications [RC-26] 

• Trajectory modification options [RC-71] 

Output to Resp-5: Trajectory modifications 
[Resp-1] 

Output to Resp-3: Proposed trajectory 
modifications [RC-58] 

Figure B-1: Defined control elements for Resp-1  
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Resp-2: Ensure that sufficient capacity is available to detect and coordinate all aircraft that 
have or will need access to the airspace [Req-3] 

 RC-21: Have reserve capacity set aside to provide additional coordination during unexpected 
emergencies or incidents [Req-34] 

RC-22: Ensure that capacity determinations account for both traffic density and coverage area 
[Req-45] 

RC-23: A consolidated view of the airspace should be used to manage air traffic in accordance 
with ATM capacity (Resp-2) and generate alternate trajectories (Resp-3) [Req-73] 

RC-54: Ensure that initiated traffic management plans are used to influence trajectory 
modifications (Resp-2), alternative trajectory selection (Resp-3), and airspace access 
management (Resp-4) decisions [Req-61] 

Process Model Parts & Required Feedback/Inputs 

Feedback from Resp-1: Current workload (of controllers resolving conflicts) [RC-21] 

Feedback from Resp-5: Consolidated airspace state [RC-23] 

Internal Process Model Variables: Current & historical congestion level [Resp-, RC-21] 

Required Control Actions/Outputs 

Control action to Resp-2, Resp-3, Resp-4: Initiate traffic management program [Resp-2, RC-54]  

Figure B-2: Defined control elements for Resp-2  

 

Resp-3: Ensure that acceptable coordination options are always available for aircraft to avoid 
violation of minimum separation [Req-6] 

 RC-23: A consolidated view of the airspace should be used to manage air traffic in accordance 
with ATM capacity (Resp-2) and generate alternate trajectories (Resp-3) [Req-73] 

RC-25: Ensure that there is sufficient airspace available (or low enough density) available (Resp-
4) to allow alternative trajectories to be established [Req-51] 

RC-28: Ensure that access to the airspace is managed (Resp-4) in accordance with what is needed 
to ensure that acceptable coordination options are always available (Resp-3) [Req-52] 

RC-50: Recompute alternative movement options within <TBD> time so that re-evaluations can 
happen continuously [Req-74] 

RC-54: Ensure that initiated traffic management plans are used to influence trajectory 
modifications (Resp-2), alternative trajectory selection (Resp-3), and airspace access 
management (Resp-4) decisions [Req-61] 

Process Model Parts & Required Feedback/Inputs 

Feedback from Resp-1: Proposed trajectory modifications [Resp-3] 

Input from Resp-2: Initiate traffic management program [RC-54] 

Feedback from Resp-5: Consolidated airspace state [RC-23]  

Required Control Actions/Outputs 

Control actions to Resp-1:  

• Alternate trajectories [Resp-3] 

• Confirm trajectory modifications [Resp-3] 

Control action to Resp-4: Alternate trajectories [RC-25] 

Figure B-3: Defined control elements for Resp-3   



 

168 

 

Resp-4: Only allow as many users to access the airspace as it is capable of detecting, tracking 
and coordinating [Req-8] 

 RC-28: Ensure that access to the airspace is 
managed (Resp-4) in accordance with what is 
needed to ensure that acceptable coordination 
options are always available (Resp-3) [Req-52] 

RC-54: Ensure that initiated traffic 
management plans are used to influence 
trajectory modifications (Resp-2), alternative 
trajectory selection (Resp-3), and airspace 
access management (Resp-4) decisions [Req-
61] 

 

RC-63: Ensure that tracking and trajectory 
information is available for all aircraft before 
the aircraft is allowed to enter the UAM 
operating environment [Req-88] 

RC-64:  Ensure that a conflict-free trajectory is 
available (Resp-1) for an aircraft before 
allowing it to enter UAM airspace [Req-89] 

RC-72: Propose other flight plan options (e.g., 
earlier departure, different arrival/departure 
aerodrome) if an excessive operational 
constraint will be incurred [Req-97] 

Process Model Parts & Required Feedback/Inputs 

Feedback from the aircraft: 

• Flight plans [Resp-4] 

• Preferred flight plan modifications [RC-72] 

Inputs from Resp-1:  

• Confirm trajectory is conflict free [RC-64] 

• Trajectory modifications [RC-64] 

Input from Resp-2: Initiate traffic management 
program [RC-54] 

Input from Resp-3: Alternate trajectories [RC-28] 

Input from Resp-5:  

• Consolidated airspace state [Resp-4] 

• Aircraft info available [RC-63]  

Required Control Actions/Outputs 

Control actions to aircraft:  

• Flight plan modifications [Resp-4] 

• Approve/reject access [Resp-4] 

• Flight plan modification options [RC-72] 

Output to Resp-1: Incoming aircraft [RC-64] 

Output to Resp-5: Incoming aircraft [RC-63] 

Figure B-4: Defining control elements for Resp-4  
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Resp-5: Maintain a consolidated state of the airspace for use in traffic management decision-
making [Req-100] 

 RC-1: Track all aircraft in the airspace within 
<TBD> performance requirements to keep them 
separated [Req-1] 

RC-19: Prevent the manipulation or tampering of 
data used for detecting and tracking aircraft [Req-
9] 

RC-29: Ensure that coordination decisions (Resp-
1) account for whether tracking information is 
missing/out-of-date (Resp-5) [Req-5] 

RC-32: Ensure that information about the intent, 
mission, acceptable operational impacts and 
future intended movements of aircraft is 
available, does not contain errors and is kept up 
to date [Req-11] 

RC-62: Ensure that track and trajectory 
information is available for all aircraft within 
<TBD distance> of the UAM operating 
environment [Req-87] 

RC-74: Verify erroneous detections within 
<TBD time> before choosing to ignore them 
[Req-2] 

RC-75: Detect when information needed to 
identify and track aircraft is missing, 
delayed, erroneous or not available and take 
action to restore that information [Req-7] 

 

Process Model Parts & Required Feedback/Inputs 

Feedback from the aircraft: 

• Aircraft Track [Resp-5, RC-1, RC-62] 

• Planned trajectory [Resp-5, RC-62] 

• Mission & operational constraints [Resp-5, RC-
32] 

• Aircraft navigational capabilities [Resp-5, RC-
32] 

Feedback from Resp-4: Incoming aircraft to UAM 
airspace [RC-62]  

Internal Process Model Variable: Aircraft 
authenticity [RC-19] 

Required Control Actions/Outputs 

Control actions to the aircraft:  

• Request aircraft track [RC-75] 

• Request planned trajectory [RC-75] 

• Reject aircraft track/trajectory [RC-19, RC-74] 

Control actions to Resp-1: 

• Consolidated airspace state [Resp-5] 

• Aircraft not communicating [RC-29] 

Figure B-5: Defining control elements for Resp-5  
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Appendix C Design Iteration 1 – STPA Analysis of Initial 
Conceptual Architecture 

As described in Section 4.2.3, the initial conceptual architecture that was created in design 
iteration 1 (Figure 26) was analyzed by updating the initial STPA analysis shown in Section 4.1 and 
Appendix A. Since the focus of this research is on the collision avoidance aspect of ATM, this 
updated STPA analysis focused on analyzing the Trajectory Modifications control action. This 
section shows the results of this updated SPTA analysis. 

 

C.1    Unsafe Control Actions (UCAs) for Coordination Control Action 

Since this is an update of the initial STPA analysis, the system-level losses and hazards are the 
same as those shown in Table 7 and Table 8. Table C-1 and Table C-2 shows the refined UCAs 
associated with the Trajectory Modifications control action. For each refined UCA, a link to the 
corresponding abstract version of the UCA shown in Table A-1 is included in square braces along 
with the links to the system hazards. Any UCAs in Table A-1 that do not have refined UCAs 
associated with the Trajectory Modifications control action are not shown in Table C-1 and Table 
C-2.  

Table C-1: Refined UCAs for Trajectory Modifications Control Action 

Not Providing Providing 

UCA-1.1.1: Trajectory modifications are not 
provided when the trajectories of two aircraft 
are in conflict [H-1, H-3] [UCA-1.1] 

UCA-1.16.1: Trajectory modifications are provided 
when those modified trajectories interfere with 
approach/arrival course/trajectory for a nearby 
airport [H-1, H-3, H-6] [UCA-1.16] 

UCA-1.2.1: Trajectory modifications are not 
provided when the trajectory needed by an 
aircraft experiencing an emergency conflicts 
with other aircraft [H-1, H-2, H-3] [UCA-1.2] 

UCA-1.18.1: Trajectory modifications are provided 
that will result in excessive environmental effect 
[H-4] [UCA-1.18] 

UCA-1.3.1: Trajectory modifications are not 
provided when the arrival trajectory of a UAM 
aircraft at a conventional airport will conflict 
with the approach course used by conventional 
aviation aircraft [H-1, H-3] [UCA-1.3] 

UCA-1.19.1: Trajectory modifications are provided 
that interfere with the operations of other NAS 
users [H-3, H-6] [UCA-1.19] 

UCA-1.5.1: Trajectory modifications are not 
provided when UAM aircraft are about to fly 
into a section of airspace where air traffic must 
be excluded (e.g., for safety or security reasons) 
[H-5] [UCA-1.5] 

UCA-1.20.1: Trajectory modifications are provided 
that UAM aircraft are not fully capable of 
executing [H-1, H-2, H-3, H-6] [UCA-1.20] 

UCA-1.8.1: Trajectory modifications are not 
provided when UAM aircraft interfere with the 
flight of an emergency response aircraft [H-1, H-
3] [UCA-1.8] 

UCA-1.21.1: Trajectory modifications are provided 
that causes a collision with an obstacle or terrain 
[H-1, H-2, H-3, H-5] [UAC-1.21] 
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Not Providing Providing 

UCA-1.8.2: Trajectory modifications are not 
provided when a higher priority flight incurs an 
unacceptable operational impact (e.g., delay) 
due to UAM flights that are occurring [H-1, H-3] 
[UCA-1.8] 

UCA-1.22.1: Trajectory modifications are provided 
that causes a collision with another aircraft [H-1, 
H-2, H-3] [UCA-1.22] 

UCA-1.9.1: Trajectory modifications are not 
provided when UAM aircraft operations have 
excessive noise, privacy or emissions impacts [H-
4] [UCA-1.9] 

UCA-1.24.1: Trajectory modifications are provided 
when those trajectories allocate more airspace 
than necessary to prevent collisions [H-3, H-6] 
[UCA-1.24] 

UCA-1.10.1: Trajectory modifications are not 
provided when UAM aircraft need to be 
sequenced for arrival to a conventional airport 
[H-3] [UCA-1.10] 

UCA-1.24.2: Trajectory modifications are provided 
that exceed the operational constraints for the 
aircraft needed to execute the trajectory [H-3, H-
6] [UCA-1.24] 

UCA-1.11.1: Trajectory modifications are not 
provided when UAM aircraft have overlapping 
arrival or departure trajectories [H-3] [UCA-1.11] 

UCA-1.24.3: Trajectory modifications are provided 
when the trajectory of an aircraft is already valid 
and optimal [H-3, H-6] [UCA-1.24] 

UCA-1.12.1: Trajectory modifications are not 
provided when the trajectory of an aircraft 
conflicts with an obstacle or terrain [H-1] [UCA-
1.12] 

UCA-1.25.1: Trajectory modifications are provided 
that causes the aircraft to traverse adverse 
weather that it is not equipped to handle [H-1, H-
2, H-3, H-5] [UCA-1.25] 

UCA-1.13.1: Trajectory modifications are not 
provided when the trajectory of a UAM aircraft 
will take it toward inclement weather that 
exceeds the capabilities of the aircraft [H-1, H-2, 
H-3] [UCA-1.13] 

UCA-1.27.1: Trajectory modifications are provided 
that forces a UAM aircraft to use airspace where 
the ride is unpleasant or unsafe for passengers [H-
2, H-6] [UCA-1.27] 

 
UCA-1.28.1: Trajectory modifications are provided 
when they do not satisfy the priority needs of the 
aircraft [H-1, H-2, H-3] [UCA-1.28] 
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Table C-2: Too early/late and applied too long/stopped too soon UCAs for Trajectory Modifications Control Action 

Too Early / Too Late Applied Too Long / Stopped Too Soon 

UCA-1.29.1: Trajectory modifications are 
provided too late after the trajectories of two 
aircraft are in conflict [H-1, H-2, H-3] [UCA-
1.29] 

UCA-1.35.1: Trajectory modifications are provided 
for too long when conditions have changed such 
that the original trajectory modifications are no 
longer valid [H-1, H-2, H-3, H-4, H-6] [UCA-1.35] 

UCA-1.30.1: Trajectory modifications are 
provided too late after an aircraft requires an 
immediate change in trajectory (e.g., to 
address an emergency) [H-1, H-2, H-3] [UCA-
1.30] 

UCA-1.36.1: Trajectory modifications stop being 
provided too soon before the emergency 
experienced by UAM aircraft is resolved [H-1, H-2, 
H-3] [UCA-1.36] 

UCA-1.32.1: Trajectory modifications are 
provided too late after environmental effects of 
UAM operations have exceeded acceptable 
levels [H-4] [UCA-1.32] 

UCA-1.37.1: Trajectory modifications stop being 
provided too soon to prevent UAM aircraft from 
entering a restricted section of airspace when air 
traffic still needs to be excluded from that section 
of airspace [H-2, H-4, H-6] [UCA-1.37] 

UCA-1.33.1: Trajectory modifications are 
provided too late after an aircraft enters a 
volume of airspace where congestion has 
already exceeded acceptable levels [H-1, H-3, 
H-4, H-6] [UCA-1.33] 

UCA-1.38.1: Trajectory modifications stop being 
provided too soon before environmental effects of 
system operation have returned to acceptable 
levels [H-4] [UCA-1.38] 

UCA-1.34.1: Trajectory modifications are 
provided too late after UAM aircraft have 
already interfered with the operations of 
another airspace user [H-3, H-6] [UCA-1.34] 

UCA-1.39.1: Trajectory modifications are provided 
for too long after environmental effects of system 
operation have returned to acceptable levels [H-3] 
[UCA-1.39] 
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C.2    Causal Scenarios for Selected UCAs 

This section shows the causal scenarios that were identified for select UCAs highlighted in 
blue in Table C-1 and Table C-2. Two types of links are included at the end of each requirement. 
First, if additional system requirements were generated to mitigate or prevent that scenario, the 
requirement is linked in square braces. These requirements are ultimately used to make 
modifications to the conceptual architecture.  

Second, if the scenario was used in the structural design process to generate an assignment 
constraint, that assignment constraint is indicated in curly braces and blue font. 

 
Scenarios for UCA-1.1.1: Trajectory modifications are not provided when the trajectories of two 
aircraft are in conflict [H-1, H-3] 
 
CS-1.1.1-1. Feedback of the potential conflict is received but trajectory modifications are 

not provided because: 

CS-1.1.1-1.1.  Resp-3 does not confirm that the trajectory modifications still have 

alternate trajectory options. As a result, Resp-1 is unable to issue trajectory modifications to 

resolve the collision {Resp-1 = Resp-3} 

CS-1.1.1-1.2.  Resp-1 is pre-occupied with resolving one set of conflicts and therefore 

does not attend to the feedback about another imminent collision. As a result, Resp-1 does 

not issue trajectory modifications to resolve the imminent collision {(Resp-1=Aircraft) ∨ 

(Resp-1=Aircraft ∧ ATM)} 

CS-1.1.1-1.3.  Resp-1 is unable to determine possible movement options due to a 

component failure that prevents trajectory modifications from being computed. As a result, 

no trajectory modifications are issued {(Resp-1=Aircraft) ∨ (Resp-1=Aircraft ∧ ATM)} 

CS-1.1.1-1.4.  It takes so long to identify a conflict-free solution that no trajectory 

modification is issued before the collision occurs. This could occur if, for example, the airspace 

is so densely utilized that resolving a limited initial conflict requires changes to a large number 

of aircraft trajectories to accommodate the initial trajectory modifications required. {(Resp-

1=Aircraft) ∨ (Resp-1=Aircraft ∧ ATM)} 

CS-1.1.1-1.5.  Resp-1 is unable to select possible movement options because there is no 

combination of alternative trajectories that will prevent all conflicts. For example, the 

emergency trajectory of one aircraft is such that there is no set of suitable trajectories for all 

other aircraft that can be selected that are conflict free 

CS-1.1.1-1.6.  Resp-5 wrongly believes the feedback it receives about the track of an 

aircraft is erroneous and omits it from the set of verified tracks. As a result, Resp-1 does not 

recognize the collision because the aircraft track needed to recognize it was omitted 

CS-1.1.1-1.7. Resp-1 is unable to provide trajectory modifications to the aircraft because 

Resp-3 rejects its proposed trajectory modifications. This could occur if Resp-1 and Resp-3 do 

not synchronously process inputs from Resp-5 to remove an aircraft track and thus have 

inconsistent process models of the state of the airspace. As a result, they cannot agree on a 

set of trajectory modifications that have alternate trajectories available [Req-100] 
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CS-1.1.1-2. Feedback is not received of the potential conflict because:  

CS-1.1.1-2.1. At least one of the two aircraft enters the UAM environment without its 

tracking and trajectory information having been fully received. This could occur for several 

reasons: (1) The aircraft is inadequately equipped and cannot be tracked using normal means, 

(2) the aircraft is non-cooperative (e.g., malicious aircraft) or (3) the aircraft enters the UAM 

environment before tracking and trajectory information can be fully collected. As a result, 

Resp-1 either does not know the aircraft is there or has the wrong belief about the trajectory 

of that aircraft and therefore wrongly believes that no collision is imminent [Req-87, Req-88] 

{Resp-1 = ATM} 

CS-1.1.1-2.2.  Resp-1 receives either inaccurate feedback about the 

equippage/technical specifications of an aircraft or out-of-date feedback about the level of 

precision with which the aircraft can execute a trajectory (e.g., GPS 

outage/blockage/degradation). As a result, it wrongly believes they are capable of more 

precise navigation than they actually are and therefore does not believe two aircraft are on 

collision trajectories even though they are {(Resp-1=Aircraft) ∨ (Resp-1=Aircraft ∧ ATM)} 

CS-1.1.1-2.3.  This could occur if it does not receive timely feedback on the presence of 

new ground hazards (e.g., a new construction crane). As a result, it does not believe a collision 

is imminent and does not try to modify aircraft trajectories to avoid the collision {(Resp-

1=Aircraft) ∨ (Resp-1=Aircraft ∧ ATM)} 

CS-1.1.1-2.4.   When Resp-1 checked the trajectories of all aircraft, their trajectories 

were not in conflict. However, while resolving another conflict, the trajectories of these 

aircraft do become in conflict and this is not noticed/resolved until after the previous set of 

conflicts are resolved. If it takes long enough for the prior set of conflicts to be resolved, the 

system may not be able to identify and adequately resolve the conflict before a collision 

occurs {(Resp-1=Aircraft) ∨ (Resp-1=Aircraft ∧ ATM)} 

CS-1.1.1-3. Trajectory modifications are provided to resolve the conflict, but they are not 

received by the aircraft because: 

CS-1.1.1-3.1.  An equipment failure or malicious interference prevents the trajectory 

modification from being issued to the aircraft. As a result, the aircraft continues on the old 

trajectory, not realizing that a trajectory modification has been provided {(Resp-1=Aircraft) ∨ 

(Resp-1=Aircraft ∧ ATM)} 

CS-1.1.1-4. Trajectory modifications are provided to resolve the conflict and they are 

received by the aircraft. However, the conflict is not resolved and a collision occurs. This could 

occur because: 

CS-1.1.1-4.1.  One of the aircraft receives the trajectory modification but does not 

execute the trajectory modification because they wrongly believe that the provided 

trajectory modification would result in another violation of minimum separation. This might 

occur because aircraft are only provided with their trajectory modification and have no 

awareness of trajectory modifications provided to other aircraft. As a result, they wrongly 

believe that they are on a collision course with another aircraft even though they are not 

because that aircraft is also about to change trajectories. They therefore ignore the provided 
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trajectory modification and make an independent decision which ultimately violates 

minimum separation {(Resp-1=Aircraft) ∨ (Resp-1=Aircraft ∧ ATM)} 

CS-1.1.1-4.2.  Trajectory modifications are provided and received by the aircraft but the 

conflict is not resolved. This could occur if the aircraft does not execute the trajectory to the 

level of precision expected by Resp-1 when it generated the trajectory modifications. This 

could occur either because the aircraft lacks the required equippage, the required equipment 

has failed or the equipment is momentarily degraded by environmental conditions (e.g., 

temporary GPS outage, wind gusts, poor weather etc). As a result, the provided trajectories 

do not adequately resolve the conflict [Req-85, Req-90, Req-91] 

 
Scenarios for UCA-1.8.1: Trajectory modifications are not provided when UAM aircraft interfere 
with the flight of an emergency response aircraft [H-1, H-3] 
 
CS-1.8.1-1. Feedback indicating that a UAM aircraft will interfere with the flight of an 

emergency response aircraft is received. However, trajectory modifications are not provided 

because: 

CS-1.8.1-1.1. If the airspace is densely occupied, Resp-1 may not be able to find a 

solution to clear a path for the emergency response aircraft. Alternatively, it might take so 

long to resolve all the conflicts such that trajectory modifications are not issued before the 

emergency response aircraft needs to depart. {(Resp-1=Aircraft) ∨ (Resp-1=Aircraft ∧ ATM)} 

CS-1.8.1-1.2. That feedback is only received at the last minute due to the emergency 

response aircraft modifying their trajectories quickly in response to an evolving emergency 

event (e.g., a bad accident, a wild fire). If Resp-1 is unable to respond and modify the 

trajectories of UAM aircraft in response, they can end up interfering with the emergency 

response flight. {(Resp-1=Aircraft) ∨ (Resp-1=Aircraft ∧ ATM)} 

CS-1.8.1-2. Feedback indicating that a UAM aircraft will interfere with the flight of an 

emergency response aircraft is not received because: 

CS-1.8.1-2.1. Interference is only being monitored with respect to trajectory and not 

track. Thus, if either aircraft is not following its planned trajectory precisely (e.g., either 

slightly delayed or slightly ahead), the UAM aircraft could interfere with the emergency 

response flight even though that interference is not reflected in their planned trajectories. 

[Req-90, Req-91] 

CS-1.8.1-4. Feedback indicating that a UAM aircraft will interfere with the flight of an 

emergency response aircraft is received and appropriate trajectory modifications are provided. 

