A Systems-Theoretic Framework for Safety-Driven

Development of System Architectures
by
Justin Wei Siang Poh

B.S. Mechanical Engineering, Olin College of Engineering, 2016
S.M. Aeronautics and Astronautics, Massachusetts Institute of Technology, 2022

Submitted to the Department of Aeronautics and Astronautics
in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY IN AERONAUTICS AND ASTRONAUTICS
at the
MASSACHUSETTS INSTITUTE OF TECHNOLOGY

FEBRUARY 2025

© 2025 Justin Poh. All rights reserved.
The author hereby grants to MIT a nonexclusive, worldwide, irrevocable, royalty-free license
to exercise any and all rights under copyright, including to reproduce, preserve, distribute and
publicly display copies of the thesis, or release the thesis under an open-access license.

Authored by: Justin Poh
Department of Aeronautics and Astronautics
December 23, 2024

Certified by: Nancy G. Leveson
J.C. Hunsaker Professor of Aeronautics and Astronautics
Thesis Supervisor

John S. Carroll
Gordon Kaufman Professor of Management, Post-Tenure

Natasha A. Neogi
Ph.D., Senior Technologist, Assured Intelligent Flight Systems, NASA

Accepted by: Jonathan P. How
R. C. Maclaurin Professor of Aeronautics and Astronautics
Chair, Graduate Program Committee

A Systems-Theoretic Framework for Safety-Driven Development of
System Architectures
by
Justin Wei Siang Poh

Submitted to the Department of Aeronautics and Astronautics
On December 23, 2024 in Partial Fulfillment of the Requirements for the
Degree of Doctor of Philosophy in Aeronautics and Astronautics

Abstract

Modern complex systems are increasingly expected to exhibit emergent properties such as
safety and security even as they become more complex, interconnected, and reliant on software
than ever before. Because of this evolution in the characteristics of these systems, the methods
available today for developing system architectures no longer provide systems engineers with
adequate design support. As a result, it is becoming increasingly challenging for systems
engineers to develop system architectures that exhibit emergent properties like safety.

This thesis addresses this problem by developing a safety-driven architecture development
framework that enables the design of emergent properties such as safety into a system
architecture from the beginning. The key idea is that the results from a hazard analysis process
known as Systems Theoretic Process Analysis (STPA) should drive design decisions. The
framework therefore starts with an initial STPA analysis of the system to determine how unsafe
or undesirable behavior could occur. Structured and systematic processes are then provided to
help systems engineers use the STPA results to develop the required control behavior of the
system and explore possible system architecture options to implement that control behavior.
This framework therefore enables systems engineers to make more informed early architectural
design decisions driven by safety considerations. This framework is applied to an Urban Air
Mobility (UAM) case study to demonstrate that it provides the necessary design support to
enable the development and refinement of an air traffic management (ATM) architecture for
UAM.

When creating a system architecture, assumptions may also need to be made to mitigate the
inherent uncertainties and lack of detailed information about the system at that early stage of
design. However, these assumptions are used as the basis for design decisions, and it is important
that they remain valid to avoid flaws in the architecture arising when underlying assumptions
become invalid. Thus, this thesis also develops and demonstrates a supporting framework to help
identify these underlying assumptions and ensure they remain valid both during system
development and after the system is placed into operation.

Thesis Supervisor: Nancy G. Leveson, Ph.D.
Title: J.C. Hunsaker Professor of Aeronautics and Astronautics

Acknowledgements

| started this journey toward earning my doctorate 4.5 years ago, having spent the prior 4
years working on the development of self-driving vehicles. When | first decided to pursue a
graduate education, my goal was to improve my abilities as a systems engineer by learning more
about systems engineering and system safety. | have accomplished so much more than that since
then and this dissertation would not have been possible without the support and mentorship of
numerous people along the way.