However, that interference still occurs because: 

CS-1.8.1-4.1. The trajectory modification does not include an expectation of immediate 

action and therefore the UAM aircraft may not execute the modified trajectory as quickly as 

necessary. [Req-94] 

 
Scenarios for UCA-1.12.1: Trajectory modifications are not provided when the trajectory of an 
aircraft conflicts with an obstacle or terrain [H-1] 
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CS-1.12.1-1. Feedback indicating that the trajectory of an aircraft conflicts with an obstacle 

or terrain is received but trajectory modifications are not provided. This could occur if: 

CS-1.12.1-1.1. The capabilities of the aircraft are compromised (e.g., stronger winds than 

the aircraft can handle, partial system failure) and there are no suitable options available that 

will sufficiently avoid the obstacle and be within the compromised capabilities of the aircraft.  

CS-1.12.1-2. Feedback indicating that the trajectory of an aircraft conflicts with an obstacle 

or terrain is not received because: 

CS-1.12.1-2.1. If the obstacle is new and/or temporary (e.g., a tall crane or a temporary 

structure near a UAM aerodrome) and the presence of this obstacle has not been 

disseminated to ATM. Furthermore, such an obstacle may not be easily detected by the 

aircraft themselves if obscurants are present [Req-96] {(Resp-1=Aircraft) ∨ (Resp-1=Aircraft ∧ 

ATM)} 

 
 
Scenarios for UCA-1.22.1: Trajectory modifications are provided that causes a collision with 
another aircraft [H-1, H-2, H-3] 
 
CS-1.22.1-1. Feedback indicating that the trajectories of two aircraft are in conflict was 

received. However, those trajectory modifications are provided anyway because: 

CS-1.22.1-1.1. An emergency or last-minute airspace restriction occurs, requiring large 

numbers of aircraft to modify their trajectories. As a result, the system is forced to quickly 

modify trajectories for numerous aircraft before it can adequately consider the collision 

implications of the new trajectories. The system therefore selects the trajectory  

modifications that result in the fewest collisions and issues those even though some 

trajectories have collisions. [Req-101, Req-102] {Resp-1 = ATM} 

CS-1.22.1-1.2. Resp-1 believes that it can issue further trajectory modifications later to 

prevent collision. This could occur if, for example, the system is attempting to prevent a more 

urgent collision (e.g., an emergency) and believes it can make a faster decision by issuing a 

trajectory modification that prevents the urgent collision even if it subsequently causes a 

later collision. However, Resp-1 does not return to correct that collision (e.g., because it 

becomes preoccupied resolving other collisions) and thus the collision occurs [Req-101, Req-

102] {(Resp-1=Aircraft) ∨ (Resp-1=Aircraft ∧ ATM)} 

CS-1.22.1-1.3. Aircraft trajectories change while the system is resolving a set of conflicts. 

During the conflict resolution process, Resp-1 does not update its process model of the 

trajectories of aircraft even though those might change. As a result, while the trajectory 

modifications are being generated, Resp-1 selects trajectory modifications that were not in 

conflict during the selection process but are in conflict based on the most current set of 

aircraft trajectories. {(Resp-1=Aircraft) ∨ (Resp-1=Aircraft ∧ ATM)} 

CS-1.22.1-2. Feedback did not indicate that the provided trajectory modifications will cause 

a collision with another aircraft because: 
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CS-1.22.1-2.1. Resp-1 does not receive timely feedback of ground hazards (e.g., a new 

construction crane being erected) and believes that the trajectory modification it is providing 

will not cause a conflict with that ground hazard. As a result, it issues that trajectory 

modification, unaware that it will cause a collision {(Resp-1=Aircraft) ∨ (Resp-1=Aircraft ∧ 

ATM)} 

CS-1.22.1-2.2. Resp-1 does not receive timely information about the aircraft capabilities 

or aircraft type. For example, it could wrongly believe the aircraft is capable of more precise 

navigation than it actually is. As a result, the system approves trajectory modifications that it 

wrongly believes do not contain collisions but a collision does actually occur. {(Resp-

1=Aircraft) ∨ (Resp-1=Aircraft ∧ ATM)} 

CS-1.22.1-3. Feedback indicating that the trajectories of two aircraft are in conflict was 

received and trajectory modifications are provided that do not result in a collision. However, 

the aircraft still receive trajectory modifications that result in a collision because: 

CS-1.22.1-3.1. During transmission of appropriate trajectory modifications to the aircraft, 

part of the trajectory modification is dropped (e.g., due to a partial/temporary 

communications failure). As a result, the aircraft only receives part of the trajectory 

modifications and the part that is received by the aircraft is in collision with another aircraft 

trajectory {(Resp-1=Aircraft) ∨ (Resp-1=Aircraft ∧ ATM)} 

CS-1.22.1-3.2. The trajectory modifications are transmitted without accompanying 

navigation accuracy parameters (e.g., lateral or vertical tolerances). As a result, the trajectory 

modifications are not effective in preventing a collision because they contain insufficient 

information for the aircraft to carry them out as intended. [Req-94] 

CS-1.22.1-4. Feedback indicating that the trajectories of two aircraft are in conflict was 

received and trajectory modifications that do not result in a collision are provided and received 

by the aircraft. However, a collision still occurs because: 

CS-1.22.1-4.1. The aircraft does not carry them out as intended (e.g., not within 

navigational tolerances) such that a collision does actually occur. [Req-85, Req-90, Req-91] 

 
Scenarios for UCA-1.24.1: Trajectory modifications are provided when those trajectories allocate 
more airspace than necessary to prevent collisions [H-3, H-6] 
 
CS-1.24.1-1. Feedback indicates that trajectory modifications will allocate more airspace 

than necessary to prevent collisions is received. However, those trajectory modifications are 

still provided because: 

CS-1.24.1-1.1. As part of its decision-making to issue trajectory modifications, Resp-1 

considers whether a collision remains unresolved. If Resp-1 wrongly believes that a collision 

remains unresolved because the aircraft is not adequately following the trajectory, it may 

responds by issuing further trajectory modifications that unnecessarily expands the amount 

of airspace reserved for that trajectory. As a result, more airspace is used to serve that flight 

than is necessary. [Req-84] 
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CS-1.24.1-1.2. Resp-1 believes that a weather or other event will occur soon will 

compromise the ability of aircraft to follow more precise trajectory or the ability to track them 

precisely. As a result, the system issues these expanded trajectory modifications anyway to 

protect airspace safety even though they consume more airspace than necessary at the 

current time. In addition, if the anticipated event does not ultimately occur, these expanded 

trajectory modifications will not have been necessary at all. 

CS-1.24.1-1.3. Resp-1 wrongly believes that there is no better option that allocates less 

airspace.  This could occur if Resp-3 does not remove a track for a non-existent aircraft, but 

Resp-1 does. As a result, Resp-3 generates alternate trajectories for the non-existent aircraft 

and passes those alternate trajectories to Resp-1. Thus, Resp-1 wrongly believes it needs to 

avoid routing aircraft through the airspace allocated for the alternate trajectory of the non-

existent aircraft even though doing so is unnecessary. [Req-100] 

CS-1.24.1-1.4. Resp-1 receives feedback that the aircraft is not following its trajectory 

exactly as expected but does not receive enough feedback to know exactly how much extra 

space buffer to provide. For example, this could occur if the aircraft is having trouble tracking 

its trajectory accurately due to wind but Resp-1 does not receive feedback about the extent 

to which the aircraft can hold trajectory. As a result, Resp-1 provides trajectory modifications 

to allow extra room even though they might be unnecessary {(Resp-1=Aircraft) ∨ (Resp-

1=Aircraft ∧ ATM)} 

CS-1.24.1-2. Feedback indicating trajectory modifications allocate more airspace than 

necessary to prevent a collision is not received because: 

CS-1.24.1-2.1. Resp-1 either does not receive feedback about the demand for flights or 

receives that feedback with a delay. As a result, the system wrongly believes that demand for 

flights is lower than it really is and it therefore generates trajectories that provide more 

spacing between flights, wrongly believing that the unused airspace can be used to increase 

separation between flights and thus increase airspace safety. {Resp-1 = ATM} 

CS-1.24.1-2.2. Resp-3 generates an initial set of alternate trajectories based on the 

current trajectories of the aircraft. However, those trajectories change such that more 

efficient alternate trajectories become available but Resp-3 does not re-evaluate its selected 

alternate trajectories. As a result, Resp-1 selects trajectory modifications based on that 

inefficient set of alternate trajectories selected by Resp-3. {Resp-1 = Resp-3} 

CS-1.24.1-2.3. The aircraft try to reserve more airspace than necessary for themselves as 

a safety margin and therefore indicate to Resp-1 that they are capable of less precise 

navigation than they actually are. As a result, Resp-1 bases its selection of trajectory 

modifications based on that feedback, not realizing that those trajectories consume more 

airspace than necessary. {Resp-1 = ATM} 

 
Scenarios for UCA-1.24.2: Trajectory modifications are provided that exceed the operational 
constraints for the aircraft needed to execute the trajectory [H-3, H-6] 
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CS-1.24.2-1. Feedback indicates that trajectory modifications will exceed the operational 

constraints of an aircraft is received. However, those trajectory modifications are still provided 

because: 

CS-1.24.2-1.1. Although the system recognizes that operational constraints would be 

exceeded (e.g., a significant extension of the flight path), it believes that it would be optimal 

to minimize the operational impacts to other aircraft (that might have fly at higher speeds or 

be carrying more people) and as a result saddles a single aircraft with numerous operational 

impacts (e.g., multiple flight path extensions or delays) {Resp-1 = ATM} 

CS-1.24.2-1.2. Although Resp-1 recognizes that operational constraints would be 

exceeded, it is unable to meet all operational constraints and airspace constraints. This is 

especially likely to occur if one or more aircraft experience an emergency requiring 

unexpected and immediate route changes. In such a condition, Resp-1 chooses to meet the 

airspace constraints (e.g., to give an aircraft experiencing an emergency priority) and violate 

the operational constraints, thus issuing trajectory modifications that violate operational 

constraints for an aircraft 

CS-1.24.2-1.3. Air traffic circumstances are such that there were no available options that 

would meet all operational constraints. Although Resp-1 begins the process of negotiating 

with aircraft on their preferred trajectory modifications, it decides it needs to take action 

before the negotiation process is complete (e.g., collision is imminent). As a result, the system 

issues trajectory modifications that are not aligned with the aircraft's constraint priorities. 

[Req-86] 

CS-1.24.2-2. Feedback indicating that trajectory modifications will exceed the operational 

constraints of an aircraft is not received because: 

CS-1.24.2-2.1. Some operational constraints change over time (e.g., diversion options 

become more restricted due to fuel remaining as a flight progresses). If the system does not 

receive timely feedback indicating a change to the operational constraints when it selects 

alternative trajectories, it could select trajectory modifications based on out-of-date or 

incomplete operational constraints, not realizing that the constraints have changed or new 

ones now exist. 

CS-1.24.2-3. Feedback indicates that trajectory modifications will exceed the operational 

constraints of an aircraft is received and appropriate trajectory modifications are selected and 

received by the aircraft. However, the modified trajectories still exceed operational 

constraints. This could occur if: 

CS-1.24.2-4. The trajectory modifications did not exceed operational constraints when 

they were issued or initially carried out but it is later realized that they do. For example, 

an aircraft may believe that they have enough fuel to accept a trajectory modification but 

later realize they do not. Another example might be a medical flight that initially believes 

it can accept a flight delay only for the patient's condition to worsen or be poor enough 

that the delay was actually or becomes unacceptable. {(Resp-1=Aircraft) ∨ (Resp-

1=Aircraft ∧ ATM)} [Req-95] 
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Scenarios for UCA-1.24.3: Trajectory modifications are provided when the trajectory of an 
aircraft is already valid and optimal [H-3, H-6] 
 
CS-1.24.3-1. Feedback indicates that the trajectory of an aircraft is already valid and optimal 

but trajectory modifications are still provided because: 

CS-1.24.3-1.1. Resp-1 is told to modify trajectories as part of a traffic management 

program being activated to expand capacity. As such, although the trajectory is already valid 

and optimal for that aircraft, the system modifies the trajectory in a way that is less optimal 

(but still collision free) to implement the traffic management program 

CS-1.24.3-1.2. Resp-1 knows that the trajectory of an aircraft is already valid and optimal, 

it is forced to make a trajectory modification for higher-priority traffic (e.g., an emergency 

responder flight or an aircraft experiencing an emergency). As a result, it makes a trajectory 

modification that is no longer optimal and that results in a delay or even the aircraft being 

unable to complete its mission entirely 

CS-1.24.3-1.3. Resp-2 believes that a traffic surge event is about to occur (e.g., UAM 

operators initiate a series of flights in response to ride requests after a sporting event) and 

initiates a traffic management program to manage capacity in anticipation of the surge. As 

part of implementing that traffic management program, the trajectory of aircraft are 

modified to comply with the traffic management program. However, if that surge event never 

occurs (e.g., those ride requests never get fulfilled because riders give up or cancel rides), 

those trajectory modifications will have been unnecessary [Req-30, Req-31] 

CS-1.24.3-2. Feedback does not indicate that the trajectory of an aircraft is already valid and 

optimal. This could occur if: 

CS-1.24.3-2.1. Resp-1 receives erroneous track data for a flight due to degradation or a 

flaw in how aircraft track information is generated (e.g., bad weather). As a result, the system 

modifies the trajectories of other flights unnecessarily to avoid a collision with this aircraft 

CS-1.24.3-2.2. Resp-1 does not receive feedback about the trajectory of an aircraft (e.g., 

an inadequately equipped aircraft that did not communicate intentions beforehand) and 

attempts to infer the trajectory of the aircraft from its track. As a result, it has an incorrect 

belief of the trajectory of the aircraft and wrongly believes that a collision is imminent. As a 

result, the trajectories of aircraft are unnecessarily altered to resolve a conflict that was not 

present [Req-87, Req-88] 

CS-1.24.3-4. Feedback indicates that the trajectory of an aircraft is already valid and optimal 

and no trajectory modifications are provided. However, the aircraft’s trajectory is modified 

anyway. This could occur if: 

CS-1.24.3-4.1. The aircraft deviates from a valid and optimal trajectory due to either 

deliberate actions or unintended consequences. Deliberate actions include modifying 

trajectory to avoid a temporary obstacle or hazard that was not previously known (e.g., a 

crane temporarily placed on a building). Unintended consequences could be sudden wind 
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gusts or cloud buildup that the aircraft is unable to counteract or needs to maneuver around. 

[Req-85, Req-90, Req-91] 

 
 
Scenarios for UCA-1.29.1: Trajectory modifications are provided too late after the trajectories of 
two aircraft are in conflict [H-1, H-2, H-3] 
 
CS-1.29.1-1. Feedback indicating that the trajectories of two aircraft are in conflict was 

received on time. However, trajectory modifications are provided too late. This could occur 

because: 

CS-1.29.1-1.1. It takes Resp-1 too long to identify a solution that resolves all conflicts. As 

a result, trajectory modifications are issued too late to adequately resolve the collision {(Resp-

1=Aircraft) ∨ (Resp-1=Aircraft ∧ ATM)} 

CS-1.29.1-1.2. The process of generating a resolution repeatedly gets interrupted by new 

requests/conflicts due to the density of air traffic. As such, before the trajectory modifications 

can be issued, they need to be recalculated and thus the trajectory of aircraft is not modified 

until it is too late to enact the new trajectories to avoid a collision {Resp-1=ATM} 

CS-1.29.1-1.3. The process of generating possible trajectory modifications and relaying 

them to Resp-3 is cumbersome enough (especially when traffic density is high) that by the 

time the trajectory modifications have been confirmed, they are issued too late to adequately 

prevent the collision {Resp-1=Resp-3} 

CS-1.29.1-2. Feedback that the trajectories of two aircraft are in conflict is not received on 

time because: 

CS-1.29.1-2.1. A degradation in the aircraft's ability to continue its mission and trajectory 

occurs (e.g., degraded GPS accuracy, compromised flight controls). If the aircraft does not 

report this degradation in a timely manner or the degradation is temporary, by the time the 

degradation is reported or the degradation is resolved, it is so close to the imminent collision 

that trajectory modifications cannot be issued sufficiently quickly to resolve the conflict 

{(Resp-1=Aircraft) ∨ (Resp-1=Aircraft ∧ ATM)} 

CS-1.29.1-2.2. An aircraft is entering the UAM environment while airborne but outside it. 

As such, by the time tracking and trajectory information is received and the aircraft is allowed 

to enter the UAM environment, there is insufficient time to resolve the conflict before a 

collision occurs [Req-89] 

CS-1.29.1-3. Feedback indicating that the trajectories of two aircraft are in conflict was 

received on time and trajectory modifications were provided on time. However, those 

trajectory modifications are received by the aircraft too late because: 

CS-1.29.1-3.1. There is a delay in transmitting them to the aircraft. This could occur if 

trajectory modifications are transmitted in sets to aircraft instead of all at once. Alternatively, 

one of the aircraft receiving trajectory modifications is using a different communications 

method that is slower or not typically used (e.g., voice-based comms instead of digital text-
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based comms).  As a result, at least one of the aircraft receive their trajectory modification 

too late for it to be effective at preventing the collision [Req-92] 

CS-1.29.1-4. Feedback indicating that the trajectories of two aircraft are in conflict was 

received on time and trajectory modifications were provided and are received by the aircraft 

on time. However, the aircraft execute those trajectory modifications too late because: 

CS-1.29.1-4.1. The aircraft were not expecting to receive trajectory modifications (e.g., in 

a critical phase of flight) and therefore is delayed more than expected in executing the new 

trajectory. As a result of this delay, there is not enough time to modify the trajectory of the 

aircraft sufficiently to prevent the collision {(Resp-1=Aircraft) ∨ (Resp-1=Aircraft ∧ ATM)} 
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Appendix D Design Iteration 1 – Analysis and Comparison of 
Architecture Options 

This appendix shows the results from the comparison of the centralized (A1) and 
decentralized (A2) collision avoidance architecture options performed in design iteration 1. Table 
D-1 shows the full set of evaluation criteria that were identified and the comparison results (i.e., 
benefit or tradeoff) for each architecture option. To make it easier to read, the evaluation criteria 
in this table are sorted by type (e.g., decision making, control path). For each evaluation criterion, 
links are also provided in square braces to the scenario(s) in Table D-2 used to generate them.  

Table D-2 then presents the full architecture comparison table that was used to generate the 
comparison results shown in Table D-1. Table D-2 contains (1) the scenarios used to compare the 
two architecture options, (2) the decisions about whether each scenario occurs for each 
architecture option, (3) any assumptions used to decide that a scenario does not occur for an 
architecture option, and (4) the evaluation criterion generated from that scenario. Note that 
Table D-2 only includes scenarios where behavioral differences were observed are included and 
scenarios where unsafe behavior was observed for both architecture options are omitted. 

 
Table D-1: Full set of evaluation criteria for comparison of architecture options A1 and A2 

ID Evaluation Criteria 

Benefit (+) or 
Tradeoff (-) 

A1 A2 

Decision Making Evaluation Criteria 

EC-1 
Frequency and complexity of trajectory modifications decisions to prevent 
loss of separation when resolving a(n) (urgent) conflict [Scenarios 2, 14]   

EC-2 
Responsiveness of trajectory modifications decisions to prevent inability to 
complete missions when a high-priority flight either changes its planned 
trajectory or is no longer being performed [Scenario 22, 30]    

EC-3 
Responsiveness of trajectory modifications decisions to prevent inability to 
complete missions when providing more spacing between aircraft due to 
degraded navigational capabilities [Scenario 19]   

EC-4 
Ability to make appropriate trajectory modifications to prevent loss of 
separation when multiple conflicts occur [Scenario 5]   

EC-5 
Responsiveness of trajectory modification decisions to prevent loss of 
separation when resolving a multi-aircraft conflict in densely populated 
airspace [Scenario 4]   

EC-6 
Responsiveness of trajectory modifications decisions to prevent loss of 
separation when the state of the airspace changes rapidly or a conflict 
involves restrictive operational constraints [Scenarios 9, 29]   

EC-7 

Responsiveness of trajectory modifications decisions to enable aircraft to 
complete missions when reducing spacing between aircraft to 
accommodate additional air traffic or preventing unnecessary increases in 
spacing for additional safety margin [Scenarios 20, 21] 
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ID Evaluation Criteria 

Benefit (+) or 
Tradeoff (-) 

A1 A2 

EC-8 
Responsiveness of trajectory modification decisions to prevent inability to 
complete missions when a high-priority flight needs to be given precedence 
for mission completion [Scenarios 25, 26]    

Process Model Evaluation Criteria 

EC-9 
Situational awareness of trajectory modifications rationale to prevent loss 
of separation when receiving trajectory modifications to execute [Scenario 
8]   

EC-10 
Level of situational awareness of airspace state available to prevent loss of 
separation when trajectory modifications must be identified under 
challenging or extremely limiting trajectory constraints [Scenario 13]   

EC-11 
Level of situational awareness of operational impacts occurred by each 
flight to prevent inability to complete missions when distributing 
operational impacts over numerous flights [Scenario 23]   

Feedback / External Inputs Evaluation Criteria 

EC-12 Timeliness of ground hazards feedback to prevent loss of separation when 
resolving a conflict [Scenarios 6, 15, 27]   

EC-13 Timeliness of operational constraints feedback to prevent loss of 
separation when operational constraints are changing frequently [Scenario 
24]   

EC-14 Timeliness of aircraft capabilities, flight conditions and operational 
constraints feedback to prevent loss of separation when resolving a conflict 
[Scenarios 11, 16, 18]   

EC-15 Use of “confirmation of trajectory modifications” input to prevent loss of 
separation when resolving a conflict [Scenarios 1, 10]   

EC-16 Use of “mutual agreement” input to prevent loss of separation when 
resolving a conflict involving numerous aircraft and/or densely populated 
airspace [Scenario 28]   

Control Path Evaluation Criteria 

EC-17 Vulnerability of providing trajectory modifications to prevent loss of 
separation when a component failure compromises decision making 
[Scenario 3]   

EC-18 Vulnerability of providing trajectory modifications to prevent loss of 
separation when errors with the communications path occurs [Scenario 17]   

EC-19 Responsiveness of execution of trajectory modifications to prevent loss of 
separation when trajectory modifications have been issued [Scenarios 7, 
12]   
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Table D-2: Comparison results for the centralized (A1) and decentralized (A2) collision avoidance architecture options 

ID Scenario Scenario Occurs? 
Evaluation 
Criteria 

1 

The imminent collision is recognized 
and <controller(s) performing Resp-
1> attempt to resolve the conflict. 
However, ATM does not confirm that 
the trajectory modifications still have 
alternate trajectory options. As a 
result, <controller(s) performing 
Resp-1> are unable to issue 
trajectory modifications to resolve 
the collision 

A1: No 
Assumption: Since ATM is performing 
both Resp-1 and Resp-3, it is easier to 
coordinate these two responsibilities 
because they are being performed by 

the same controller 

A2: Yes 

EC-15: Use of 
“confirmation of 
trajectory 
modifications” 
input to prevent 
loss of separation 
when resolving a 
conflict 

2 

Although feedback about the 
imminent collision is received, 
<controller(s) performing Resp-1> are 
pre-occupied with resolving one set 
of conflicts and therefore do not 
attend to the feedback about 
another imminent collision. As a 
result, <controller(s) performing 
Resp-1> does not issue trajectory 
modifications to resolve the 
imminent collision 

A1: Yes 

A2: No 
Assumption: Even if some aircraft are 

preoccupied with resolving a conflict, 
the new aircraft can identify the 

conflict and coordinate its own set of 
trajectory modifications if traffic 
conditions are sufficiently light 

EC-1: Frequency 
and complexity of 
trajectory 
modifications 
decisions to 
prevent loss of 
separation when 
resolving a conflict 

3 

Although feedback about the 
imminent collision is received, 
<controller(s) performing Resp-1> are 
unable to determine possible 
movement options due to a 
component failure that prevents 
trajectory modifications from being 
computed. As a result, no trajectory 
modifications are issued 

A1: Yes 

A2: No 
Assumption: With multiple aircraft 

sharing responsibility for preventing 
conflicts, a component failure on one 
of the aircraft should not compromise 
the ability of other aircraft to prevent 

conflicts 

EC-17: 
Vulnerability of 
providing 
trajectory 
modifications to 
prevent loss of 
separation when a 
component failure 
compromises 
decision making 
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ID Scenario Scenario Occurs? 
Evaluation 
Criteria 

4 

Although feedback about the 
imminent collision is received, it 
takes so long for <controller(s) 
performing Resp-1> to identify a 
conflict-free solution that no 
trajectory modification is issued 
before the collision occurs. This could 
occur if, the airspace is so densely 
populated that resolving a limited 
initial conflict requires changes to 
many aircraft trajectories  

A1: No 
Assumption: Although not fully 

resolved, it is assumed that ATM 
would be most likely to have the 
resources to resolve a conflict in 

densely populated airspace 

A2: Yes  

EC-5: 
Responsiveness of 
trajectory 
modification 
decisions to 
prevent loss of 
separation when 
resolving a multi-
aircraft conflict in 
densely populated 
airspace 

5 

<Controller(s) performing Resp-1> do 
not receive feedback of the imminent 
collision because at the time that it 
checked the trajectories of all 
aircraft, their trajectories were not in 
conflict. However, while resolving 
another conflict, the trajectories of 
these aircraft do become in conflict 
and this is not noticed/resolved until 
after the previous set of conflicts are 
resolved. 

A1: Yes 

A2: No 
Assumption: Even if some aircraft are 

preoccupied with resolving a conflict, 
the new aircraft can identify the 

conflict and coordinate its own set of 
trajectory modifications if traffic 
conditions are sufficiently light 

EC-4: Ability to 
make appropriate 
trajectory 
modification 
decisions to 
prevent loss of 
separation when 
multiple conflicts 
occur 

6 

<Controller(s) performing Resp-1> 
does not receive feedback of the 
imminent collision but the imminent 
collision is present. This could occur if 
it does not receive timely feedback 
on the presence of new ground 
hazards (e.g., a new construction 
crane). As a result, it does not believe 
a collision is imminent and does not 
try to modify aircraft trajectories to 
avoid the collision 

A1: Yes 

A2: No 
Assumption: Even if some aircraft are 

preoccupied with resolving a conflict, 
the new aircraft can identify the 

conflict and coordinate its own set of 
trajectory modifications if traffic 
conditions are sufficiently light 

EC-12: Timeliness 
of ground hazards 
feedback to 
prevent loss of 
separation when 
resolving a conflict 
involving terrain or 
ground obstacles 
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ID Scenario Scenario Occurs? 
Evaluation 
Criteria 

7 

Trajectory modifications are provided 
by <at least one of the controller(s) 
performing Resp-1> and received by 
the aircraft but the conflict is not 
resolved. This could occur if the 
aircraft is preoccupied with other 
flight deck tasks and does not attend 
to the trajectory modification issued 
to it and therefore does not 
recognize that trajectory 
modifications have been received 

A1: Yes 

A2: No 
Assumption: since the aircraft are 
coordinating to select trajectory 
modifications, they know those 

modifications are coming and will be 
more responsive in executing them 

once they are selected. 

 

EC-19: 
Responsiveness of 
execution of 
trajectory 
modifications to 
prevent loss of 
separation when 
trajectory 
modifications have 
been issued  

8 

Trajectory modifications are provided 
by <one of the controller(s) 
performing Resp-1> and received by 
the aircraft but the conflict is not 
resolved. This could occur if one of 
the aircraft receives the trajectory 
modification but does not execute 
the trajectory modification because 
they wrongly believe that the 
provided trajectory modification 
would result in another violation of 
minimum separation. They therefore 
ignore the provided trajectory 
modification and make an 
independent decision which 
ultimately violates minimum 
separation 

A1: Yes 

A2: No 
Assumption: It is assumed that since 
the aircraft are selecting their own 
trajectory modifications, they are 

therefore already aware of how those 
trajectory modifications were chosen 

EC-9: Situational 
awareness of 
trajectory 
modifications 
rationale to 
prevent loss of 
separation when 
receiving trajectory 
modifications to 
execute 

9 

Although the imminent collision is 
recognized, <controller(s) performing 
Resp-1> gets repeatedly interrupted 
by changing flight conditions and it 
constantly needs to modify its 
solution. As a result, a final solution is 
not selected until it is too late to 
prevent a collision 

A1: No 
Assumption 1: ATM will not have to 

coordinate conflicts as frequently 
because it has broader situational 
awareness of the airspace and can 

resolve conflicts in a more 
coordinated fashion.  

Assumption 2: Operators will notify 
ATM of flights with more advance 

notice, allowing ATM to pre-
coordinate those flights 

A2: Yes 

EC-6: 
Responsiveness of 
trajectory 
modifications 
decisions to 
prevent loss of 
separation when 
the state of the 
airspace changes 
rapidly 
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ID Scenario Scenario Occurs? 
Evaluation 
Criteria 

10 

Although <controller(s) performing 
Resp-1> recognize the imminent 
collision, the process of having 
possible trajectory modifications 
confirmed by ATM is cumbersome 
enough that by the time the 
trajectory modifications have been 
confirmed, they are issued too late to 
adequately prevent the collision 

A1: No 
Assumption: Since Resp-3 and Resp-1 

are both performed by ATM, this 
coordination between responsibilities 
can happen much faster than it would 

between aircraft 

A2: Yes 

EC-15: Use of 
“confirmation of 
trajectory 
modifications” 
input to prevent 
loss of separation 
when resolving a 
conflict 

11 

<Controller(s) performing Resp-1> do 
not receive feedback on time that 
indicates a collision is imminent 
because of a degradation in the 
aircraft's navigational capabilities. If 
the aircraft does not report this 
degradation in a timely manner, 
there may not be enough time to 
select appropriate trajectory 
modifications to resolve the conflict 

A1: Yes 

A2: No 
Assumption 1: The aircraft will be 
directly aware of their own flight 

conditions 

Assumption 2: Coordinating between 
aircraft on navigational capabilities is 

faster than coordinating with ATM 

EC-14: Timeliness 
of aircraft 
capabilities, flight 
conditions and 
operational 
constraints 
feedback to 
prevent loss of 
separation when 
resolving a conflict 

12 

Trajectory modifications are received 
by the aircraft on time but the 
aircraft does not execute those 
modifications on time because they 
were not expecting to receive 
trajectory modifications (e.g., in a 
critical phase of flight) and therefore 
is delayed more than expected in 
executing the new trajectory.  

A1: Yes 

A2: No 
Assumption: Since the aircraft are 

coordinating trajectory modifications, 
they would know about potential 

collisions that they need to resolve 
and thus this scenario would not occur 

EC-19: 
Responsiveness of 
execution of 
trajectory 
modifications to 
prevent loss of 
separation when 
trajectory 
modifications have 
been issued 
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ID Scenario Scenario Occurs? 
Evaluation 
Criteria 

13 

An emergency or last-minute 
airspace restriction occurs, requiring 
large numbers of aircraft to modify 
their trajectories. As a result, 
<controller(s) performing Resp-1> are 
forced to quickly modify trajectories 
for numerous aircraft before they can 
adequately consider the collision 
implications of the new trajectories. 
As a result, they select the trajectory 
modifications that result in the 
fewest collisions and issues those 
even though some trajectories have 
collisions. 

A1: No 
Assumption: ATM will be able to 

coordinate large groups of aircraft 
trajectories more easily because of its 
broader situational awareness of the 

airspace state 

A2: Yes 

EC-10: Level of 
situational 
awareness of 
airspace state 
available to 
prevent loss of 
separation when 
trajectory 
modifications must 
be identified under 
challenging or 
extremely limiting 
trajectory 
constraints 

14 

Although <controller(s) performing 
Resp-1> receives feedback indicating 
that the trajectory modifications will 
result in collision, it believes that it 
can issue further trajectory 
modifications later to prevent 
collision. However, <controller(s) 
performing Resp-1> do not return to 
correct that collision (e.g., because it 
becomes preoccupied resolving other 
collisions) and thus the collision 
occurs  

A1: Yes 

A2: No 
Assumption: The aircraft will have 
fewer collisions to attend to and 

therefore are less likely to be unable 
to return to a secondary collision to 

resolve it 

EC-1: Frequency 
and complexity of 
trajectory 
modifications 
decisions to 
prevent loss of 
separation when 
resolving an urgent 
conflict 

15 

<Controller(s) performing Resp-1> do 
not receive timely feedback that the 
trajectory modifications will result in 
a collision because they do not 
receive timely feedback of ground 
hazards and wrongly believe that the 
trajectory modifications they are 
providing are not in conflict with a 
ground hazard 

A1: Yes 

A2: No 
Assumption: The aircraft will have 
appropriate sensors to be able to 

detect ground hazards with enough 
range to take action to avoid them 

EC-12: Timeliness 
of ground hazards 
feedback to 
prevent loss of 
separation when 
resolving a conflict 
involving terrain or 
ground obstacles 
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ID Scenario Scenario Occurs? 
Evaluation 
Criteria 

16 

<controller(s) performing Resp-1> do 
not receive timely information about 
the aircraft’s capabilities and, for 
example, could wrongly believe that 
an aircraft is capable of more precise 
navigation than it is. As a result, 
<controller(s) performing Resp-1> 
provides trajectory modifications that 
it wrongly believes does not contain 
collisions 

A1: Yes 

A2: No 
Assumption 1: The aircraft will be 
directly aware of their own flight 

conditions and navigational 
capabilities.  

Assumption 2: Coordinating between 
aircraft on flight conditions and 

aircraft capabilities is faster than 
coordinating with ATM 

EC-14: Timeliness 
of aircraft 
capabilities, flight 
conditions and 
operational 
constraints 
feedback to 
prevent loss of 
separation when 
resolving a conflict 

17 

<Controller(s) performing Resp-1> 
issue trajectory modifications that do 
not result in collision. However, 
during transmission to the aircraft, a 
communications error occurs, and 
the aircraft only receives part of the 
trajectory modifications and the part 
that is received is in collision with 
another aircraft trajectory 

A1: Yes 

A2: No 
Assumption: It is assumed that a 

compromised communication link 
experienced by one aircraft will 

typically not affect all aircraft (some 
exceptions exist) 

EC-18: 
Vulnerability of 
providing 
trajectory 
modifications to 
prevent loss of 
separation when 
errors with the 
communications 
path occurs 

18 

<Controller(s) performing Resp-1> 
receives feedback that the aircraft is 
not following its trajectory exactly as 
expected but does not receive 
enough feedback to know exactly 
how much extra space buffer to 
provide. As a result, <controller(s) 
performing Resp-1> provides 
trajectory modifications to allow 
extra spacing between aircraft even 
though they might be unnecessary 

A1: Yes 

A2: No 
Assumption: The aircraft are aware of 

their own flight conditions and can 
determine their navigational 

capabilities with better accuracy to 
determine how much spacing from 

other aircraft is needed 

EC-14: Timeliness 
of aircraft 
capabilities, flight 
conditions and 
operational 
constraints 
feedback to 
prevent loss of 
separation when 
resolving a conflict 



 

191 

 

ID Scenario Scenario Occurs? 
Evaluation 
Criteria 

19 

<Controller(s) performing Resp-1> 
does not receive timely information 
about the aircraft capabilities. As a 
result, <controller(s) performing 
Resp-1> has the wrong belief about 
the capabilities of the aircraft when 
they change over time. For example, 
an aircraft might experience 
temporary degradation of their GPS 
signal that recovers after a short 
time. As a result, <controller(s) 
performing Resp-1> have 
wrong/outdated beliefs about the 
navigational capabilities of the 
aircraft and issues trajectories with 
unnecessarily large spacing/clearance 

A1: Yes 

A2: No 
Assumption: Since aircraft are 
coordinating their trajectory 

modifications, they will be motivated 
to optimize the trajectories once any 

degradation is resolved. 

EC-3: 
Responsiveness of 
trajectory 
modifications 
decisions to 
prevent inability to 
complete missions 
when providing 
more spacing 
between aircraft 
due to degraded 
navigational 
capabilities 

20 

<Controller(s) performing Resp-1> do 
not receive feedback indicating that 
the trajectories will consume more 
space than necessary because they 
originally believed that there was 
extra airspace available to increase 
the separation between flights. 
However, a later flight is filed whose 
optimal flight path conflicts with the 
first. Instead of modifying the 
trajectory to just what is necessary, 
the later flight's flight plan is 
modified instead because 
<controller(s) performing Resp-1> do 
not recognize that the first flight's 
trajectory is consuming more space 
than necessary 

A1: No 
Assumption: If ATM makes these 
decisions centrally, it maintains 

awareness of where it has chosen to 
consume more airspace than 

necessary in its trajectory 
modifications so that those decisions 

can be undone if necessary 

A2: Yes 

EC-7: 
Responsiveness of 
trajectory 
modifications 
decisions to enable 
aircraft to 
complete missions 
when reducing 
spacing between 
aircraft to 
accommodate 
additional air 
traffic 
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ID Scenario Scenario Occurs? 
Evaluation 
Criteria 

21 

<Controller(s) performing Resp-1> do 
not receive feedback indicating that 
the trajectories will consume more 
airspace than necessary because the 
aircraft try to reserve more airspace 
than necessary for themselves as a 
safety margin and therefore indicate 
that they are capable of less precise 
navigation than they actually are. As 
a result, <controller(s) performing 
Resp-1> bases its selection of 
trajectory modifications on that 
feedback, not realizing that those 
trajectories consume more airspace 
than necessary 

A1: No 
Assumption: Since ATM is centrally 

responsible, it can balance the 
requests and needs of each aircraft 
with the resources (e.g., airspace, 

time) available for flights and ensure 
fair allocation of those resources 

A2: Yes 

EC-7: 
Responsiveness of 
trajectory 
modifications 
decisions to enable 
aircraft to 
complete missions 
when preventing 
unnecessary 
increases in 
spacing for 
additional safety 
margin 

22 

<Controller(s) performing Resp-1> 
begin to modify the trajectories of 
active flights to accommodate a 
higher-priority flight. However, while 
selecting these trajectory 
modifications, the higher-priority 
flight changes its flight plan. To avoid 
the additional workload of re-
selecting those trajectory 
modifications, <controller(s) 
performing Resp-1> may choose to 
just provide the already-selected 
trajectory modifications instead of 
re-selecting them even though they 
consume more airspace than 
necessary. 

A1: Yes 

A2: No 
Assumption: The aircraft would be 

motivated to modify their trajectories 
to be more efficient if such an option 

were available. 

EC-2: 
Responsiveness of 
trajectory 
modifications 
decisions to 
prevent inability to 
complete missions 
when a high-
priority flight 
changes its 
planned trajectory 
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ID Scenario Scenario Occurs? 
Evaluation 
Criteria 

23 

Although <controller(s) performing 
Resp-1> recognize that operational 
constraints would be exceeded (e.g., 
a significant extension of the flight 
path), it believes that it would be 
optimal to minimize the operational 
impacts to other aircraft (that might 
have fly at higher speeds or be 
carrying more people) and as a result 
saddles a single aircraft with 
numerous operational impacts (e.g., 
multiple flight path extensions or 
delays) 

A1: No 
Assumption: With ATM's centralized 
role in this architecture, it would be 

better able to balance equitable 
distribution of operational impacts 

amongst aircraft 

A2: Yes 

EC-11: Level of 
situational 
awareness of 
operational 
impacts occurred 
by each flight to 
prevent inability to 
complete missions 
when distributing 
operational 
impacts over 
numerous flights 

24 

<Controller(s) performing Resp-1> 
does not receive feedback that the 
trajectory modification would not 
meet operational constraints because 
some operational constraints change 
over time (e.g., diversion options 
become more restricted due to fuel 
remaining as a flight progresses). If 
<controller(s) performing Resp-1> 
does not receive timely feedback 
indicating a change to the 
operational constraints when it 
selects alternative trajectories, it 
could select trajectory modifications 
based on out-of-date or incomplete 
operational constraints. 

A1: Yes 

A2: No 
Assumption: Since the aircraft are 
responsible for conflict avoidance, 

they would be aware of changes and 
would initiate trajectory modifications 

if needed. 

EC-13: Timeliness 
of operational 
constraints 
feedback to 
prevent loss of 
separation when 
operational 
constraints are 
changing 
frequently 

25 

<Controller(s) performing Resp-1> 
recognize that UAM aircraft that will 
interfere with the flight of an 
emergency response aircraft. 
However, especially if the airspace is 
densely occupied, <Controller(s) 
performing Resp-1> may not be able 
to clear a path for the emergency 
response aircraft in time before the 
emergency response aircraft needs to 
depart. 

A1: No 
Assumption: Because ATM has 

broader SA of the airspace, it can 
clear a path for an emergency 

response aircraft faster than the 
aircraft could individually 

A2: Yes 

EC-8: 
Responsiveness of 
trajectory 
modification 
decisions to 
inability to 
complete missions 
when a high-
priority flight needs 
to be given 
precedence for 
mission completion 
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ID Scenario Scenario Occurs? 
Evaluation 
Criteria 

26 

<Controller(s) performing Resp-1> 
receives feedback at the last minute 
indicating that UAM aircraft are 
interfering with the flight of an 
emergency response aircraft because 
the emergency response aircraft are 
modifying their trajectories quickly in 
response to an evolving emergency 
event (e.g., a bad accident, a wild 
fire). If <controller(s) performing 
Resp-1> is unable to respond and 
modify the trajectories of UAM 
aircraft in response, they can end up 
interfering with the emergency 
response flight  

A1: No 
Assumption: Because ATM has 

broader situational awareness of the 
airspace, it can clear a path for an 
emergency response aircraft faster 
than the aircraft could individually 

A2: Yes 

EC-8: 
Responsiveness of 
trajectory 
modification 
decisions to 
inability to 
complete missions 
when a high-
priority flight needs 
to be given 
precedence for 
mission completion 

27 

<Controller(s) performing Resp-1> 
does not receive feedback indicating 
that the trajectory of an aircraft 
conflicts with an obstacle or terrain. 
This might occur if the obstacle is 
new and/or temporary (e.g., a tall 
crane or a temporary structure near a 
UAM aerodrome) and feedback 
about the presence of this obstacle 
has not been provided to 
<controller(s) performing Resp-1>.  

A1: Yes 

A2: No 
Assumption: The aircraft would have 
onboard sensing capable of detecting 

the obstacle with enough range to 
allow time for the aircraft to respond 
to avoid a collision with the ground 

hazard 

EC-12: Timeliness 
of ground hazards 
feedback to 
prevent loss of 
separation when 
resolving a conflict 

28 

<Controller(s) performing Resp-1> 
receive feedback that the aircraft 
require an immediate change in 
trajectory but is unable to issue 
trajectory modifications in time 
because it must coordinate the 
change with numerous other aircraft 
trajectories. This is especially 
challenging when the airspace is 
densely populated. However, it is 
unable to issue the required 
trajectory modifications in time 

A1: No 
Assumption: Since ATM has broader 

situational awareness of the airspace, 
it can solve large conflict sets faster 
than the aircraft could individually 

A2: Yes 

EC-16: Use of 
“mutual 
agreement” input 
to prevent loss of 
separation when 
resolving a conflict 
involving 
numerous aircraft 
and/or densely 
populated airspace 
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ID Scenario Scenario Occurs? 
Evaluation 
Criteria 

29 

<Controller(s) performing Resp-1> 
correctly recognize that the 
trajectory needed by an aircraft 
experiencing an emergency conflicts 
with those of other aircraft. 
However, they are unable to select 
appropriate trajectory modifications 
because multiple aircraft have 
various operational constraints that 
<controller(s) performing Resp-1> is 
unaware of until it requests for 
feedback about them. By the time it 
has received this feedback, there is 
not enough time to issue appropriate 
trajectory modifications to resolve 
the conflict 

A1: No 
Assumption: As the central decision 

maker, ATM can more quickly gather 
and account for the various 

operational constraints to select 
trajectory modifications 

A2: Yes 

EC-6: 
Responsiveness of 
trajectory 
modifications 
decisions to 
prevent loss of 
separation when 
resolving a conflict 
involving restrictive 
operational 
constraints 

30 

<Controller(s) performing Resp-1> 
receive feedback indicating that 
there is a more efficient or desirable 
trajectory available for an aircraft but 
does not issue trajectory 
modifications. This could occur if 
<controller(s) performing Resp-1> 
decides to avoid the extra workload 
of switching the aircraft over to the 
more efficient trajectory and decides 
to just leave the aircraft on its less 
efficient or desirable trajectory 

A1: Yes 

A2: No 
Assumption: The aircraft would be 

motivated to modify their trajectories 
to be more efficient if such an option 

were made available 

EC-2: 
Responsiveness of 
trajectory 
modifications 
decisions to 
prevent inability to 
complete missions 
when a high-
priority flight is no 
longer being 
performed 
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Appendix E Design Iteration 2 – Analysis of Shared Responsibility 
Architecture 

This appendix presents the STPA-Teaming results from analyzing the shared responsibility 
collision avoidance architecture chosen in design iteration 1. As described in Section 5.2, STPA-
Teaming was used to analyze the Trajectory Modifications control action to determine how ATM 
and the aircraft collectively providing or not providing trajectory modifications could lead to 
unsafe behavior. Four main combinations of control actions are considered: 

• Combination 1: Neither ATM nor the aircraft provide trajectory modifications when…. 