First, | want to express my sincere gratitude to Professor Nancy Leveson for accepting me into
her research group and not only teaching me about system safety but also showing me a whole
new perspective on systems engineering. Her views on systems theory and how we should be
designing safety into systems have strongly influenced my work. Thanks to her mentorship, | am
a better systems engineer now because | better understand how to design safety and other
properties into systems. In addition, | will forever be grateful for the time she spent giving me
feedback on my writing and presentations and helping me to refine my communication skills.

| am also deeply grateful to the members of my Ph.D. committee for all their guidance and
feedback. Dr. Natasha Neogi spent many hours helping me to both fine-tune the application of
my ideas and to contextualize my work within the existing air traffic management research. | am
extremely grateful for all her incredible insights and her ability to see the significance of my work,
sometimes before | could. Professor John Carroll also frequently reminded me not to forget the
real-world context in which systems are designed, much of which is often abstracted away or
simplified in traditional systems engineering practices. Together, my committee played a pivotal
role in guiding and shaping my research, and | will forever be grateful for their guidance.

| also owe many thanks to my readers who have provided invaluable feedback and input on
my work since my thesis proposal. The many discussions | have had with Dr. Bill Young about
various security and systems engineering topics have helped me see the contribution of my work
more clearly. Dr. John Thomas has a wealth of experience with STPA and invaluable teaching skills
and | am grateful for the many hours he spent discussing my research with me and helping me
to refine my dissertation to better communicate those contributions. To both of my readers,
thank you so much for all the discussions we’ve had and the feedback you’ve given me.

Next, | want to thank my research group for not only their friendship but also the help they’ve
given me throughout my time at MIT. Dr. Andrew Kopeikin and | worked together on research
early on and the depth of his experience as an aviator and aerospace engineer helped me better
understand the world of aviation and air traffic management, especially since | was just starting
out in this field at that time. To Brittany Bishop, Rodrigo Rose, Polly Harrington, Alex Hillman,
Lauren Guttierez, Natalie Basnight and Braden Brower, thank you for all the research discussions
and casual conversations we’ve had over the years. It has been a pleasure to learn from you all.

Finally, to my wife Sophia, words cannot express the gratitude | feel for the love and support
you have given me and our family (of 2 dogs) throughout this journey. | could not have completed
this dissertation without you and | will be forever thankful for you.

Table of Contents

Y T3 - T o 2
ACKNOWIEAZEMENLSceireeeeeeeieieettrereenereeeeeeeeeeennsssseeesernsennnsssssessseessnnnnssssssssseessnnnnssssssssnnns 3
LISE Of FIGUI@S ceueieiiiieeeeeeeiceeeeetreetnnseeeeeeeeneeennssssessseessesnnssssssssssesssnnnnsssssssssesssnnasssssssssssssnnnns 7
List Of TAbles eeeeeriiieeet e 9
Chapter 1 INErOdUCHION..ccccuuccieeitieeecennceeeeeereenennsneeeeeeeeeennnnssseesesseessnnnsssssssssesassnnnnnsanes 11
0 R 1V o V7 1 T PPN 11
1.2 Challenges in Architecting Complex SYStemScccceeeemeemmmmmmnmmmmennmmmmmmmmmsmssssssssssssssssssnses 11
1.3 A Systems-Theoretic Approach to Architecture Development.........cccccccceeeeennnennnnennennnnns 12
1.4 Research Objective and Contributions.............eeeeeeeeeeeeemmeeeeennemmn.. 13
1.5 Case Study: Air Traffic Management and Urban Air Mobility (UAM)ccccovveeeererecnnnne 14
1.6 Hypotheses and EValuation............eeeeeeeeeeeeeeeeeeeeeeeemmmmmmmmmmmnemmmmmmmmmsmsnmsssssssssssssssssssssssssssnnns 15
R oo o 1= 15
1.8 Organization of DiSSertationccccccceeeeeeeeeeeeemenennnnnenmnmessmssssnsssssnsssssssssssssssssssssssssssssnnnne 16
Chapter 2 LItErature REVIEWccceeeeeeeiiieeeeieneennnnieeeneeeeenennsssssesseeeesssnsssssssssssessnsnnssnnes 17
2.1 Current Methods for Architecture Development........cccciiiiiiiiiiiiiiiiiininirrrrrrrrrrrssssssssssssens 17
2.1.1 Decomposition-Based Methodsuueiiiiiiiiiiiiiiiiiiiiiiieieeeeeeeeeeeeeeeeeereeeeeeeereeereeeeeesesneennrernnes 17