• Combination 2: Either ATM or the aircraft provide trajectory modifications when…. 

• Combination 3: Both ATM and the aircraft provide trajectory modifications when….. 

• Combination 4: One controller (ATM or the aircraft) provides trajectory modifications 
before the other provides trajectory modifications when….  

In the following subsections, the abstract and refined UCCAs and scenarios identified for each 
of these combinations are presented. The hazards associated with each UCCA are linked in square 
braces. In addition, the UCCAs for which scenarios were generated are colored in blue. For the 
causal scenarios, the requirement derived from each scenario is linked in square braces.  

 

E.1.    Combination 1 UCCAs and Scenarios 
Table E-1: Combination 1 UCCAs and Scenarios 

ID UCCA 

UCCA-1 Neither ATM nor the aircraft provide trajectory modifications when the trajectories of two 
aircraft are in conflict [H-1] 

UCCA-2 Neither ATM nor the aircraft provide trajectory modifications when UAM aircraft interfere 
with the flight of an emergency response aircraft [H-3] 

UCCA-3 Neither ATM nor the aircraft provide trajectory modifications when the trajectory of an 
aircraft conflicts with an obstacle or terrain [H-1] 

UCCA-4 Neither ATM nor the aircraft provide trajectory modifications when the trajectory needed 
by an aircraft experiencing an emergency conflicts with other aircraft [H-1, H-3] 

UCCA-5 Neither ATM nor the aircraft provide trajectory modifications when the arrival trajectory of 
a UAM aircraft at a conventional airport conflicts with the approach course used by 
conventional aviation aircraft [H-1, H-3] 

UCCA-6 Neither ATM nor the aircraft provide trajectory modifications when a higher priority flight 
incurs an unacceptable operational impact (e.g., delay) due to UAM flights that are 
occurring [H-3] 

UCCA-7 Neither ATM nor the aircraft provide trajectory modifications when UAM aircraft need to 
be sequenced for arrival to a conventional airport [H-3] 

UCCA-8 Neither ATM nor the aircraft provide trajectory modifications when UAM aircraft have 
overlapping arrival or departure trajectories [H-1, H-3] 

UCCA-9 Neither ATM nor the aircraft provide trajectory modifications when the trajectory of a 
UAM aircraft will take it toward inclement weather that exceeds the aircraft’s capabilities 
[H-1, H-3] 
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Scenarios for UCCA-1: Neither ATM nor aircraft provide trajectory modifications when the 
trajectories of two aircraft are in conflict [H-1] 

 

CS-2.1.1. ATM and the aircraft both receive feedback about the imminent collision but 
none of them issue trajectory modifications to resolve the conflict. This could occur if: 
CS-2.1.1-1. The aircraft attempt to resolve the conflict and ATM does not. However, when the 
aircraft attempt to verify with ATM that their selected trajectory modifications will have 
alternate trajectory options available, ATM does not confirm this and therefore the aircraft 

are unable to issue trajectory modifications before the collision occurs.  [Req-113] 
CS-2.1.1-2. ATM allows the aircraft to resolve the conflict. However, if the conflict involves a 
large number of aircraft or numerous operational constraints, it may take too long for the 
aircraft to coordinate among themselves to resolve the collision. As a result, neither ATM nor 

the aircraft issue trajectory modifications to prevent the conflict. [ Req-101, Req-102, Req-
103] 
CS-2.1.1-3. ATM is preoccupied with a previous conflict and the aircraft assume ATM will 
resolve the conflict and therefore do not resolve the conflict themselves. As a result, none of 

them issue trajectory modifications to prevent the conflict. [ Req-101, Req-102, Req-103] 
CS-2.1.1-4. ATM and the aircraft both assume the other is better equipped to resolve the 
conflict or they each wrongly believe the other will resolve the conflict. As a result, each waits 
for the other to resolve the conflict and neither of them selects trajectory modifications to 

prevent the conflict. [ Req-121] 
CS-2.1.1-5. Although the imminent collision is recognized by both ATM and the aircraft, 
neither is able to identify trajectory modifications before the collision occurs. For ATM, this 
could occur if it is resolving a conflict set involving a large number of aircraft. Similarly, for 
the aircraft, if a large number of aircraft are involved, the coordination required amongst 

aircraft may slow down conflict resolution. [ Req-101, Req-102] 
CS-2.1.1-6. Although both ATM and the aircraft receive feedback about the imminent 
collision, ATM wrongly omits the track or trajectory of one of the aircraft from the 
consolidated airspace state that it provides to the aircraft to support collision avoidance. This 
could occur either maliciously (e.g., a bad actor deleting trajectory data) or unintentionally 
(e.g., data errors). As a result, although the aircraft receive correct feedback about the 
imminent collision, they choose to ignore that correct feedback because they wrongly believe 
that ATM’s consolidated airspace state information is valid. As a result, both ATM and the 

aircraft do not attempt to resolve the imminent collision.  [ Req-111, Req-118,] 
CS-2.1.1-7. Although the imminent collision is recognized by both ATM and the aircraft, both 
are delayed by ATM needing to confirm those trajectory modifications. This could be 
especially likely to happen if ATM and the aircraft both try to verify trajectory modifications 
to resolve the same conflict. As a result, ATM does not confirm those trajectory modifications 

and neither is able to select trajectory modifications in time. [ Req-113, Req-121] 
CS-2.1.2. ATM and the aircraft do not receive feedback about the imminent collision 

because: 
CS-2.1.2-1. ATM and the aircraft receive inaccurate of out-of-date information about the 
navigational capabilities of each aircraft. As a result, if one aircraft’s navigational capabilities 
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changes (e.g., becomes degraded), neither ATM nor the aircraft receive timely feedback 
about the change. They are therefore unaware that the aircraft with altered navigational 

capabilities is on a collision course with another aircraft even though it is. [ Req-111] 
CS-2.1.3. Either ATM or the aircraft recognize a potential conflict and attempt to provide 

trajectory modifications to prevent it. However, those trajectory modifications are not 
received by the aircraft because: 
CS-2.1.3-1. Malicious interference or equipment failure results in trajectory modifications not 
reaching the aircraft. As a result, the aircraft attempt to resolve conflicts independently and 

select trajectory modifications that conflict with those selected by other aircraft. [ Req-104] 
CS-2.1.4. ATM and the aircraft both receive feedback about the potential conflict and at 

least one of them correctly issues trajectory modifications to resolve it. However, the 
collision still occurs. This could occur if: 
CS-2.1.4-1. While the aircraft are still trying to identify appropriate trajectory modifications, 
ATM selects one and transmits it to the aircraft. However, the aircraft are preoccupied with 
identifying their own resolution to the conflict and do not recognize that ATM has transmitted 
trajectory modifications to them already. As a result, they either do not execute them at all 

or execute them too late for the modifications to be effective. [ Req-121, Req-112] 
CS-2.1.4-2. The aircraft do execute the trajectory modifications provided by ATM but not to 
the required level of performance (e.g., precision). This could occur either due to 
inappropriate equipage, inadequate maneuvering capability or environmental conditions 
interfering with the flight (e.g., wind gusts, temporary GPS outage). As a result, the provided 
trajectory modifications do not adequately resolve the conflict. In addition, if ATM notices 
this too late, there may not be enough time to recompute new trajectory modifications to 

resolve the conflict. [ Req-111, Req-145] 
CS-2.1.4-3. The aircraft is deliberately ignoring the trajectory modification provided by ATM 
and continues on its original trajectory or a different one while other aircraft are executing 

the trajectory modifications provided to them. As a result, new conflicts arise. [ Req-107] 
CS-2.1.4-4. The aircraft execute trajectory modifications that are either provided by ATM or 
selected by them but these trajectory modifications do not adequately resolve the collision. 
ATM notices this but believes that the aircraft should attempt to re-resolve the collision 
themselves. However, by the time ATM has notified the aircraft to re-resolve the potential 
collision, there is not enough to identify new trajectory modifications before the collision 

occurs. [ Req-109] 

 

Scenarios for UCCA-2: Neither ATM nor the aircraft provide trajectory modifications when UAM 
aircraft interfere with the flight of an emergency response aircraft [H-3] 

 

CS-2.2.1. ATM and the aircraft both recognize that a UAM flight will interfere with that of 
an emergency response aircraft. However, neither of them issue trajectory modifications 
to address the interference. This could occur because: 
CS-2.1.1-1. Especially if the airspace is densely occupied, ATM may be preoccupied resolving 
more imminent conflicts and the aircraft may require a long time to adequately coordinate 
on trajectory modifications to avoid interference. As such, neither ATM nor the aircraft can 
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respond and select trajectory modifications before the emergency response aircraft needs to 

depart. [ Req-101, Req-102] 
CS-2.1.1-2. ATM and the aircraft receive the feedback about the interference at the last 
minute because the emergency response flight needs to depart immediately or it is changing 
its flight path in response to a rapidly evolving emergency. As a result, ATM and the aircraft 
are unable to respond and modify aircraft trajectories in time to avoid interference with the 

emergency response flight. [ Req-101, Req-102, Req-122] 
CS-2.2.2. ATM and the aircraft do not receive feedback that the trajectory of a UAM 

aircraft will interfere with the flight of an emergency response aircraft. This might occur 
because: 
CS-2.1.2-1. The emergency response aircraft is changing trajectories rapidly in response to an 
evolving situation and therefore its desired trajectory is not known in advance. As a result, 
the emergency response aircraft does not have a planned trajectory that can be used to 

inform conflict resolution decisions. [ Req-128] 

 

Scenarios for UCCA-3: Neither ATM nor the aircraft provide trajectory modifications when the 
trajectory of an aircraft conflicts with an obstacle or terrain [H-1] 

 

CS-2.3.1. Feedback is received that indicates that the trajectory of an aircraft conflicts 
with an obstacle or terrain but neither ATM nor the aircraft issue trajectory modifications 
to resolve it. This could occur because: 
CS-2.3.1-1. ATM either assumes that the aircraft will resolve the conflict with terrain or it does 
not receive the feedback about the aircraft’s conflict with terrain and therefore takes no 
action. However, due to other traffic close to the aircraft and the aircraft’s proximity to the 
terrain, the aircraft are unable to select appropriate trajectory modifications before a 

collision occurs. [ Req-108] 
CS-2.3.1-2. The aircraft correctly recognize the conflict and request ATM’s assistance to 
resolve the conflict. However, because ATM is dependent on the aircraft to receive feedback 
about the obstacle or terrain they conflict with, ATM does not receive that feedback with 

enough time to issue trajectory modifications to prevent a collision before it occurs. [ Req-
105] 
CS-2.3.1-3. The aircraft whose trajectory conflicts with an obstacle or terrain tries to resolve 
the conflict by communicating with other nearby aircraft to coordinate a trajectory change. 
However, one of the nearby aircraft is not equipped appropriately to coordinate trajectory 
modifications. By the time the original aircraft notifies ATM to assist in the conflict, there is 
not enough time to coordinate amongst the aircraft to resolve the conflict before it occurs.  

[ Req-114] 
CS-2.3.4. Either ATM or the aircraft correctly select trajectory modifications to resolve 

an aircraft’s conflict with terrain or an obstacle. However, a collision with an obstacle or 
terrain still occurs. This could occur if: 
CS-2.3.4-1. The first aircraft was successfully able to prevent a collision with an obstacle or 
terrain. However, a second aircraft selects trajectory modifications without being aware of 
the terrain or obstacle that the first aircraft had successfully avoided. As a result, the second 
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aircraft selects trajectory modifications that result in a collision with the obstacle or terrain.  

[ Req-116] 

 

Scenarios for UCCA-4: Neither ATM nor the aircraft provide trajectory modifications when the 
trajectory needed by an aircraft experiencing an emergency conflicts with other aircraft [H-1, H-
3] 

CS-2.3.4. Feedback is received that indicates that the trajectory needed by an aircraft 
experiencing an emergency conflicts with other aircraft. However, neither ATM nor the 
aircraft issue trajectory modifications to resolve the conflict. This could occur because: 
CS-2.3.4-1. ATM believes that the aircraft can identify trajectory modifications on their own 
and therefore allow the aircraft to do so. However, either due to traffic density or tight 
operational constraints (e.g., fuel), the aircraft are unable to identify appropriate trajectory 

modifications in time. [ Req-103] 

 

E.2.    Combination 2 UCCAs and Scenarios  
Table E-2: Combination 2 Abstracted UCCAs 

# Ci Cj(s) Context 

UCCA-10 Trajectory 
modifications 

¬Trajectory 
modifications 

when the trajectory of an aircraft is already valid 
and optimal [H-3] 

UCCA-11 Trajectory 
modifications 

¬Trajectory 
modifications 

when the modifications will result in a secondary 
collision with another aircraft [H-1] 

UCCA-12 Trajectory 
modifications 

¬Trajectory 
modifications 

when those trajectories allocate more airspace 
than necessary to prevent collisions [H-3] 

UCCA-13 Trajectory 
modifications 

¬Trajectory 
modifications 

when the operational constraints for at least one 
of the aircraft will be exceeded [H-1, H-3] 

UCCA-14 Trajectory 
modifications 

¬Trajectory 
modifications 

when the modifications will cause a collision with 
an obstacle or terrain [H-1] 

UCCA-15 
Trajectory 

modifications 
¬Trajectory 

modifications 

when the modification requires an aircraft to 
traverse adverse weather that it is not equipped 
to handle [H-1] 

UCCA-16 Trajectory 
modifications 

¬Trajectory 
modifications 

when they do not satisfy the priority needs of the 
aircraft [H-1, H-3] 

 

For each of the abstracted UCCAs in Table E-2, two refined UCCAs are generated and their IDs 
are formatted as follows: 

• IDs that have the format “UCCA-XX.1” are refined UCCAs where ATM provides trajectory 
modifications but the aircraft do not 

• IDs that have the format “UCCA-XX.2” are refined UCCAs where the aircraft provide 
trajectory modifications but ATM does not 
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Scenarios for UCCA-10.1: ATM provides trajectory modifications (and the aircraft do not) when 
the trajectory of a UAM aircraft is already valid and optimal [H-3] 

CS-2.10.1.1. Although ATM knows that the trajectory of an aircraft is already valid and 
optimal, it issues trajectory modifications anyway. This could occur because: 
CS-2.10.1.1-1. ATM is forced to make trajectory modifications to accommodate higher-
priority traffic (e.g., an emergency response flight). As a result, it makes a trajectory 
modification that is no longer optimal for the UAM aircraft and that results in a delay or even 
the UAM aircraft being unable to complete its mission to allow the higher-priority traffic to 

proceed as requested. [ Req-130, Req-131] 
CS-2.10.1.1-2. ATM wrongly identifies a potential conflict that will not actually occur. This 
could happen if ATM receives erroneous or out-of-date trajectory or track data from the 
aircraft. For example, due to inclement weather, aircraft may be modifying trajectories and 
ATM may identify a potential conflict based on the unmodified aircraft trajectories. As a 
result, ATM unnecessarily modifies the trajectories of aircraft away from the valid and 

optimal one to prevent a conflict that does not actually exist. [ Req-119, Req-131] 
CS-2.10.1.4. ATM does not provide trajectory modifications but the aircraft deviate from a 

valid and optimal trajectory. This could occur because: 
CS-2.10.1.4-1. The aircraft changes its trajectory intentionally (e.g., modifying its 
trajectory for an obstacle that was not previously known) or unintentionally (e.g., strong wind 

pushes the aircraft off course) [ Req-111] 

 

Scenarios for UCCA-11.1: ATM provides trajectory modifications (and the aircraft do not) when 
the modifications will result in a collision 

 

CS-2.11.1.1. ATM and the aircraft receive feedback indicating that the trajectory 
modifications will result in a collision. However, ATM issues its selected trajectory 
modifications anyway. This could occur if: 
CS-2.11.1.1-1. ATM selects trajectory modifications that contain secondary collisions. It 
does this believing that it would be faster to issue these first and then resolve the secondary 
collisions later. However, ATM becomes busy resolving these secondary collisions and does 
not return to at least some of them in time. Furthermore, the aircraft believe ATM will resolve 

the secondary collisions and therefore don't try to resolve them on its own. [ Req-101, Req-
102] 
CS-2.11.1.1-2. While attempting to identify appropriate trajectory modifications, ATM 
does not process feedback about changes to the trajectories of other aircraft and therefore 
does not update its process model to reflect the new trajectories of those aircraft. Similarly, 
the aircraft may not receive timely feedback about changes in the trajectories of aircraft 
because they would only receive such feedback indirectly when the consolidated airspace 
state feedback changes. As a result, ATM selects trajectory modifications that it wrongly 
believes are collision free but are actually in conflict based on the updated trajectories of 
other aircraft and the aircraft do not have the timely feedback to recognize that a secondary 

collision will occur. [ Req-108] 
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CS-2.11.1.2. ATM and the aircraft do not receive feedback that the trajectory modifications 
will result in a collision. This could occur because: 
CS-2.11.1.2-1. ATM does not receive timely feedback of ground hazards (e.g., a new 
construction crane being erected) and believes that the trajectory modification it is providing 
will not cause a conflict with that ground hazard. In addition, the aircraft may be unable to 
detect the ground hazard with enough time to either avoid it themselves or notify ATM to 
take action. As a result, the aircraft do not select trajectory modifications and ATM issues its 

selected trajectory modifications, unaware that it will cause a collision. [ Req-123] 
CS-2.11.1.2-2. Other aircraft are about to but have not yet modified their trajectories and 
therefore ATM has not received any feedback that the trajectories of some aircraft are about 
to be modified when it begins to identify its own trajectory modifications. If it does not 
receive and process feedback later that the trajectories of some aircraft have been modified, 
ATM will identify trajectory modifications based on the outdated, unmodified aircraft 
trajectories and therefore identify its own trajectory modifications that it does not realize are 

in conflict with the modified trajectories of some aircraft. [ Req-135, Req-136] 
CS-2.11.1.3. ATM issues trajectory modifications that do not result in a collision. However, 

trajectory modifications that do result in a collision are received by the aircraft. This could 
occur because: 
CS-2.11.1.3-1. During transmission to the aircraft, part of the trajectory modification is 
dropped (e.g., due to a partial/temporary communications failure). As a result, the aircraft 
only receives part of the trajectory modifications and the part that is received by the aircraft 
is in collision with another aircraft trajectory. However, since the aircraft believe that ATM is 
managing the collision, they do not check the trajectory modification themselves and simply 

execute it. [ Req-134] 

 

Scenario for UCCA-11.2: The aircraft provide trajectory modifications (and ATM does not) when 
the modifications will result in a collision 

 

CS-2.11.2.1. The aircraft do not receive feedback that the trajectory modifications will result 
in a collision. This could occur because: 
CS-2.11.2.1-1. One set of aircraft are about to but have not yet modified their trajectories 
and therefore other aircraft have not received any feedback that the trajectories of some 
aircraft are about to be modified when they begin to identify their own trajectory 
modifications. If these other aircraft do not receive and process feedback later that the 
trajectories of some aircraft have been modified, they will identify trajectory modifications 
based on the outdated, unmodified aircraft trajectories and therefore identify their own 
trajectory modifications that they do not realize are in conflict with the modified trajectories 

of some aircraft. [ Req-135, Req-136] 
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Scenarios for UCCA-12.1: ATM provides trajectory modifications (and the aircraft do not) when 
those trajectories allocate more airspace than necessary to prevent collisions 

 

CS-2.12.1.1. ATM and the aircraft both receive feedback that the trajectory modifications 
provided to the aircraft will consume more airspace than necessary but ATM issues them 
anyway. This could occur because: 
CS-2.12.1.1-1. Based on feedback about the track of the aircraft, ATM wrongly believes 
that the aircraft is not adequately following its trajectory and could get too close to another 
aircraft. ATM therefore decides to issue further trajectory modifications that expand the 
amount of airspace consumed for that aircraft. However, if the aircraft is actually following 
its trajectory closely enough that there was no collision risk, it is actually unnecessary to 

consume the additional airspace. [ Req-117, Req-118] 
CS-2.12.1.1-2. ATM believes that weather or other event will occur in the near future that 
will compromise the ability of aircraft to follow more precise trajectory or the ability to track 
them precisely.  As a result, they issue/select these expanded trajectory modifications 
anyway to protect airspace safety even though they consume more airspace than necessary 
at the current time. The additional airspace provided for each aircraft provides the aircraft 
with additional flexibility and safety margin so the aircraft accept the expanded trajectory 
modifications. However, if the anticipated event does not ultimately occur, these expanded 

trajectory modifications will not have been necessary at all. [ Req-117, Req-118] 
CS-2.12.1.2. SC-12.1.2: ATM does not receive feedback that the trajectories will consume 

more airspace than necessary even though they do. This could occur because: 
CS-2.12.1.2-1. ATM does not receive timely information about the aircraft capabilities. As 
a result, ATM has the wrong belief about the capabilities of the aircraft and continues to issue 
trajectory modifications under the wrong belief that aircraft capabilities are degraded even 
though they are no longer degraded. Since ATM chose to resolve the conflict, the aircraft do 
not coordinate with each other and therefore also do not realize that the trajectories will 

consume more space than necessary. [ Req-111, Req-115] 

 

 

Scenarios for UCCA-12.2: The aircraft provide trajectory modifications (and ATM does not) when 
those trajectories allocate more airspace than necessary to prevent collisions 

 

CS-2.12.2.1. The aircraft and ATM both receive feedback indicating that they have selected 
trajectory modifications that will allocate more airspace than necessary to prevent 
collisions. However, they select those trajectory modifications anyway. This could occur 
because: 
CS-2.12.2.1-1. The aircraft correctly identify and begin coordinating a resolution. ATM, 
seeing that the aircraft are coordinating a solution, decides not to step in to resolve the 
conflict by itself. As a result, ATM does not have the opportunity to recognize when aircraft 
might be selecting trajectory modifications that consume more airspace than necessary. As a 
result, if the aircraft try to maintain more separation from other traffic than necessary, they 
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could end up selecting trajectory modifications that consume more airspace than necessary 

and ATM would not notice that to correct it. [ Req-127] 
CS-2.12.2.1-2. The aircraft decide to modify their trajectories and know that the 
trajectory modifications it is issuing will consume more airspace than necessary to prevent 
collisions but issues them anyway. This could occur if one aircraft experiences flight 
conditions that it believes will cause the other aircraft to be unable to follow their pre-
arranged trajectories accurately enough. If this aircraft assumes this without confirming, it 
could unilaterally select an expanded trajectory to protect airspace safety, consuming more 
airspace than necessary. Since the aircraft decided to modify them on their own, ATM does 

not notice that the trajectories consume more airspace than necessary. [ Req-118, Req-116] 

 

E.3.    Combination 3 UCCAs and Scenarios  

In this research, only one abstract UCCA is considered for combination 3: 

UCCA-17: Both ATM and the aircraft provide trajectory modifications when the trajectory 
modifications conflict [H-1] 

As described in Section 5.2, there are three refined UCCAs that can be generated for UCCA-
17. These are shown in Table E-3. Following the table are the causal scenarios identified for each 
of the three refined UCCAs. 

Table E-3: Refined UCCAs for UCCA-17 

Sub-ID ATM Aircraft 1 Aircraft n Context 

UCCA-17.1 
Provides Trajectory 
Modifications 

Provides Trajectory 
Modifications 

Does not provide 
Trajectory 
Modifications when the 

trajectory 
modifications 
conflict [H-1] 

UCCA-17.2 
Does not provide 
Trajectory 
Modifications 

Provides Trajectory 
Modifications 

Provides Trajectory 
Modifications 

UCCA-17.3 
Provides Trajectory 
Modifications 

Provides Trajectory 
Modifications 

Provides Trajectory 
Modifications 

 

Scenarios for UCCA-17.1: ATM and the aircraft both provide trajectory modifications when they 
conflict with each other [H-1] 

 

CS-2.17.1.1. ATM and the aircraft receive feedback that the trajectory modifications selected 
by one of them will conflict with those selected by the other. However, they issue their 
conflicting trajectory modifications anyway. This could occur if: 
CS-2.17.1.1-1. Both ATM and a UAM aircraft identify a potential conflict with another 
aircraft that is not equipped to perform self-separation. The UAM aircraft proceeds to resolve 
the conflict under the assumption that the other aircraft will not change trajectory and are 
able to identify a solution first. However, ATM can control that other aircraft (e.g., by 
coordinating with conventional ATC). Thus, although ATM knows the aircraft has already 
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selected trajectory modifications, ATM provides what it believes to be a better solution but 

that conflicts with those of the aircraft. [ Req-114] 
CS-2.17.1.1-2. Both ATM and the aircraft identify a potential conflict and ATM is the first 
to issue trajectory modifications to the aircraft. Although the aircraft receive those trajectory 
modifications, they wrongly believe those modifications will not adequately resolve the 
collision. The aircraft therefore ignore ATM’s trajectory modifications and issue their own 

trajectory modifications that conflict with those selected by ATM. [ Req-106] 
CS-2.17.1.1-3. Two aircraft correctly recognize a conflict and agree on trajectory 
modifications to prevent it. Although ATM knows that the other aircraft has already selected 
a trajectory modification, ATM believes a different solution exists because it is balancing 
competing factors differently. Thus, ATM issues trajectory modifications anyway to 

implement its solution even though it conflicts with that selected by the two aircraft. [ Req-
106] 
CS-2.17.1.1-4. The aircraft and ATM both identify a conflict at the same time and both try 
to resolve it independently. As a result, ATM and the aircraft choose different trajectory 
modifications to resolve the conflict. If they manage to select trajectory modifications at 
about the same time, even if one of them receives feedback that the other has already 
selected trajectory modifications, they may not process that feedback in time before they 

provide their own (conflicting) trajectory modifications. [ Req-110, Req-121] 
CS-2.17.1.1-5. Two aircraft correctly recognize a conflict and agree on trajectory 
modifications to prevent it. At the same time, ATM also begins to try to resolve the conflict. 
Because of this, although ATM receives the trajectory modifications selected by the aircraft 
as feedback, it does not process this feedback because it is trying to resolve the conflict. As a 
result, by the time ATM realizes the aircraft have already selected trajectory modifications, 
ATM has already transmitted its own trajectory modification that conflicts with the trajectory 

modification selected by the equipped aircraft. [ Req-106, Req-110] 
CS-2.17.1.1-6. Multiple sets of conflicts are occurring and ATM and the aircraft have 
received feedback about them and are attempting to resolve them. While the aircraft are 
each only attempting to resolve their own local conflict, ATM is resolving all these conflicts 
together because it believes it can resolve them more efficiently. As a result, although the 
aircraft have selected trajectory modifications already, ATM provides a conflicting set to the 

aircraft. [ Req-124] 
CS-2.17.1.1-7. ATM and the aircraft both receive feedback about a conflict but only the 
aircraft also realize that they need to modify their trajectory to avoid weather. Thus, while 
ATM is identifying trajectory modifications to resolve the conflict, the aircraft are resolving 
the conflict as well as avoiding weather. If they take about the same time to decide on 
trajectory modifications, the aircraft might end up selecting trajectory modifications that are 

different from those selected by ATM. [ Req-110, Req-121, Req-146, Req-147] 
CS-2.17.1.2. ATM does not receive feedback that its trajectory modifications will conflict with 

those selected by the aircraft. This could occur if: 
CS-2.17.1.2-1. Both ATM and the aircraft identify a potential conflict and attempt to 
resolve it. If they both select trajectory modifications at about the same time, neither ATM 
nor the aircraft will receive feedback that the other has already selected trajectory 
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modifications before they provide their own. Thus, they both provide trajectory modifications 

that conflict with each other. [ Req-123] 
CS-2.17.1.2-2. Two aircraft approach each other but only one of the aircraft is equipped 
to perform self-deconfliction. That aircraft thus selects a trajectory modification. ATM, 
however, does not know that the other aircraft has already selected a trajectory modification 
and it tries to prevent the conflict by transmitting its own trajectory modification that 

conflicts with the trajectory modification selected by the equipped aircraft. [ Req-114, Req-
121] 

CS-2.17.1.3. ATM and the aircraft do not provide conflicting trajectory modifications but 
conflicting trajectory modifications are received by the aircraft. This could occur if: 
CS-2.17.1.3-1. An aircraft (aircraft A) is involved in a conflict (conflict 1) and begins 
coordinating to resolve it. While doing so, it becomes involved in another conflict (conflict 2) 
but cannot attend to conflict 2 until it has resolved conflict 1. However, the aircraft involved 
in conflict 2 begin coordinating their trajectory modifications. As a result, aircraft A receives 
two conflicting sets of trajectory modifications, one to resolve conflict 1 and another to 

resolve conflict 2.  [ Req-148] 
CS-2.17.1.4. The aircraft do not receive conflicting trajectory modifications but the reason for 

needing trajectory modifications is not resolved or a collision still occurs. Same scenarios as 
CS-2.1.4 

 

Scenarios for UCCA-17.2: The aircraft provide trajectory modifications when they conflict with 
each other [H-1] 

 

CS-2.17.2.1. The aircraft receive feedback that the trajectory modifications selected by each of 
them are in conflict but they select them anyway. This could occur if: 
CS-2.17.2.1-1. Two aircraft correctly recognize a conflict but conflict in their proposals for 
how to resolve it. This could occur if the aircraft prioritize different types of safety margins 

and thus select different trajectory modifications to enact those margins. [ Req-109, Req-
132, Req-133] 
CS-2.17.2.1-2. Two aircraft identify the same conflict at the same time and both attempt 
to resolve the conflict. They both choose the same trajectory modification for themselves and 
transmit the modification they intend to follow to the other aircraft, assuming that the other 
aircraft will pick a deconflicted trajectory. If they both make this assumption, they might both 
pick the same trajectory modification, assuming that the other aircraft will change its 
trajectory modification. If neither changes its trajectory modification, the aircraft end up 

executing the conflicting trajectory modifications they originally chose. [ Req-149] 
CS-2.17.2.1-3. Two aircraft (A & B) identify a conflict. Aircraft A selects a suitable 
trajectory modification for itself and indicates its proposal to aircraft B. However, due to 
traffic density, there is not a suitable trajectory available for aircraft B given the trajectory 
selected by aircraft A and the air traffic in the surrounding airspace. As a result, aircraft B 
selects a conflicting trajectory modification and requests aircraft A to change its trajectory to 
deconflict. However, aircraft A does not respond to this request or it has no other options 

available and thus they select trajectory modifications that conflict. [ Req-150] 
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CS-2.17.2.2. The aircraft do not receive feedback that they are selecting conflicting trajectory 
modifications. This could occur if: 
CS-2.17.2.2-1. Two aircraft each observe a set of conflicts that do not involve each other 
and they each coordinate with their own group of aircraft to resolve a conflict. Because these 
two aircraft are resolving different conflicts, they are not coordinating with each other and 
therefore do not receive feedback that they are selecting trajectory modifications that will 

conflict with each other (i.e., a secondary conflict) [ Req-108] 
CS-2.17.2.2-2. An emergency response aircraft believes they do not need to coordinate 
trajectories with other aircraft because of a TFR that is put in place to protect the airspace for 
emergency response operations (e.g., a wildfire). It therefore selects trajectories as needed 
for its operations. However, one of the UAM aircraft does not obey this TFR and selects a 
trajectory modification that places it within the TFR. If that emergency response aircraft does 
not communicate its intent to change trajectories, the UAM aircraft may select further 

trajectory modifications that conflict with the emergency response aircraft. [ Req-151] 
CS-2.17.2.3. The aircraft do not select conflicting trajectory modifications but conflicting 

trajectory modifications are received by at least one of the aircraft. This could occur if: 
CS-2.17.2.3-1. An aircraft (aircraft A) identifies two conflicts that need to be resolved. 
Although ATM issues trajectory modifications to resolve conflict 1, Aircraft A coordinates with 
other aircraft to resolve conflict 2. As a result, aircraft A receives conflicting trajectory 

modifications even though the ones selected by the aircraft were not conflicting. [ Req-148, 
Req-152] 

CS-2.17.2.4. The aircraft do not select conflicting trajectory modifications and those 
modifications are received correctly by the aircraft. However, the aircraft end up colliding 
anyway. Same scenarios as CS-2.1.4 

 

Scenarios for UCCA-17.3: ATM and the aircraft provide trajectory modifications when they all 
conflict with each other [H-1] 

 

CS-2.17.3.1. ATM and the aircraft receive feedback that they are selecting trajectory 
modifications that are mutually in conflict but select them anyway. This could occur if: 
CS-2.17.3.1-1. The two aircraft correctly recognize a conflict but do not agree on how to 
prevent it. Furthermore, ATM issues its own trajectory modifications. This could be because 
it needs to step in to help the two aircraft select an appropriate trajectory modification or 
because it believes its solution is a better balance of competing factors. Thus, the aircraft and 

ATM all issue their own trajectory modifications that all conflict with each other. [ Req-123] 
CS-2.17.3.1-2. Two different conflicts involving different aircraft are identified. The 
aircraft involved in each conflict resolve their respective conflicts without coordinating with 
each other. As a result, they select trajectory modifications that conflict with each other. 
ATM, however, does resolve these conflicts in a coordinated way and issues conflicting 
trajectory modifications to the aircraft because it believes it has a better coordinated or more 

efficient solution to the two conflicts. [ Req-121, Req-148, Req-152] 
CS-2.17.3.2. ATM and the aircraft do not receive feedback that they are selecting conflicting 

trajectory modifications. This could occur if: 
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CS-2.17.3.2-1. Two different conflicts involving different aircraft are identified. The 
aircraft involved in each conflict resolve their respective conflicts without coordinating with 
each other. As a result, they select trajectory modifications that conflict with each other 
without realizing that they do. Although the aircraft provide feedback to ATM that they have 
selected trajectory modifications, that feedback is not received by ATM. However, because 
ATM provides no feedback when it receives trajectory modifications selected by the aircraft, 
ATM and the aircraft are all unaware that mutually conflicting trajectory modifications have 

been selected. [ Req-121, Req-148, Req-152] 
CS-2.17.3.3. ATM and the aircraft do not select mutually conflicting trajectory modifications 

but the trajectory modifications received by the aircraft are mutually conflicting. Same 
scenarios as CS-2.17.1.3 and CS-2.17.2.3 

CS-2.17.3.4. ATM and the aircraft do not select mutually conflicting trajectory modifications 
and they are correctly received by the aircraft. However, the aircraft end up colliding 
anyway. Same scenarios as SC-2.1.4 

 

E.4.    Combination 4 UCCAs and Scenarios  

Two abstract UCCAs were identified for combination 4 and these are shown in Table E-4. As 
in the previous section, three refined UCCAs were identified for each of these abstract UCCAs 
and they are shown in Table E-5. Following these tables are the scenarios that were identified for 
each refined UCCA. 

Table E-4: Combination 4 Abstract UCCAs 

# Either ATM or 
the aircraft 

Then the 
other 

Context 

UCCA-18 Provides 
Trajectory 
Modifications 

Provides 
Trajectory 
Modifications 

when ATM and the aircraft are attempting to resolve 
the same conflict [H-1] 

UCCA-19 
When ATM and the aircraft are modifying trajectories 
for different reasons [H-1] 

 
Table E-5: Refined UCCAs for UCCA-18 and UCCA-19 

Sub-ID 
Trajectory Modifications 

provided by 
Then trajectory 

Modifications provided by 
Context 

UCCA-18.1 ATM Aircraft n when ATM and the 
aircraft are attempting 
to resolve the same 
conflict [H-1] 

UCCA-18.2 Aircraft n ATM 

UCCA-18.3 Aircraft 1 Aircraft n 

UCCA-19.1 ATM Aircraft n When ATM and the 
aircraft are modifying 
trajectories for different 
reasons [H-1] 

UCCA-19.2 Aircraft n ATM 

UCCS-19.3 Aircraft 1 Aircraft n 
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Scenarios for UCCA-18.1: ATM provides trajectory modifications then the aircraft provide 
trajectory modifications when ATM and the aircraft are attempting to resolve the same conflict 
[H-1] 

 

CS-2.18.1.1. One or more of the aircraft provide trajectory modifications after ATM does 
even though they both received feedback indicating the conflict at the same time. This 
could occur if: 
CS-2.18.1.1-1. When feedback about the conflict is received, both ATM and the aircraft 
begin trying to resolve it. If the conflict occurs in densely populated airspace, ATM is faster at 
identifying a solution and transmits its solution to the aircraft. However, the aircraft are 
preoccupied with identifying a solution and don’t process the trajectory modifications from 

ATM and issue their own trajectory modifications to resolve the same conflict.  [ Req-121, 
Req-153] 
CS-2.18.1.1-2. When feedback about the conflict is received, both ATM and the aircraft 
begin trying to resolve it. ATM is faster at identifying a solution and the aircraft correctly 
receive that solution. However, the aircraft disagree with ATM’s selected trajectory 
modifications and believe they have the authority (e.g., PIC authority) to select different ones 

and therefore the aircraft select different trajectory modifications for the same conflict. [ 
Req-133, Req-154, Req-155] 
CS-2.18.1.1-3. The aircraft have more direct feedback about prevailing flight conditions 
and recognize that inclement weather or other factors may make it more difficult for aircraft 
to fly standard trajectories. Thus, the aircraft take additional time to coordinate trajectory 
modifications to account for these factors. ATM, however, does not realize these conditions 
are happening and therefore is faster at issuing trajectory modifications because it wrongly 

believes that standard trajectories can be used. [ Req-111, Req-116, Req-121] 
CS-2.18.1.2. ATM and the aircraft do not receive feedback indicating the conflict at the same 

time. This could occur if: 
CS-2.18.1.2-1. The aircraft are temporarily unable to receive consolidated airspace state 
feedback (e.g., terrain or building interference) and therefore get that feedback later than 
ATM. As a result, ATM resolves the conflict first and then only do the aircraft identify their 

solution. [ Req-156] 
CS-2.18.1.3. ATM does not provide trajectory modifications before the aircraft do but the 

aircraft do receive trajectory modifications from ATM before they select their own. This 
could occur if: 
CS-2.18.1.3-1. ATM modifies the trajectory of the aircraft for some other reason (e.g., a 
different conflict, weather, traffic) before it realizes a new conflict exists. However, ATM does 
not indicate that its trajectory modifications are not to resolve that conflict. As a result, for 
that conflict, although ATM isn’t resolving that conflict yet, the aircraft receive trajectory 

modifications from ATM before they select their own. [ Req-132] 
CS-2.18.1.4. ATM does not provide trajectory modifications before the aircraft and that is 

what the aircraft receive. However, they respond by executing a set of trajectory 
modifications provided by ATM before the ones selected by the aircraft. This could occur if: 
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CS-2.18.1.4-1. An aircraft receives a set of trajectory modifications from ATM for some 
other reason and then becomes involved in a conflict and selects trajectory modifications to 
resolve the conflict (and ATM does not transmit its own trajectory modifications for that 
conflict). However, if the aircraft apply those modifications in the order they were received 
and begin to execute the modifications from ATM first before executing the ones selected by 

the aircraft to resolve the conflict. [ Req-157] 

 

Scenarios for UCCA-18.2: The aircraft provide trajectory modifications then ATM provides 
trajectory modifications when ATM and the aircraft are attempting to resolve the same conflict 
[H-1] 

 

CS-2.18.2.1. ATM provides trajectory modifications after one or more of the aircraft does 
even though they both received feedback indicating the conflict at the same time. This 
could occur if: 
CS-2.18.2.1-1. In a situation where a large group of aircraft need to alter their trajectories, 
a subset of the aircraft may select their own trajectory modifications and are able to do so 
faster than ATM. ATM, however, is identifying a more complete solution for all aircraft which 
takes it longer but is more optimal/valid. Thus, the aircraft end up selecting one set of 

trajectories first before ATM identifies its solution. [ Req-124] 
CS-2.18.2.2. ATM and the aircraft do not receive feedback indicating the conflict at the same 

time. This could occur if: 
CS-2.18.2.2-1. The aircraft receive feedback about each other’s trajectory or track via 
direct transponder links whereas ATM receives that information through a ground receiver 
network. As a result, ATM receives feedback about the trajectory/track after the aircraft does 
and therefore the aircraft select trajectory modifications before ATM does. In addition, if ATM 
does not process feedback that the aircraft have selected trajectory modifications, it won’t 

know to avoid providing its own set of modifications. [ Req-121, Req-158] 
CS-2.18.2.3. The aircraft do not provide trajectory modifications before ATM does but they 

receive trajectory modifications selected by them before ATM. This could occur if: 
CS-2.18.2.3-1. An aircraft modifies its trajectory for some other reason (e.g., a different 
conflict, weather, traffic) before it realizes the new conflict exists. Meanwhile, ATM resolves 
the conflict but the aircraft don’t know this until ATM issues its trajectory modifications. As a 
result, the aircraft receive and execute their own trajectory modification first and only 

execute ATM’s trajectory modifications after. [ Req-132, Req-157] 
CS-2.18.2.3-2. ATM transmits its trajectory modifications via a ground network to the 
aircraft whereas the aircraft transmit trajectory modifications directly to each other. As a 
result, even though they all provide trajectory modifications at the same time, the ones 

provided by ATM arrive after the ones provided by the aircraft [ Req-132, Req-157] 
CS-2.18.2.4. The aircraft do not provide trajectory modifications before ATM and that is what 

they receive. However, they respond by executing trajectory modifications provided by 
them first before ATM. Same scenarios as CS-2.18.1.4 



 

211 

 

Scenarios for UCCA-18.3: One aircraft provides trajectory modifications then another aircraft 
provides trajectory modifications when both aircraft are attempting to resolve the same conflict 
[H-1] 

 

CS-2.18.3.1. One aircraft provides trajectory modifications after another aircraft does even 
though they receive feedback indicating the conflict at the same time. This could occur if: 
CS-2.18.3.1-1. Two aircraft are under a heavy workload. Although one aircraft correctly 
recognizes the conflict and tries to resolve it, the other aircraft does not recognize the conflict 
immediately and does not try to resolve it until later and does not realize the other aircraft 
has already tried to coordinate a resolution to the conflict. As a result, the two aircraft initially 

issue conflicting conflict resolutions to each other.  [ Req-106, Req-158] 
CS-2.18.3.2. The aircraft do not receive feedback indicating the conflict at the same time. This 

could occur if: 
CS-2.18.3.2-1. The aircraft receive feedback about the conflict from different sources. 
One aircraft might receive the feedback directly via transponder messages from the other 
aircraft. However, the other aircraft might receive its feedback via a ground receiver network 

which will have more delay than direct transponder messages. [ Req-121] 
CS-2.18.3.3. The aircraft do not provide trajectory modifications at different times but they 

receive trajectory modifications at different times. Same scenarios as CS-2.18.1.3 and CS-
2.18.2.3 

 

Scenarios for UCCA-19.1: ATM provides trajectory modifications before the aircraft provide 
trajectory modifications when they are modifying trajectories for different reasons [H-1] 

 

CS-2.19.1.1. One or more of the aircraft provide trajectory modifications after ATM even 
though they receive feedback indicating the need to modify trajectories at the same time. 
This could occur if: 
CS-2.19.1.1-1. ATM and the aircraft receive feedback about weather and a potential 
conflict at the same time. However, ATM has the wrong process model of the aircraft’s ability 
to operate in inclement weather and believes only a simple trajectory modification is needed 
to resolve both the conflict and sufficiently avoid the weather. However, the aircraft (which 
has the correct process model of its own needs) is identifying a more substantial trajectory 
modification that resolves the conflict and avoids more of the weather. Thus, although ATM 
is faster at identifying its simpler trajectory modification, the aircraft still select their own 

trajectory modifications. [ Req-111, Req-121, Req-159] 
CS-2.19.1.2. ATM and the aircraft do not receive feedback indicating the need to modify 

trajectories at the same time. This could occur if: 
CS-2.19.1.2-1. Both ATM and the aircraft receive feedback about a conflict at the same 
time but feedback about inclement weather is either only received by the aircraft or received 
late by ATM. ATM therefore selects trajectory modifications to prevent the conflict only. 
However, the aircraft select different trajectory modifications that also avoid weather and 

prevent the conflict. [ Req-111, Req-159] 
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CS-2.19.1.3. ATM and the aircraft do not provide trajectory modifications at different times 
but the aircraft receive trajectory modifications from the aircraft after ones from ATM.  
Same as CS-2.18.1.3 

CS-2.19.1.4. ATM and the aircraft do not provide trajectory modifications at different times. 
However, the aircraft respond by executing trajectory modifications provided by ATM first 
before the ones provided by the aircraft. Same as CS-2.18.1.4 

 

Scenarios for UCCA-19.2 The aircraft provide trajectory modifications then ATM provides 
trajectory modifications when they are modifying trajectories for different reasons [H-1] 

 

CS-2.19.2.1. ATM provides trajectory modifications after one or more of the aircraft do even 
though they receive feedback indicating the need to modify trajectories at the same time. 
This could occur if: 
CS-2.19.2.1-1. The feedback indicates two conflicts, one more immediate than the other. 
The aircraft decide to resolve the more immediate one first whereas ATM tries to resolve 
both conflicts at the same time. Thus, the aircraft identify trajectory modifications more 
quickly than ATM but ATM issues its trajectory modifications anyway because it has a solution 

to both conflicts. [ Req-121] 
CS-2.19.2.2. ATM and the aircraft do not receive feedback indicating the need to modify 

trajectories at the same time. Same as CS-2.19.1.2 
CS-2.19.2.3. ATM and the aircraft do not provide trajectory modifications at different times 

but the aircraft receive trajectory modifications from the aircraft before ones from ATM.  
Same as CS-2.18.2.3 

CS-2.19.2.4. ATM and the aircraft do not provide trajectory modifications at different times 
and that is what they receive. However, the aircraft respond by executing trajectory 
modifications provided by ATM first before the ones provided by the aircraft. Same as CS-
2.18.2.4 

 

Scenarios for UCCA-19.3: One aircraft provides trajectory modifications then the other when 
they are modifying trajectories for different reasons [H-1] 

 

CS-2.19.3.1. One aircraft provides trajectory modifications after the other does even though 
they receive feedback indicating the need to modify trajectories at the same time. Same as 
CS-2.18.3.1 

CS-2.19.3.2. ATM and the aircraft do not receive feedback indicating the need to modify 
trajectories at the same time. Same as CS-2.18.3.2 

CS-2.19.3.3. ATM and the aircraft do not provide trajectory modifications at different times 
but the aircraft receive trajectory modifications from the aircraft before ones from ATM.  
Same as CS-2.18.3.3 

CS-2.19.3.4. ATM and the aircraft do not provide trajectory modifications at different 
times. However, the aircraft respond by executing trajectory modifications provided by 
ATM first before the ones provided by the aircraft. Same as CS-2.18.3.4  
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Appendix F Design Iteration 2 – Requirements and Refined 
Control Elements 

In this appendix, the additional system requirements and the refined control elements that 
were used to create the iteration 2 shared collision avoidance conceptual architecture (shown in 
Figure 39) are presented.  