2.1.2 ReUSE-BASEA MELTNOTSccovuriiiiiiiiee ettt s e e 20

2.1.3 QUANtItativVe MEtROOSeiieiee e e 21

21.4 FIOW-Based METNOMSccoouuiiiiiiiie ettt e s 25

2.2 Limitations of CUrrent APProachescccccccciiiiiiriirrrirrirrrrrrrrerrsssssssssssssssssssssssssssssssssssssses 26
2.3 Introduction to SYStemS TREOKY......cciiiiiiiiiirrirrrrrrrrrr s s s s s s s s s s s s e s s s s s s s s s s s s s s s s s s s 27
2.4 Overview of STAMP and STPA ...ttt ssase s sse e s as e s sssanne 28
2.5 Past Research Using STAMP and STPA for Architecture Development...........ccceeeeeeeeennnn. 29
2.6 SUMMAIY euuiiiiineiiiiinneiiiieneietieneitiesssiotisnssistssnssetssssistssnsietssnsssstssssssssanssstssnsssssssnssssssansssss 33
Chapter 3 A Safety-Driven Approach to Architecture Development..........cccceeeeunnne. 34
3.1 A Systems-Theoretic Approach to Architecture Development..........cccceeiiiiiiiiiiiiiiieieenennn. 34
3.2 Overview of the Safety-Driven Architecture Development Framework............cccceeeunnnn. 35
3.3 The Behavioral Design ProCess.......ccccciiiiiiiiiiiiiiiieerieiieessessans 36
3.3.1 Defining SYstemM REQUITEMENTSuviiiiiiiiiiiiiiiiieiieieeeeeeeeeeereeeereeseersreesreererrrsrararr—rrr——rra——.—————.. 37

3.3.2 Creating the Conceptual Architecturecccoooeiiiii 38

3.33 Updating the Initial STPA and Refining the Conceptual Architecture.........cccvvvvviiivivivveeeennnnns 44

3.4 The Structural DeSi8N ProCess.....cccccceuueeiiiiiiiiieemnniiieeniiieennsssssseessseennsssssssssssssnnsssssssssssssnns 44
34.1 Creating Architecture OPLioNS..........cooeeeeiiii e, 46