 

F.1    Additional System Requirements for Shared Collision Avoidance 
Req-101. If there is not enough time to generate complete trajectory modifications for all aircraft, partial 

trajectory modifications must be generated that resolve the most imminent conflicts or interference 

first. [ RC-76] 

Req-102. If partial trajectory modifications are provided, they must be updated within <TBD> time of 

issuing them to ensure aircraft have complete and collision-free trajectories to follow for their flight. 

[ RC-77] 

Req-103. If either ATM or the aircraft is unable to resolve a potential conflict, the other must be able to 

take over and resolve it. [ RC-78] 

Req-104. Conflicts must continue to be resolved even if the ability of ATM or one of the aircraft to do so 

is compromised [ RC-79] 

Req-105. Ground hazards must be detected with at least <TBD> range to ensure aircraft can take action 

to avoid them. [ RC-80] 

Req-106. The conflict being resolved must be indicated to the aircraft involved to ensure they recognize 

the collision. [ RC-81] 

Req-107. If an aircraft does not adequately execute its trajectory modifications, its trajectory should be 

analyzed with respect to nearby aircraft to identify any potential collisions that might result from the 

inadequately executed trajectory modification. [ RC-82] 

Req-108. Any aircraft within <TBD> of an area where a potential conflict might occur or within <TBD> 

distance of an aircraft whose trajectory is being modified must be included in coordination to ensure 

secondary collisions are avoided. [ RC-83] 

Req-109. A potential conflict that remains unresolved after <TBD> of being identified or <TBD> seconds 

of the potential collision occurring must be prioritized and resolved within<TBD> time. [ RC-84] 

Req-110. If either ATM or the aircraft decide to attempt to resolve a collision, they must provide feedback 

of their decision to do so.  [ RC-85] 

Req-111. Any changes to the navigational capabilities of an aircraft (e.g., accuracy) must be reported in a 

timely manner to ensure that those capabilities are kept up-to-date for use in collision avoidance 

decisions. [ RC-86] 

Req-112. The aircraft must begin executing trajectory modifications issued by ATM within <TBD> time of 

receiving them [ RC-87] 

Req-113. Requests to confirm that proposed trajectory modifications will have adequate alternative 

trajectories available must be confirmed within <TBD> time of the request being received to ensure 

trajectory modifications can be issued in a timely manner. [ RC-88] 

Req-114. If a conflict involves at least one aircraft that is not equipped or non-cooperative, the conflict 

must be resolved by whoever has better information about that aircraft. [ RC-97] 
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Req-115. Trajectory modification decisions must account for any flight conditions that cause an aircraft 

to be unable to meet their expected navigational or maneuvering capabilities or trajectory 

constraints. [ RC-89] 

Req-116. If prevailing flight conditions are affecting the ability of one aircraft to meet their expected 

navigational or maneuvering capabilities or trajectory constraints, the ATM system shall anticipate 

and verify that other aircraft of similar type might be experiencing the same effects and account for 

them in trajectory modification decisions. [ RC-90] 

Req-117. Any trajectory modifications that consume additional airspace must be checked periodically to 

confirm they are still necessary [ RC-91] 

Req-118. Trajectories that consume more airspace than necessary must be able to be amended should it 

become necessary to use airspace more efficiently [ RC-92] 

Req-119. If a more efficient trajectory becomes available for an aircraft, trajectory modifications must be 

provided to place the aircraft on the more efficient path within <TBD> time. [ RC-95] 

Req-120. Any aircraft requiring a change in trajectory for any reason must be able to initiate a request for 

trajectory modifications. [ RC-94]  

Req-121. An explicit decision must be made about who is resolving a potential conflict. [ Resp-1.2] 

Req-122. Emergency response flights must be given priority to carry out their missions. [ RC-96] 

Req-123. If multiple potential resolutions to a conflict are identified, an explicit decision must be made 

about which trajectory modification instructions to execute [ Resp-1.3] 

Req-124. Under <TBD> conditions, to better coordinate the resolution of conflicts, it must be possible to 

temporarily require that all trajectory modification decisions be made centrally. [ Resp-1.6] 

Req-125. If the NAS temporarily enters a “centralized mode”, it must have an associated end time when 

that mode ends [ RC-100] 

Req-126. ATM system shall establish maximum allowable spacing between aircraft based on current and 

anticipated conditions [ RC-101] 

Req-127. Flights that require additional spacing beyond <TBD> maximum allowable spacing must be 

monitored and managed to ensure the additional spacing does not cause undue negative impacts to 

other airspace users. [ RC-102] 

Req-128. Emergency response aircraft must be provided with sufficient protected airspace to allow them 

the flexibility to make some small changes to their trajectory without having to re-coordinate with 

other aircraft or ATM [ RC-104] 

Req-129. If a nearby aircraft is detected but not included in the consolidated airspace state provided by 

ATM, the consolidated airspace state must be reviewed to confirm if the detected aircraft was wrongly 

omitted. [ RC-105] 

Req-130. If a more efficient trajectory becomes available for an aircraft, trajectory modifications must be 

provided to place the aircraft on the more efficient path within <TBD> time [ RC-106] 

Req-131. Any changes made by the aircraft to its trajectory (e.g., to account for weather) must be 

accounted for in future trajectory modification decisions [ RC-107] 

Req-132. Trajectory modifications must always be accompanied by rationale for their selection. [ RC-

108] 

Req-133. When arbitrating conflicting trajectory modifications, the rationale for each trajectory 

modification selection must be considered [ RC-98] 
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Req-134. Acknowledgements of trajectory modifications must be checked to ensure that they match the 

originally transmitted trajectory modification [ RC-109] 

Req-135. When aircraft are identified as needing a trajectory modification, an indicator must be provided 

within the consolidated airspace state to ensure other aircraft and ATM are aware of aircraft whose 

trajectories may be changing [ RC-110] 

Req-136. Trajectory modification decisions must account for aircraft who may be about to change 

trajectories [ RC-93] 

Req-137. If a collision is not adequately resolved, the conflict must be re-evaluated and new trajectory 

modifications issued to resolve it again [ RC-103] 

Req-138. In consolidated airspace state, indicate if an aircraft is an emergency response aircraft so that 

additional spacing can be provided for them [ RC-111] 

Req-139. If multiple conflicting trajectory modifications are issued, none will be transmitted for execution 

until they are arbitrated [ RC-112] 

Req-140. Consolidated airspace state must include characteristics of the aircraft and mission along with 

the trajectory (i.e., aircraft capabilities, mission and operational constraints) [ RC-113] 

Req-141. Traffic priorities must be accounted for when deciding who should resolve a conflict [ RC-114] 

Req-142. Selection of trajectory modifications must account for all aircraft that are identified as being 

potential participants in a conflict [ RC-115] 

Req-143. The controller selected to resolve the conflict must either attempt to resolve the conflict or 

indicate that they are unable to [ RC-116] 

Req-144. Air traffic priorities must be determined and adhered to consistently when making trajectory 

modification decisions [ Resp-1.5] 

Req-145. The ability of aircraft to execute their planned trajectory to the required navigational 

performance must be monitored and trajectory modifications reconsidered if they are unable to 

execute their planned trajectories sufficiently accurately [ Resp-1.4] 

Req-146. Aircraft must be able to decline a trajectory modification if the new trajectory cannot be 

executed safely. [ RC-120] 

Req-147. If an aircraft declines a trajectory modification, it must provide a reason for declining it [ RC-

121] 

Req-148. If an aircraft is involved in two conflicts at once, a decision must be made about whether these 

two conflicts should be resolved as two conflicts or if they should be combined into 1 large conflict [ 

RC-122] 

Req-149. If the aircraft are resolving a conflict, they must ensure that they select trajectories that do not 

conflict with each other [ RC-123] 

Req-150. If aircraft are resolving a conflict, they must be able to provide their trajectory restrictions to 

the other aircraft to support overall selection of trajectory modifications [ RC-124] 

Req-151. Even airspace operations that are protected within a TFR must have track and planned 

trajectories available and kept updated [ RC-125] 

Req-152. If two conflicts are combined into one, a new decision must be made about which controller 

resolves that new combined conflict [ RC-126] 

Req-153. When a controller is selected to resolve the conflict, a time limit for resolving the conflict must 

be established that is based on how much time is available before a collision occurs [ RC-127] 
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Req-154. Unless an aircraft is unable to execute trajectory modifications, it must execute the trajectory 

modifications provided to it [ RC-128] 

Req-155. If an aircraft is unable to execute a provided set of trajectory modifications, it must provide a 

reason for being unable to execute them so that new trajectory modifications can be selected [ RC-

129] 

Req-156. Feedback mechanisms used by the aircraft to receive feedback needed for collision avoidance 

must be designed for the anticipated urban environments or terrain conditions of UAM [ RC-130] 

Req-157. If two different sets of trajectory modifications that modify the same portion of an aircraft’s 

trajectory for two different purposes, they should be arbitrated to decide how to apply both sets of 

modifications (if possible) [ RC-131] 

Req-158. If an aircraft receives a message from another aircraft to coordinate trajectory modifications, it 

must respond with its proposed trajectory modifications within <TBD> time [ RC-132] 

Req-159. If the aircraft identify a conflict, they must be able to highlight important trajectory constraints 

to assist with deciding which controller would be best able to resolve the conflict [ RC-133] 

Req-160. Once a conflict is identified, it must be monitored to ensure it is resolved until there is no longer 

a risk of a collision. [ RC-134] 

Req-161. Once a conflict is identified, it must be reported within <TBD> time [ RC-135] 

Req-162. The controller assigned to resolve a conflict must acknowledge the conflict they are assigned to 

[ RC-136] 

Req-163. When switching to fully centralized decision making, a transition period shall be allowed where 

aircraft continue resolving some conflicts to avoid overwhelming ATM [ RC-137] 

Req-164. If additional aircraft become involved in a conflict that is already being resolved, the controller 

chosen to resolve that conflict must be re-evaluated to ensure they are still appropriate.  [ RC-138] 

Req-165. The airspace near an aerodrome must be managed by ATM to protect aircraft entering/exiting 

the aerodrome unless traffic density levels permit the aircraft to self-separate [ RC-139] 

Req-166. If a conflict is reassigned to a different controller, controllers that are no longer assigned must 

stop resolving a conflict [ RC-140] 

Req-167. If the aircraft are resolving a conflict, they must select trajectory modifications in accordance 

with the prescribed traffic priorities.  [ RC-141] 

Req-168. If a conflict remains unresolved, the originally assigned controllers must be notified to re-resolve 

it.  [ RC-142] 

Req-169. If controllers are unable to adequately resolve a conflict after <TBD> attempts, a re-assignment 

should be considered. [ RC-143] 

Req-170. Trajectory modifications to resolve a conflict should only be accepted from the controller 

assigned to the conflict. [ RC-144] 

Req-171. A controller assigned to a conflict must be given enough time to attempt to resolve the conflict 

before that conflict is marked as unresolved [ RC-145] 

Req-172. If an aircraft needs to modify its departure time (earlier or later), it must provide feedback of 

that for approval and deconfliction with other aircraft [ RC-146] 

Req-173. If multiple aircraft select the same trajectory modifications, all aircraft other than the one with 

the highest assigned priority must alter their trajectory modifications [ RC-147] 

Req-174. The aircraft resolving a conflict must confirm each other’s trajectory modifications before they 

are executed. [ RC-148] 
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Req-175. If two aircraft select similar trajectory modifications and both aircraft are assigned the same 

priority, they must ensure that one aircraft changes its trajectory modifications [ RC-149] 

Req-176. A request to take over resolving a conflict must be confirmed with the originally assigned 

controller before transferring assignment [ RC-150] 

Req-177. Future trajectory modification decisions must account for any arbitrated trajectory 

modifications [ RC-151] 

Req-178. The reference frame used by aircraft to exchange trajectory constraints must be consistent 

across aircraft [ RC-152] 

 
F.2    Refined Control Elements for Shared Collision Avoidance 

The figures in this section show how these additional requirements were used in conjunction 
with the earlier set of system requirements shown in Appendix B to refine Resp-1 and generate 
the six more detailed control responsibilities and their associated control actions and feedback. 
Each of these responsibilities and a simplified version of their corresponding control actions and 
feedback were shown on the refined conceptual architecture shown in Figure 39 in Section 5.3.2. 
Each control element is traced to the constraint or requirement used to generate it using the 
links in square braces. 
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Resp-1.1: Identify and resolve any conflict with an aircraft's trajectory [Req-4] 

 RC-2: Account for planned trajectory when 
identifying conflicts [Req-10] 

RC-3: Ensure that coordination provided to the 
aircraft is within the capabilities of the aircraft 
[Req-15] 

RC-4: Ensure coordination decisions do not cause 
secondary conflicts [Req-17] 

RC-15:   Continue resolving conflicts even if one 
or more aircraft are unable to communicate or 
are not responding [Req-12] 

RC-26: Ensure that aircraft have received the 
coordination being communicated [Req-13] 

RC-31: Ensure that alternative movement options 
are considered when coordinating aircraft [Req-
57] 

RC-54: Ensure that initiated traffic management 
plans are used to influence trajectory 
modifications, alternative trajectory selection, 
and airspace access management [Req-61] 

RC-58: Confirm alternative trajectories are 
available for any proposed coordination [Req-83] 

RC-61: Account for reasons that a trajectory 
modification was ineffective when selecting new 
trajectory modifications [Req-85] 

RC-71: Check in with affected aircraft on 
preferred trajectory modification if unable 
to meet all operational constraints [Req-86] 

RC-80: Detect ground hazards with at least 
<TBD> range to ensure aircraft can take 
action to avoid them [Req-105] 

RC-94: Any aircraft requiring a change in 
trajectory for any reason must be able to 
initiate a request for trajectory 
modifications [Req-120] 

RC-103: Re-evaluate any inadequately 
resolved conflict and generate new 
trajectory modifications [Req-137] 

RC-112: If conflicting trajectory 
modifications are issued, only execute a 
chosen set after arbitration [Req-139] 

RC-115: Account for all aircraft identified as 
potential participants in a conflict when 
selecting trajectory modifications [Req-142] 

RC-116: Resolve the conflict or indicate if 
unable if a controller is selected to resolve a 
conflict [Req-143] 

RC-151: Account for arbitrated trajectory 
modifications in future trajectory 
modification decisions [Req-177] 

Process Model Parts & Required Feedback/Inputs 

Feedback from the aircraft: 

• Acknowledgement of traj. mods. [RC-26] 

• Detected ground hazards [RC-80] 

• Reason for trajectory deviation [RC-61] 

• Request for trajectory change [RC-94] 

Inputs from Resp-1.2: 

• Controller assigned to resolve conflict [RC-116] 

• Aircraft involved in conflict [RC-15, RC-115] 

Inputs from Resp-1.3: Selected trajectory 
modifications [RC-112, RC-151] 

Inputs from Resp-1.4:  

• Unresolved Collision Risk [RC-27, RC-103] 

• Reason for trajectory deviation [RC-61] 

Inputs from Resp-1, 2, 3, 4 or 5: 

• Active traffic mgmt program [RC-54] 

• Confirm trajectory modifications [RC-58]  

• Alternate trajectories [RC-31, RC-58] 

• Aircraft not communicating [RC-15] 

• Consolidated airspace state [RC-2, RC-3, 
RC-4] 

Required Control Actions/Outputs 

Control actions to the aircraft:  

• Trajectory modifications [Resp-1] 

• Request acknowl. of traj. mods. [RC-26] 

• Trajectory modification options [RC-71] 

Outputs to Resp-1, 2, 3, 4 or 5:  

• Trajectory modifications [Resp-1] 

• Proposed trajectory modifications [RC-58] 

Figure F-1: Defined control elements for Resp-1.1  
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Resp-1.2: Decide which controller is resolving a conflict [Req-121] 

 RC-78: Allow ATM and the aircraft to take over 
from each other to resolve a conflict [Req-103] 

RC-79: Continue preventing conflicts even if 
the ability of ATM or one of the aircraft to do 
so is compromised [Req-104] 

RC-83: Aircraft within <TBD> of an area where 
a potential conflict might occur should be 
included in coordination [Req-108] 

RC-85: When either ATM or the aircraft decide 
to resolve a collision, they must notify the 
other aircraft or ATM of their decision [Req-
110] 

RC-97: If a conflict involves at least one aircraft 
that is not equipped or non-cooperative, the 
conflict must be resolved by whoever has 
better information about that aircraft [Req-
114] 

RC-114: Account for traffic priorities when 

deciding who should resolve a conflict [Req-
141] 

RC-133: Aircraft must be able to highlight 
important trajectory constraints to assist with 
deciding which controller would be best able 
to resolve the conflict [Req-159] 

RC-136: Acknowledge the conflict to be 
resolved once a controller is assigned to 
resolve the conflict [Req-162] 

RC-137: Allow for a transition period where 
aircraft continue resolving some conflicts to 
avoid overwhelming ATM when initially 
transitioning to fully centralized decision 
making [Req-163] 

RC-143: Consider a re-assignment of controller 
if a conflict persistently remains unresolved 
[Req-169] 

RC-150: A request to take over resolving a 
conflict must be confirmed with the originally 
assigned controller [Req-176] 

Process Model Parts & Required Feedback/Inputs 

Feedback from Resp-1.1: 

• Identified conflicts [Resp-1.2] 

• Requested controller to resolve conflict [RC-
78, RC-85] 

• Unable to resolve conflict [RC-78, RC-79] 

• Ops constraints for identified conflict [RC-133] 

• Acknowledge conflict to resolve [RC-136] 

• Assignment transfer accepted [RC-150] 

Feedback from Resp-1.4: 

• Aircraft unable to communicate [RC-79] 

• Persistent unresolved conflict [RC-143] 

Inputs from Resp-1.5: Traffic priorities [RC-114] 

Inputs from Resp-1.6: Implement fully centralized 
collision avoidance [RC-137] 

Input from Resp-4: Consolidated airspace state 
[RC-97] 

Internal Process Model Variables 

• Number of aircraft involved in conflict [RC-83] 

• Current workload (of controllers resolving 
conflicts) [Resp-1.2] 

Required Control Actions/Outputs 

Control actions to Resp-1.1: 

• Controller assigned to resolve conflict [Resp-1.2] 

• Aircraft involved in conflict [RC-83] 

• Proposed assignment transfer [RC-150] 

Figure F-2: Defined control elements for Resp-1.2  
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Resp-1.3: Arbitrate any conflicting conflict resolution proposals [Req-123] 

 RC-112: If conflicting trajectory modifications are issued, only execute a chosen set after they 
have been arbitrated [Req-139] 

RC-131: Arbitrate two different sets of trajectory modifications that modify the same portion of 
an aircraft’s trajectory for two different purposes to decide how to apply them [Req-157] 

RC-144: Only accept trajectory modifications from the controller assigned to a conflict [Req-170] 

Process Model Parts & Required Feedback/Inputs 

Feedback from aircraft: Received trajectory modifications [Resp-1.3] 

Input from Resp-1.2: Controller assigned to resolve conflict [RC-144] 

Input from Resp-1.5: Traffic priorities [RC-131] 

Required Control Actions/Outputs 

Control action to aircraft: Selected trajectory modifications [RC-112] 

Figure F-3: Defined control elements for Resp-1.3  

 

Resp-1.4: Ensure conformance with planned trajectory and any modifications [Req-145] 

 RC-27: If coordination was not effective, 
coordination is evaluated again to ensure that 
risks are adequately mitigated [Req-50] 

RC-60: If a trajectory modification is not 
effective at resolving the collision, the reason 
for the modification not being effective must 
be determined so that an updated trajectory 
modification can account for it [Req-84] 

RC-66: Re-evaluate an aircraft’s trajectory if an 
aircraft deviates from its planned trajectory by 
more than <TBD> [Req-91] 

RC-89: Account for any flight conditions that 
cause an aircraft to be unable to meet their 
expected navigational or maneuvering 
capabilities or trajectory constraints [Req-115] 

RC-90: If prevailing flight conditions are 
affecting the navigational capabilities of 
multiple aircraft, verify those effects with 
other aircraft [Req-116] 

RC-119: Ensure that aircraft needing trajectory 
modifications have received it, are executing it 
correctly and that the risk of collision or 
interference is no longer present [Req-5] 

RC-134: Monitor an identified conflict until 
there is no longer a risk of collision [Req-160] 

RC-142: Notify controllers assigned to a 
conflict if it remains unresolved [Req-168] 

RC-145: Allow enough time for an assigned 
controller to resolve a conflict before flagging 
the conflict as unresolved [Req-171] 

Process Model Parts & Required Feedback/Inputs 

Feedback from the aircraft: 

• Reason for trajectory deviation [RC-60] 

• Prevailing flight conditions [RC-89, RC-90] 

Feedback from Resp-1.1: 

• Trajectory modifications [RC-27, RC-119] 

• Identified conflicts [RC-119] 

Input from Resp-1.2: Controller assigned to 
resolve conflict [RC-145] 

Input from Resp-4: Consolidated airspace state 
[RC-60] 

Internal Process Model Variable: Unresolved 
conflicts [RC-66, RC-134] 

Required Control Actions/Outputs 

Control actions to Resp-1.1: 

• Unresolved collision risk [RC-142] 

• Reason for ineffective traj. mod. [RC-89] 

Control action to the aircraft: Request reason for 
ineffective trajectory modification [RC-60] 

Figure F-4: Defined control elements for Resp-1.4  
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Resp-1.5: Set air traffic priorities to be enforced by the controller resolving a conflict [Req-145] 

 RC-7: Account for any users’ constraints on mission execution in addition to access priorities to 
determine which impacts to operations are acceptable when coordinating aircraft [Req-21] 

RC-44: Grant an aircraft experiencing an emergency the highest priority access to the airspace 
they need to address the emergency [Req-68] 

RC-59: Ensure that the overall operational impact incurred by an aircraft is considered and 
minimized when making coordination decisions [Req-78] 

RC-70: Ensure that any changes to relevant operational constraints are accounted for when 
issuing trajectory modifications [Req-95] 

RC-96: Ensure that emergency response flights are given priority to carry out their missions [Req-
133] 

Process Model Parts & Required Feedback/Inputs 

Feedback from Resp-1.1: 

• Identified conflicts [Resp-1.4] 

• Aircraft involved in a conflict [Resp-1.4] 

• Ops constraints relevant for identified conflict 
[RC-70] 

Input from Resp-4: Consolidated airspace state 
[RC-7, RC-70, RC-96] 

Internal Process Model Variable: Accrued 
operational impact [RC-59] 

Required Control Actions/Outputs 

Control actions to Resp-1.1: Traffic priorities [Resp-1.4] 

Figure F-5: Defined control elements for Resp-1.5 

 

Resp-1.6: Establish when trajectory modification decisions need to be made centrally [Req-
124] 

 RC-100: If NAS enters "centralized mode", it must have an associated end time when that mode 
ends [Req-125] 

Process Model Parts & Required Feedback/Inputs 

Feedback from Resp-1.2: Identified conflicts [Resp-1.6] 

Input from Resp-4: Consolidated airspace state [Resp-1.6] 

Internal Process Model Variables: 

• Number of conflicts [Resp-1.6] 

• Current and anticipated future traffic density [Resp-1.6] 

Required Control Actions/Outputs 

Control actions to Resp-1.2: Implement fully centralized collision avoidance [Resp-1.6, RC-100] 

Figure F-6: Defined control elements for Resp-1.6 
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Appendix G Design Iteration 2 – STPA Analysis of Refined 
Conceptual Architecture 

In Section 5.3.2, the refined conceptual architecture shown in Figure 39 was presented as 
though it was all created in a single iteration. In reality, however, several of the control actions 
and feedback shown in Figure 39 were only identified after the initial refined conceptual 
architecture was analyzed.  This appendix presents the STPA analysis of the refined conceptual 
architecture to demonstrate how the results were used to identify both modifications to the 
initial conceptual architecture and the assignment constraints that were used to inform the 
creation of architecture options.  

This appendix is organized as follows. First, the STPA results from analyzing the initial version 
of the refined conceptual architecture are shown. For causal scenarios that can be used to 
generate assignment constraints, the assignment constraints are highlighted in blue text at the 
end of the scenario. Then, a comparison of the initial and modified versions of the conceptual 
architecture are shown and the differences between them are highlighted and traced to the 
scenarios and requirements that were used to generate them. This demonstrates how the 
conceptual architecture can be modified based on some of the STPA results.  

 

G.1    STPA Analysis of Initial Version of Refined Conceptual Architecture 

For reference, the initial version of the refined conceptual architecture is shown in Figure G-
1. There are some differences between this initial version and the modified version shown in 
Figure 39 in Section 5.3.2. These differences will be elaborated on later in Section G.2. 

This STPA analysis is intentionally limited in scope because it is intended to only be a 
demonstration of how the initial version of the refined conceptual architecture would be 
analyzed. Thus, only the Trajectory Modifications control action provided from Resp-1.1 to the 
aircraft is analyzed and causal scenarios are identified for only a few UCCAs. 

In addition, since this analysis is performed by updating the STPA analysis shown earlier in 
Appendix E, the UCCA tables are the same and will not be repeated in this appendix. Instead, only 
the UCCAs that were analyzed to generate scenarios will be shown along with the updated 
scenarios that were generated for them. 
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Figure G-1: Initial refined conceptual architecture 
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Scenarios for UCCA-1: Neither ATM nor aircraft provide trajectory modifications when the 
trajectories of two aircraft are in conflict [H-1] 

 

CS-3.1.1. Neither ATM nor the aircraft are assigned to resolve the conflict and therefore 
no trajectory modifications are selected. This could occur if: 
CS-3.1.1-1. The conflict is correctly identified by either ATM or the aircraft and, as part of 

deciding who should resolve it, traffic priorities must be provided. However, if it takes 
too long to decide on traffic priorities, no one is assigned to resolve the conflict until 
traffic priorities are decided. {Resp-1.5=ATM, Resp-1.5=Resp-1.2} 

CS-3.1.1-2. The conflict is correctly identified but only by the aircraft. However, they are 
preoccupied with other tasks and are delayed in providing feedback about that conflict 
so that a decision can be made about who should resolve it. As a result, no one is assigned 
to resolve the collision.  [Req-161] 

CS-3.1.1-3. Under a period of high workload, a conflict is wrongly perceived as not urgent and 
can be resolved later when the workload might be lower. However, if no better 
opportunity arises or workload prevents returning to the conflict to assign a controller, 
no one is ultimately assigned to resolve the conflict. In addition, that potential conflict is 
not monitored for resolution because a conflict is not monitored until trajectory 
modifications are issued. [Req-160] 

CS-3.1.1-4. The conflict is correctly identified and either ATM or the aircraft are assigned to 
resolve the conflict. However, if they do not process the control, they may not know that 
they have been assigned to resolve the conflict and therefore no one provides trajectory 
modifications to resolve it. [Req-162] 

CS-3.1.1-5. The aircraft identify an urgent conflict that needs to be resolved. However, they 
need to wait for a decision on who should resolve the conflict. By the time they receive 
that decision, there is not enough time to select trajectory modifications before the 
conflict occurs {Resp-1.2 = Aircraft} 

CS-3.1.1-6. The aircraft are assigned to resolve an urgent conflict that they did not identify. 
However, by the time they are notified and the aircraft synchronize their process models 
on what the conflict is and the aircraft that are involved, there is not enough time to 
select trajectory modifications before the conflict occurs. {Resp-1.2 = Aircraft} 

CS-3.1.2. An inappropriate controller is assigned to resolve the collision. As a result, they 
are unable to select appropriate trajectories. This could occur if: 
CS-3.1.2-1. When the conflict was identified, the aircraft were assigned to resolve it. However, 

right after that decision is made, the system decides to switch to fully centralized collision 
avoidance. Thus, the conflict is re-assigned to ATM to resolve and the aircraft do not 
attempt to resolve it. However, this switch overwhelms ATM’s capacity to resolve 
conflicts and it is unable to make a decision in time. [Req-163] {Resp-1.2=ATM} 

CS-3.1.2-2.  ATM is assigned to resolve a conflict that could have been resolved by the aircraft 
based on inconsistent information about the current workload of ATM and the aircraft. 
Based on this incorrect information, it is wrongly believed that ATM’s workload can 
handle resolving this conflict and the aircraft are too busy to resolve this conflict. 
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However, it is ATM that is too busy to resolve the conflict while the aircraft wait for 
trajectory modifications. {Resp-1.2=ATM} 

CS-3.1.2-3.  The aircraft are assigned to resolve a collision that initially does not involve a large 
number of aircraft. However, additional aircraft become identified as involved in the 
collision (e.g., more aircraft diverting to the same area for weather/aerodrome 
availability) and the conflict is simply updated to include these additional aircraft without 
re-evaluating the controller assigned to resolve the conflict. As a result, a large number 
of aircraft end up having to coordinate to select trajectory modifications instead of ATM 
resolving it centrally [Req-164] 

CS-3.1.2-4. The aircraft are assigned to resolve an urgent conflict despite the fact that at least 
one of them is in a critical phase of flight where their workload is high. This assignment 
is made because of the urgency of the conflict but under out-of-date information about 
the context of the conflict (e.g., level of workload of that aircraft due to the critical phase 
of flight, trajectory constraints arising from traffic density) (inadequate process model).  
As a result, the aircraft are unable to select appropriate trajectory modifications before 
a collision occurs. {Resp-1.2=ATM} 

CS-3.1.3. The correct controller is assigned to resolve the conflict. However, no trajectory 
modifications are selected, or inadequate trajectory modifications are selected. This could 
occur because: 
CS-3.1.3-1. The aircraft are correctly assigned to resolve a conflict. However, one of the 

aircraft is in a critical phase of flight (e.g., departure, final approach) and wrongly believes 
its trajectory has no room for deviation to avoid conflicting with aircraft that are about 
to depart. Thus, they rely on the other aircraft to modify their trajectories. However, if 
the airspace is constrained enough, the other aircraft may not be able to adequately 
modify their trajectories to prevent the conflict [Req-165] 

CS-3.1.3-2.  The aircraft are initially assigned to resolve a conflict but the conflict is re-assigned 
to ATM when the system decides to switch to fully centralized collision avoidance. 
However, the aircraft do not process this re-assignment and therefore ATM and the 
aircraft both select trajectory modifications that conflict. [Req-166] 

CS-3.1.3-3.  The aircraft are correctly assigned to resolve a conflict but do not have a 
consistent process model of each other’s trajectory constraints. As a result, they propose 
trajectory modifications that are inappropriate for the other aircraft and ultimately are 
unable to select appropriate trajectory modifications before a collision occurs. [Req-150] 

CS-3.1.3-4.  The aircraft are correctly assigned to resolve a conflict. However, they select 
trajectory modifications that are inconsistent with the chosen traffic priorities (e.g., a 
higher priority aircraft is forced to deviate far off its original flight path to avoid a 
conflict). As a result, although the conflict is resolved, it results in some aircraft incurring 
unacceptable delays. [Req-167] 

CS-3.1.4. The controller that is less equipped to resolve a conflict is correctly not assigned 
to resolve it. However, it does try to resolve the conflict anyway. This could occur if: 
CS-3.1.4-1. The aircraft are assigned to resolve a conflict but they are unable to adequately 

resolve it. When this is discovered, the conflict is reassigned to ATM to resolve it. 
However, the aircraft are also notified that they did not resolve the conflict adequately 
and therefore start to re-resolve the conflict even though ATM is already assigned to 
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resolve it. This results in duplicate trajectory modifications being issued. [Req-168, Req-
169] 

 

Scenarios for UCCA-11.1: ATM provides trajectory modifications (and the aircraft do not) when 
the modifications result in a collision 

 

CS-3.11.1.1. ATM is inappropriately assigned to resolve a conflict and it chooses trajectory 
modifications that result in a collision. This could occur if: 
CS-3.11.1.1-1. ATM is assigned to resolve the conflict because it was decided that all 

conflict resolution decisions should be made centrally. However, because ATM receives 
less timely feedback on flight conditions, it selects trajectory modifications that the 
aircraft cannot execute accurately enough in the current flight conditions and a collision 
occurs even though the aircraft were executing the trajectory modifications provided. 
[Req-163] 

CS-3.11.1.1-2. ATM is assigned to resolve a conflict because out-of-date feedback about 
flight conditions or aircraft capabilities were used to make that decision. However, 
because flight conditions are changing often and ATM does not have as up-to-date 
feedback about flight conditions, it selects trajectory modifications that the aircraft 
cannot adequately execute, and a collision occurs. {Resp-1.2=Aircraft} 

CS-3.11.1.1-3. ATM is assigned to resolve a conflict instead of the aircraft to avoid 
imposing additional workload onto the aircraft even though they are better suited to 
resolve the conflict (inadequate control algorithm). As a result, ATM struggles to select 
appropriate trajectory modifications. {Resp-1.2=Aircraft} 

CS-3.11.1.2. ATM is correctly assigned to resolve a conflict and it chooses trajectory 
modifications that result in a collision. This could occur if: 
CS-3.11.1.2-1. Near a busy aerodrome, ATM provides trajectory modifications to an 

aircraft to resolve a conflict based on an incorrect/out-of-date model of when aircraft 
are departing from the aerodrome. As a result, it provides trajectory modifications that 
conflict with the departure trajectory of an aircraft leaving the aerodrome and there is 
not enough time to resolve that conflict by the time it is identified [Req-172] 

CS-3.11.1.2-2. The aircraft are assigned to resolve a conflict but an error in the 
communications channel results in some aircraft not receiving the full list of aircraft 
involved in the conflict. As a result, different aircraft have a different process model of 
which aircraft should be included in coordination efforts. As a result, some aircraft might 
be ignored even if they attempt to coordinate trajectory modifications because the other 
aircraft wrongly believe they are not part of the conflict being resolved [Req-158] 

CS-3.11.1.2-3. In a previous conflict, ATM selected trajectory modifications that 
conflicted with those selected by the aircraft. While those conflicting trajectory 
modifications are being arbitrated, ATM selects trajectory modifications for this conflict 
without knowing what the result of the arbitration is. As a result, it selects trajectory 
modifications that conflict with the arbitrated trajectory modifications issued for the 
other conflict [Req-177] 



 

227 

 

CS-3.11.1.2-4. The aircraft are assigned to a conflict and begin coordinating trajectory 
modifications. However, some aircraft misinterpret the reference frame used by the 
other aircraft to specify trajectory constraints (inadequate process model). As a result, 
some aircraft choose trajectory modifications that are actually in conflict with the other 
aircraft without realizing it. [Req-178] 

 

Scenarios for UCCA-11.2: The aircraft provide trajectory modifications (and ATM does not) when 
the modifications result in a collision  

 

CS-3.11.2.1. The aircraft are inappropriately assigned to resolve a conflict and they choose 
trajectory modifications that result in a collision. This could occur if: 
CS-3.11.2.1-1. The aircraft are assigned to resolve a conflict involving an emergency 

response aircraft that is wrongly believed to have a known trajectory that won’t change 
much. As a result, if their trajectory actually changes frequently or changes in a way that 
involves more aircraft, the aircraft can select trajectory modifications that contain 
conflicts. [Req-164]  

CS-3.11.2.2. The aircraft are correctly assigned to resolve a conflict and they choose 
trajectory modifications that result in a collision. This could occur if: 
CS-3.11.2.2-1. Two of the aircraft involved in the conflict select trajectory modifications 

that conflict with each other and assume that the other aircraft will select a different 
trajectory modification. By the time the conflicting trajectories are identified, there is not 
enough time to resolve them to avoid a collision. [Req-173] 

CS-3.11.2.2-2. The aircraft are assigned to resolve a conflict. While selecting trajectory 
modifications, one of the aircraft begins executing its selected trajectory modification 
before it is confirmed that all aircraft involved in the conflict have selected adequate 
modifications. As a result, a collision occurs with other aircraft who have not yet selected 
appropriate trajectory modifications. [Req-174] 

CS-3.11.2.2-3. Two aircraft are assigned the same priority and therefore they select very 
similar trajectory modifications at the same time. If they assume that the other aircraft 
will change its trajectory modification, they might both execute those similar trajectory 
modifications and cause a collision [Req-174, Req-175] 

 

Scenarios for UCCA-17.1: ATM and the aircraft both provide trajectory modifications when they 
conflict with each other [H-1] 

 

CS-3.17.1.1. Both UAM and the aircraft are assigned to resolve a conflict and they choose 
conflicting trajectory modifications. This might occur if: 
CS-3.17.1.1-1. The aircraft are initially assigned to a conflict before it is realized that one 

of the aircraft is unable to perform self-separation (e.g., not equipped, not able to 
communicate). When this is realized, ATM is assigned to the conflict instead. However, 
if the aircraft do not process the re-assignment, they may end up selecting trajectory 
modifications while ATM is doing the same. [Req-162, Req-166, Req-170]  
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CS-3.17.1.1-2. The aircraft are assigned to resolve a conflict. However, before the aircraft 
have had enough time to resolve the conflict, premature feedback is received indicating 
that the conflict remains unresolved. As a result of this feedback, the conflict is re-
assigned to ATM to resolve. If the aircraft do not process this re-assignment, they may 
end up selecting trajectory modifications while ATM is doing the same. [Req-162, Req-
166, Req-170, Req-171] {Resp-1.2 = Resp-1.4} 

CS-3.17.1.2. Only ATM or the aircraft are assigned to resolve a conflict but the other also 
attempts to resolve the conflict and they choose conflicting trajectory modifications. This 
could occur if: 
CS-3.17.1.2-1. The aircraft are assigned to resolve a conflict but are unable to do so 

adequately. As a result, they are notified that the collision is unresolved. However, ATM 
also receives this notice and believes it should step in to help resolve it and does so even 
though it was not assigned to. [Req-176] 

 

G.2    Identifying Required Modifications to the Initial Refined Conceptual Architecture 

Using these causal scenarios, changes were made to the initial refined conceptual 
architecture shown in Figure G-1. Table G-1 lists the scenarios that were used to generate these 
changes, the requirement that was derived from those scenarios and the control actions or 
feedback that were added based on those requirements. Figure G-2 then shows the modified 
refined conceptual architecture. This is the same conceptual architecture that was shown in 
Figure 39 in Section 5.3.2, but with the added or removed control actions and feedback 
highlighted in green. 

 

Table G-1: Scenarios and requirements that led to added control actions and feedback 

Scenario ID Requirement ID Control Action/Feedback 

CS-3.17.1.1-1 Req-170 Controller assigned to resolve conflict  
(Control action from Resp-1.2 to Resp-1.3) 

CS-3.17.1.2-1 Req-176 

Proposed assignment Transfer  
(Control action from Resp-1.2 to Resp-1.1) 

Assignment transfer accepted  
(Feedback from Resp-1.1 to Resp-1.2) 

CS-3.1.1-4 Req-162 Acknowledge conflict to resolve  
(Feedback from Resp-1.1 to Resp-1.2) 

CS-3.1.1-3 Req-160 Identified conflicts  
(Feedback from Resp-1.1 to Resp-1.4) 

CS-3.17.1.1-2 Req-171 Controller assigned to resolve conflict  
(Control action from Resp-1.2 to Resp-1.4) 

CS-3.1.4-1 Req-169 Persistent unresolved conflicts 
(Feedback from Resp-1.4 to Resp-1.2) 
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Figure G-2: Modified conceptual architecture with added control actions and feedback shown in green  
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Appendix H Design Iteration 2 – Analysis and Comparison of 
Architecture Options 

 

This appendix shows the results from comparing the two architecture options in design 
iteration 2. The first option (A4) is the ground-based conflict assignment architecture where Resp-
1.2 is assigned to ATM. The second option (A5) is the airborne conflict assignment architecture 
where Resp-1.2 is assigned to the aircraft. Table H-1 shows the full set of evaluation criteria that 
were identified and the comparison results for each architecture option. These evaluation criteria 
are sorted by type (e.g., decision making, control path). For each evaluation criterion, links are 
provided in square braces to the scenario(s) in Table H-2 used to generate them.  

Table H-2 then presents the full architecture comparison table. This table contains (1) the 
scenarios used to compare the two architecture options, (2) the decisions about whether each 
scenario occurs for each architecture option, (3) any assumptions used to decide that a scenario 
does not occur for an architecture option, and (4) the evaluation criterion generated from that 
scenario. As in Appendix D, note that Table H-2 only includes scenarios where behavioral 
differences were observed. 

Table H-1: Full set of evaluation criteria for comparison of architecture options A4 and A5 

ID Evaluation Criteria 

Benefit (+) or 
Tradeoff (-) 

A4 A5 

Decision Making Evaluation Criteria 

EC-2.1 
Responsiveness of trajectory modification decisions when the aircraft 
resolve an urgent conflict [Scenario 2.1]   

EC-2.2 
Stability of decision about controller assigned to a conflict to prevent 
loss of separation when waiting for controller to resolve conflict 
[Scenario 2.20]   

EC-2.3 
Capacity to make conflict resolution decisions to prevent loss of 
separation when selecting trajectory modifications [Scenario 2.25]   

EC-2.4 
Responsiveness of trajectory modification decisions when ATM 
resolves an urgent conflict [Scenario 2.2]   

EC-2.5 
Need to make Conflict Assignment Transfer decisions when an urgent 
conflict is identified [Scenario 2.5]   

EC-2.6 
Ability to make appropriate decisions to accept/reject conflict 
assignments when a controller is assigned a conflict to resolve 
[Scenario 2.22]   

EC-2.7 
Ease of coordinating centralization and conflict assignment decisions 
when switching to centralized decision making [Scenario 2.14]   

Process Model Evaluation Criteria 

EC-2.8 
Ability to ensure adequate update of controller assigned to conflict 
when assigning two conflicts that occur close together in time 
[Scenario 2.4]   
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ID Evaluation Criteria 

Benefit (+) or 
Tradeoff (-) 

A4 A5 

EC-2.9 
Available awareness of aircraft workload when assigning conflicts to 
be resolved [Scenarios 2.7, 2.8]   

EC-2.10 
Level of situational awareness needed of aircraft involved in a 
conflict and relevant trajectory constraints when the aircraft resolve a 
conflict they did not identify [Scenario 2.10]   

EC-2.11 
Required awareness of aircraft or ATM workload to prevent loss of 
separation when assigning conflicts to be resolved [Scenarios 2.17, 
2.18]   

EC-2.12 
Ability to maintain alignment of Controller Assigned to Conflict when 
receiving conflict assignment [Scenarios 2.12, 2.13]   

EC-2.13 
Level of situational awareness of aircraft involved in a conflict and 
relevant trajectory constraints when assigning conflicts to be resolved 
[Scenario 2.11]   

EC-2.14 
Ability to maintain alignment of Controller Assigned to Conflict when 
deciding who is resolving a conflict [Scenarios 2.6, 2.23]   

EC-2.15 
Level of situational awareness of future changes in airspace state to 
prevent loss of separation when resolving conflicts near aerodromes 
[Scenario 2.26]   

EC-2.16 

Level of situational awareness of trajectory constraints applicable for 
a conflict to prevent loss of separation when resolving an urgent 

conflict [Scenario 2.27]   

Feedback / External Inputs Evaluation Criteria 

EC-2.17 
Timeliness of flight conditions and aircraft capabilities feedback when 
assigning conflicts to be resolved [Scenarios 2.9, 2.15]   

EC-2.18 
Ability to process identified conflicts inputs when the workload of the 
controller processing that feedback is high [Scenario 2.3]   

EC-2.19 
Timeliness of feedback about aircraft arrivals and departures to 
prevent loss of separation when resolving conflicts near aerodromes 
[Scenario 2.19]   

EC-2.20 
Ability to evaluate and verify aircraft to be included in conflict 
resolution to prevent loss of separation when selecting trajectory 
modifications [Scenario 2.24]   

EC-2.21 
Ability to evaluate and verify requests to resolve a conflict to prevent 
loss of separation when ATM or the aircraft request to resolve a 
conflict [Scenario 2.16]   

EC-2.22 
Ability to respond appropriately to centralization inputs to prevent 
loss of separation when assigning conflicts to be resolved [Scenario 
2.21]   
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Table H-2: Comparison results for the centralized (A1) and decentralized (A2) collision avoidance architecture options 

ID Scenario Scenario Occurs? 
Evaluation 
Criteria 

2.1 

The aircraft identify an urgent 
conflict that needs to be resolved. 
However, <controller performing 
Resp-1.2> takes too long to decide 
who should resolve a conflict. By the 
time the aircraft receive that 
decision, there is not enough time to 
select trajectory modifications 
before the conflict occurs  

A4: Yes 

A5: No 
Assumption: Since the aircraft 

identify a conflict and are also the 
ones deciding who should resolve it, 

they can respond to an urgent 
conflict quicker 

EC-2.1: 
Responsiveness of 
trajectory 
modification 
decisions to 
prevent loss of 
separation when 
the aircraft 
resolves an urgent 
conflict 

2.2 

ATM identifies an urgent conflict 
that needs to be resolved. However, 
<controller performing Resp-1.2> 
takes too long to decide who should 
resolve a conflict (inadequate 
control algorithm). By the time ATM 
receives that decision, there is not 
enough time to select trajectory 
modifications before the conflict 
occurs  

A4: No 
Assumption: If ATM identifies a 
conflict and it also decides who 

should resolve it, it can respond to an 
urgent conflict quicker 

A5: Yes 

EC-2.4: 
Responsiveness of 
trajectory 
modification 
decisions to 
prevent loss of 
separation when 
ATM resolves an 
urgent conflict 

2.3 

<Controller not performing Resp-
1.2> identifies a conflict and 
provides that feedback, but 
<controller performing Resp-1.2> 
does not process that feedback 
appropriately because it is 
experiencing high workload. As a 
result, <controller not performing 
Resp-1.2> wrongly believe 
<controller performing Resp-1.2> is 
aware of the conflict but it is not. 
The conflict therefore remains 
unresolved by <controller 
performing Resp-1.2>.  

A4: Yes 

A5: No 
Assumption: Even if one of the 
aircraft is experiencing a high 

workload and does not process the 
indication from ATM, other aircraft 
might not be and could process the 
indication and decide to resolve the 

conflict (or not) 

EC-2.18: Ability to 
process identified 
conflicts inputs to 
prevent loss of 
separation when 
the workload of 
the controller 
processing that 
feedback is high 
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ID Scenario Scenario Occurs? 
Evaluation 
Criteria 

2.4 

Two conflicts occur close together 
and <controller performing Resp-
1.2> wrongly believe they already 
requested <controller not 
performing Resp-1.2> to resolve 
both conflicts even though that 
assignment was for the earlier 
conflict, not the more recent one. 
<Controller performing Resp-1.2> 
therefore does not issue a new 
assignment for the more recent 
conflict and that conflict goes 
unresolved. 

A4: Yes 

A5: No 
Assumption: The aircraft are 

monitoring their own trajectories 
closely and so would not forget to 

either resolve a conflict themselves or 
have ATM take over to resolve it 

EC-2.8: Ability to 
ensure adequate 
update of 
controller assigned 
to conflict when 
assigning two 
conflicts that 
occur close 
together in time 

2.5 

<controller performing Resp-1.2> 
identifies an urgent conflict and 
initially believe they can resolve the 
conflict but realize they are unable 
to. Because of the urgency of the 
conflict, by the time they try to 
request <controller not performing 
Resp-1.2> to take over, there is not 
enough time for it to resolve it 
before a collision occurs. 

A4: No 
Assumption: ATM, with its broader 

situational awareness, would be able 
to resolve an urgent conflict if it was 
needed to (and it was the one who 

identified it) 

A5: Yes 

EC-2.5: Need to 
make Conflict 
Assignment 
Transfer decisions 
to prevent loss of 
separation when 
an urgent conflict 
is identified 

2.6 

<Controller performing Resp-1.2> 
identifies a conflict but has 
conflicting process models about 
who is resolving the conflict. As a 
result, <controller performing Resp-
1.2> does not assign a controller to 
resolve the conflict and does not 
resolve the conflict itself 

A4: No 
Assumption: Within ATM, its process 

model will always be consistent 
about whether it is resolving a 

conflict itself or assigning it to the 
aircraft. 

A5: Yes 

EC-2.14: Ability to 
maintain 
alignment of 
Controller 
Assigned to 
Conflict to prevent 
loss of separation 
when deciding 
who is resolving a 
conflict 
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ID Scenario Scenario Occurs? 
Evaluation 
Criteria 

2.7 

<Controller performing Resp-1.2> 
attempts to resolve a conflict that 
should be assigned to <controller not 
performing Resp-1.2> because 
<Controller performing Resp-1.2> 
has incorrect information about the 
current workload of <controller not 
performing Resp-1.2>. However, 
<Controller performing Resp-1.2> is 
itself experiencing high workload 
and cannot select appropriate 
trajectory modifications before a 
collision occurs. 

A4: Yes 

A5: No 
Assumption: The aircraft would not 
try to account for ATM's workload 

and just make the request for ATM to 
help resolve a conflict if needed 

EC-2.9: Available 
awareness of 
aircraft workload 
to prevent loss of 
separation when 
assigning conflicts 
to be resolved 

2.8 

<Controller performing Resp-1.2> 
assigns the aircraft to resolve a 
collision that initially does not 
involve a large number of aircraft. 
However, additional aircraft become 
identified as involved in the conflict. 
Although <controller performing 
Resp-1.2> is aware that the number 
of aircraft in the conflict is growing, 
it keeps the conflict assigned to the 
aircraft. As a result, a large number 
of aircraft end up having to 
coordinate to select trajectory 
modifications. 

A4: Yes 

A5: No 
Assumption: Once the aircraft believe 

they can't resolve the conflict 
adequately, they will request ATM's 

assistance as soon as possible 

EC-2.9: Available 
awareness of 
aircraft workload 
to prevent loss of 
separation when 
assigning conflicts 
to be resolved 

2.9 

<Controller performing Resp-1.2> 
assigns the aircraft to resolve an 
urgent conflict even though at least 
one of them is in a critical phase of 
flight where their workload is high. 
This assignment is made because of 
the urgency of the conflict but under 
inaccurate information about the 
capabilities/operational constraints 
of that aircraft (e.g., limitations on 
low altitude maneuvering).  As a 
result, the aircraft are unable to 
select appropriate trajectory 
modifications before a collision 
occurs.  

A4: Yes 

A5: No 
Assumption: Since the aircraft 

exchange trajectory constraints and 
are directly gathering weather 

feedback, they have more timely 
access to this information than ATM 

does 

EC-2.17: 
Timeliness of 
flight conditions 
and aircraft 
capabilities 
feedback to 
prevent loss of 
separation when 
assigning conflicts 
to be resolved 
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ID Scenario Scenario Occurs? 
Evaluation 
Criteria 

2.10 

<Controller performing Resp-1.2> 
assigns the aircraft to resolve an 
urgent conflict that they did not 
identify based on the urgency of the 
conflict. However, by the time the 
aircraft synchronize their process 
models on what the conflict is and 
the aircraft that are involved, there 
is not enough time to select 
trajectory modifications before the 
conflict occurs.  

A4: Yes 

A5: No 
Assumption: When the aircraft 

perform Resp-1.2, they have greater 
situational awareness of the airspace 

and will be faster in synchronizing 
their process model of the conflict 

identified by ATM. 

EC-2.10: Level of 
situational 
awareness needed 
of aircraft involved 
in a conflict and 
relevant trajectory 
constraints to 
prevent loss of 
separation when 
the aircraft resolve 
a conflict they did 
not identify 

2.11 

<Controller performing Resp-1.2> 
identifies a conflict but does not 
adequately process feedback on the 
relevant operational or trajectory 
constraints for that conflict. Thus, 
they correctly assign the aircraft to 
resolve the conflict but wrongly omit 
some aircraft from the list of aircraft 
involved in the conflict. As a result, 
only a subset of the aircraft 
coordinate to resolve the conflict. 

A4: No 
Assumption: ATM would have 
broader awareness needed to 

accurately determine the operational 
or trajectory constraints relevant for 

a conflict 

A5: Yes 

EC-2.13: Level of 
situational 
awareness of 
aircraft involved in 
a conflict and 
relevant trajectory 
constraints to 
prevent loss of 
separation when 
assigning conflicts 
to be resolved 

2.12 

<Controller performing Resp-1.2> 
correctly assigns the aircraft to 
resolve a conflict. However, delays in 
when that assignment is received by 
the various aircraft result in delays in 
the aircraft beginning to coordinate 
trajectory modifications (inadequate 
control path). As a result of these 
delays, the conflict is not adequately 
resolved before a collision occurs. 

A4: Yes 

A5: No 
Assumption: With the aircraft 

coordinating on who should resolve a 
conflict, a delay in starting to select 
trajectory modifications would not 

occur 

EC-2.12: Ability to 
maintain 
alignment of 
Controller 
Assigned to 
Conflict when 
receiving conflict 
assignment 
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ID Scenario Scenario Occurs? 
Evaluation 
Criteria 

2.13 

<Controller performing Resp-1.2> 
assigns the aircraft to resolve a 
conflict. Based on the provided 
traffic priorities, the aircraft wait for 
the highest priority aircraft to select 
its trajectory modifications. 
However, if the highest priority 
aircraft is delayed in recognizing that 
it needs to resolve a conflict, that 
will delay all other aircraft in 
selecting trajectory modifications as 
well 

A4: Yes 

A5: No 
Assumption: If the aircraft have 

identified the conflict, they know they 
need to resolve it even if they are still 

waiting on traffic priorities to be 
provided by ATM 

EC-2.12: Ability to 
maintain 
alignment of 
Controller 
Assigned to 
Conflict when 
receiving conflict 
assignment 

2.14 

Either ATM or the aircraft identify a 
conflict and <controller performing 
Resp-1.2> decides to resolve it. 
However, while they are resolving 
the conflict, ATM also indicates that 
it is implementing centralized 
collision avoidance. Based on this 
input, <controller performing Resp-
1.2> attempts to transfer the conflict 
to ATM. If ATM is unable to resolve 
the conflict (e.g., too little time 
remaining to collision), the conflict 
remains unresolved.  

A4: No 
Assumption: In this architecture, ATM 

retains sole decision-making 
authority over assignment of conflicts 
to aircraft. Thus, the control action to 

switch to centralized collision 
avoidance "mode" is internal to ATM 

and not known to the aircraft 

A5: Yes 

EC-2.7: Ease of 
coordinating 
centralization and 
conflict 
assignment 
decisions to 
prevent loss of 
separation when 
switching to 
centralized 
decision making 

2.15 

<Controller performing Resp-1.2> 
decides to resolve a conflict based 
on out-of-date feedback about flight 
conditions or aircraft capabilities. 
However, because flight conditions 
are changing often and <Controller 
performing Resp-1.2> does not 
receive timely feedback about flight 
conditions, it selects trajectory 
modifications that the aircraft 
cannot adequately execute, and a 
collision occurs. 

A4: Yes 

A5: No 
Assumption: The aircraft will have 
more timely feedback about flight 
conditions and aircraft capabilities 

than ATM and therefore could make 
more appropriate resolution 

decisions when those factors are 
important to consider 

EC-2.17: 
Timeliness of 
flight conditions 
and aircraft 
capabilities 
feedback to 
prevent loss of 
separation when 
assigning conflicts 
to be resolved 
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ID Scenario Scenario Occurs? 
Evaluation 
Criteria 

2.16 

<Controller not performing Resp-
1.2> indicates a conflict to 
<controller performing <Resp-1.2> 
and requests that it be allowed to 
resolve the conflict. Even though 
<controller not performing Reps-1.2. 
is not able to adequately resolve the 
conflict, <controller performing 
Resp-1.2> complies with the request. 
As a result, <controller not 
performing Resp-1.2> selects 
trajectory modifications that result 
in a collision 

A4: No 
Assumption: ATM verifies any request 
from the aircraft to resolve a conflict. 

Given ATM's broader situational 
awareness of what is happening in 

the airspace, it is assumed that ATM 
would know if the aircraft can or 

cannot adequately resolve a conflict 

A5: Yes 

EC-2.21: Ability to 
evaluate and 
verify requests to 
resolve a conflict 
to prevent loss of 
separation when 
ATM or the 
aircraft request to 
resolve a conflict 

2.17 

<Controller resolving Resp-1.2> 
decides to resolve a conflict itself to 
avoid imposing additional workload 
on <controller not performing Resp-
1.2> even though <controller not 
performing Resp-1.2> is better 
suited to resolve the conflict. 
However, <controller performing 
Resp-1.2> struggles to select 
appropriate trajectory modifications 
due to workload or other conditions 
and selects modifications that result 
in a conflict 

A4: Yes 

A5: No 
Assumption: Once the aircraft believe 

they can't resolve the conflict 
adequately, they will request ATM's 

assistance and do not need to 
consider ATM's workload because 
ATM can mitigate its workload in 

other ways 

EC-2.11: Required 
awareness of 
aircraft or ATM 
workload to 
prevent loss of 
separation when 
assigning conflicts 
to be resolved 

2.18 

<Controller resolving Resp-1.2> 
decides to assign the conflict to 
<controller not performing Resp-
1.2> even though <controller 
performing Resp-1.2> is better 
suited to resolve the conflict because 
<controller performing Resp-1.2> is 
experiencing high workload. 
However, <controller not performing 
Resp-1.2> struggles to select 
appropriate trajectory modifications 
due to workload or other conditions 
and selects modifications that result 
in a conflict 

A4: Yes 

A5: No 
Assumption: Once the aircraft believe 

they can't resolve the conflict 
adequately, they will request ATM's 

assistance and do not need to 
consider ATM's workload because 
ATM can mitigate its workload in 

other ways 

EC-2.11: Required 
awareness of 
aircraft or ATM 
workload to 
prevent loss of 
separation when 
assigning conflicts 
to be resolved 
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ID Scenario Scenario Occurs? 
Evaluation 
Criteria 

2.19 

Near a busy aerodrome, <controller 
performing Resp-1.2> decides to 
assign ATM to resolve a conflict 
because it wrongly believing that the 
airspace near that aerodrome is too 
busy for the aircraft to resolve the 
conflict themselves. However, 
<controller performing Resp-1.2> 
provides trajectory modifications to 
the aircraft to resolve a conflict 
based on an out-of-date model of 
when aircraft are departing from the 
aerodrome. As a result, it provides 
trajectory modifications that conflict 
with the departure trajectory of an 
aircraft leaving the aerodrome  

A4: Yes 

A5: No 
Assumption: The aircraft could 

receive more up-to-date information 
about aerodrome departures by 

talking directly to other aircraft than 
for ATM to put that information 

together. 

EC-2.19: 
Timeliness of 
feedback about 
aircraft arrivals 
and departures to 
prevent loss of 
separation when 
resolving conflicts 
near aerodromes 

2.20 

The <controller performing Resp-
1.2> initially assigns the conflict to 
<controller not performing Resp-
1.2> to resolve, but then decides 
that they are taking too long to 
resolve the conflict. <Controller 
performing Resp-1.2> therefore 
reassigns the conflict to itself to 
resolve even though <controller not 
performing Resp-1.2> was almost 
done resolving a conflict. However, 
there is not enough time to 
adequately resolve the conflict.  

A4: Yes 

A5: No 
Assumption: Because the aircraft 
cannot unilaterally direct ATM to 
take over resolving a conflict, they 
are less likely to repeatedly change 

their decision of who should resolve a 
conflict 

EC-2.2: Stability of 
decision about 
controller assigned 
to a conflict to 
prevent loss of 
separation when 
waiting for 
controller to 
resolve conflict 

2.21 

ATM indicates that it is 
implementing centralized collision 
avoidance. However, <controller 
performing Resp-1.2> receives this 
indication and assumes it should 
transfer all conflicts they are 
resolving to ATM to resolve 
(inadequate control algorithm). This 
therefore overwhelms ATM and it 
selects inadequate trajectory 
modifications that result in a 
collision. 

A4: No 
Assumption: In this architecture, ATM 

retains sole decision making 
authority over assignment of conflicts 
to aircraft. Thus, the control action to 

switch to centralized collision 
avoidance "mode" is internal to ATM 

and not known to the aircraft 

A5: Yes 

EC-2.22: Ability to 
respond 
appropriately to 
centralization 
inputs to prevent 
loss of separation 
when assigning 
conflicts to be 
resolved 
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ID Scenario Scenario Occurs? 
Evaluation 
Criteria 

2.22 

<Controller performing Resp-1.2> 
requests <controller not performing 
Resp-1.2> to resolve a conflict even 
though <controller performing Resp-
1.2> is better equipped to resolve it.  
Because <controller not performing 
Resp-1.2> wrongly believes it must 
accept the request, it selects 
modifications that result in a 
collision. 

A4: No 
Assumption: The aircraft will always 

indicate to ATM if they cannot 
resolve a conflict and will not feel 
"obligated" to accept a request 

A5: Yes 

EC-2.6: Ability to 
make appropriate 
decisions to 
accept/reject 
conflict 
assignments when 
a controller is 
assigned a conflict 
to resolve 

2.23 

<Controller performing Resp-1.2> 
identify a conflict but it becomes 
misaligned about who is resolving 
the conflict. As a result, <Controller 
performing Resp-1.2> provides 
conflicting feedback both requesting 
the assistance of <controller not 
performing Resp-1.2> and indicating 
that <controller performing Resp-
1.2> is resolving the conflict itself. 
When <controller performing Resp-
1.2> receives this conflicting 
feedback, it decides it should just 
resolve the conflict even though it is 
not able to do so adequately  

A4: No 
Assumption: Because ATM is the sole 

decision maker for Resp-1.2 in this 
scenario, ATM will maintain a 

consistent process model of who is 
assigned to resolve a conflict 

A5: Yes 

EC-2.14: Ability to 
maintain 
alignment of 
Controller 
Assigned to 
Conflict to prevent 
loss of separation 
when deciding 
who is resolving a 
conflict 

2.24 

<Controller performing Resp-1.2> 
assigns the conflict to <controller not 
performing Resp-1.2> to resolve but 
inadvertently leaves out several 
aircraft that should be included in 
coordination to prevent the conflict 
(inadequate control algorithm). As a 
result, <controller not performing 
Resp-1.2> does not adequately 
coordinate their trajectory 
modifications and some result in a 
collision.   

A4: Yes 

A5: No 
Assumption: Because of ATM's other 
responsibilities, even if the aircraft 

inadvertently omit some aircraft from 
the set of aircraft to be included in 

coordination, ATM will recognize and 
correct for that 

EC-2.20: Ability to 
evaluate and 
verify aircraft to 
be included in 
conflict resolution 
to prevent loss of 
separation when 
selecting 
trajectory 
modifications 
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ID Scenario Scenario Occurs? 
Evaluation 
Criteria 

2.25 

The aircraft receive a <conflict 
assignment/request to resolve 
conflict> from ATM. However, the 
aircraft are in a high workload 
situation or resolving other conflicts 
and therefore does not immediately 
begin resolving the conflict. As a 
result, they are unable to adequately 
coordinate to prevent the conflict 
and they choose trajectory 
modifications that result in a 
collision.  

A4: Yes 

A5: No 
Assumption: The aircraft are 

monitoring their own trajectories 
closely and so would not forget to 

either resolve a conflict themselves or 
have ATM take over to resolve it 

EC-2.3: Capacity to 
make conflict 
resolution 
decisions to 
prevent loss of 
separation when 
selecting 
trajectory 
modifications 

2.26 

<Controller performing Resp-1.2> 
decides to assign the aircraft to 
resolve a conflict, believing that the 
aircraft are receiving more up-to-
date information about departure 
and arrival trajectories from the 
aerodrome. However, due to an 
event occurring at another 
aerodrome (e.g., weather), 
numerous aircraft are about to 
divert to this aerodrome. As the 
traffic density increases, the aircraft 
are unable to select appropriate 
trajectory modifications and there is 
not enough time for ATM to assist 
before a collision occurs. 

A4: No 
Assumption: With ATM's broader 

situational awareness, it would know 
to transfer the conflict back to itself if 
necessary when the airspace density 

changes as it does in this scenario 

A5: Yes 

EC-2.15: Level of 
situational 
awareness of 
future changes in 
airspace state to 
prevent loss of 
separation when 
resolving conflicts 
near aerodromes 

2.27 

<Controller performing Resp-1.2> 
decides to assign the aircraft to 
resolve an urgent conflict even 
though their workload is high. This 
assignment is made because of the 
urgency of the conflict but under 
inaccurate information about all the 
applicable trajectory constraints or 
while lacking information about the 
anticipated future state of the 
airspace.  As a result, the aircraft are 
unable to select appropriate 
trajectory modifications before a 
collision occurs. 

A4: No 
Assumption: ATM will have broader 
situational awareness to identify all 
trajectory constraints for a conflict 

A5: Yes 

EC-2.16: Level of 
situational 
awareness of 
trajectory 
constraints 
applicable for a 
conflict to prevent 
loss of separation 
when resolving an 
urgent conflict 

 