3.4.2 Analyzing and Comparing Architecture OPLiONSceeviiiiiiiiiiieiiiieee et 47

T VT o 44 T T Y28 51
Chapter 4 Design Iteration 1: Developing an Initial ATM Architecturecccceeeeeeens 53
4.1 Initial Analysis of the NAS USiNg STPAciiereiieeirieennnneeeeetereennnsssssseesesssnnnsssssssssssennns 53
4.2 Developing the Collision Avoidance Conceptual Architectureccccccceiiiiiiiiiiiiiiiiinnnnnnnn, 57
42.1 Identifying NAS System Requirements for Collision AvOidanceccccevviveeenniieeeinieeeenne, 58
4.2.2 Creating the Conceptual ArChiteCTUreeiiiiiiiiiiiee e 59
4.2.3 Updating the Initial STPA ANGIYSISuuuuriiiiiieiiiiiiiiieiiieiiieeeeeeererreerrreeerrerrrrrrrerar———————————.. 65
4.2.4 Revised Collision Avoidance Conceptual ArchiteCture.........uuuuvivieiiiieeerieeeieeeiiiieeeeeeeeeeeeeeeeeeen. 66
4.3 Exploring and Comparing NAS Architecture Optionscccccccviiiiiiiiiiiiiniinieneeeeeneeeeeeeeenenn 67
43.1 Identifying Assignment CONSTraiNTS.......uuuiiiiiiirieeiiiiiiieeeeeeereeeeeeereereeeeerrereereererareeerrereraraarrarane 67
4.3.2 Creating Architecture Options to EXPlOrecccooeeeieeeeeee e, 69
4.3.3 Evaluating and Comparing Architecture OPLioNScevveiiiiiiiiiieriiieeriireeeeererereeeereeeerreeererea. 71
4.4 Evaluation of Comparison Results Against Existing Literaturecccccceeeviiiiiiiiiiiiiennnnnnns 80
4.5 Designing the Preferred Collision Avoidance Architecture.......cccccccceiiiiiiiiiiiiiiiiniineeneeennnns 84
L I ¥ T 4T - V78N 87
Chapter 5 Design Iteration 2: Refining the Collision Avoidance Architecture 89
5.1 Illlustration of Unsafe Behavior: The Uberlingen Accidentccccoeeiiiiiiiiiiiiiiiiiiiiinicicnnnn. 89
5.2 STPA Analysis of Shared Collision Avoidance Architecturecccooeveriiiiiiiiiiiiiiiniininniennen. 92
5.3 Developing the Shared Collision Avoidance Conceptual Architecture..........cccceeveeerrrnnnn. 98
5.3.1 Additional System Requirements for Shared Collision Avoidance............cccccccevvinniiiin. 99
5.3.2 Creating the Refined Conceptual Architecture for Shared Collision Avoidance..................... 100
5.4 Comparing Architecture Options for Implementing Shared Collision Avoidance............ 105
5.4.1 Identifying Assignment Constraints and Creating Architecture Optionscccccveevvviivnnneen. 106
5.4.2 Evaluating and Comparing Architecture OPLiONSviviiiiiieiiiiiiieiieiireeeerrrererrreeerreeer———.. 108
5.5 Evaluating Support Provided by Framework for Incremental Refinement..................... 112
LT ST VT 412 0= T 117
Chapter 6 Ensuring the Validity of Underlying Assumptions.........cccccceeriiiiiiiiniinnnnnes 119
6.1 The Role of Assumptions in Architecture Development.........ccccccciiiiiiiiiiiiiiiiinninnineenennnn 119
6.2 A Framework for Identifying Underlying Assumptionsccccciiiiiiiiiiiiiiiiiininnnnsnseeeennnns 120
6.3 Using the Framework for Identifying Underlying ATM Assumptionsccccceeeeieeenennnn. 121
6.3.1 Assumptions Underlying Initial STPA Analysis..........ccoooiiiiiiiii, 122
6.3.2 Assumptions Underlying System Requirements and Conceptual Architecture..................... 123
6.3.3 Assumptions Underlying Comparison of Architecture Options..............ccccooeeiiiiiiiiiiiie. 126
6.4 Deriving Requirements from Underlying Assumptionscccccciiiiiiiiiiiiiiicecennnnnnneeeeeennns 127
6.5 SUMMAIY.cuuiiiiiiiiiiieniiiiieaietieaeietieneiettesssietienssiettansssstesssiessenssiessanssssssssssssssnssssssnsssssssnnes 131

Chapter 7 Conclusions & FULUIre WOrKeeeeeeeeennennnnnnnnsnssmssssssssssssssssssssssssssssssssses 132

7.1 Contribution 1: Safety-Relevant Criteria for Comparing Architecture Options 133
7.2 Contribution 2: Structured Processes for Developing the System Architecture 135
7.3 Contribution 3: Identifying and Accounting for Underlying Assumptions.......cccccccceeeennn 137
Abbreviations and ACrONYMS.......cccuueeeeeeeereeeieieneeennnsseeeeeeeeesnnnssssssseseesssnsnssssssssssesssnnnsssnnes 139
Glossary 139
Bibliography 141
Appendix A Design Iteration 1 — Initial STPA Analysis of NAS........ccccccviiiiiiiiiiiiniinnennn, 149
Appendix B Design Iteration 1 — Requirements and Control Elements........cccccceveeeeens 159
Appendix C Design Iteration 1 — STPA Analysis of Initial Conceptual Architecture.....170

Appendix D Design Iteration 1 — Analysis and Comparison of Architecture Options ..183
Appendix E Design Iteration 2 — Analysis of Shared Responsibility Architecture 196
Appendix F Design Iteration 2 — Requirements and Refined Control Elements.......... 213
Appendix G Design Iteration 2 — STPA Analysis of Refined Conceptual Architecture..222

Appendix H Design Iteration 2 — Analysis and Comparison of Architecture Options ..230

List of Figures

Figure 1: Today’s decomposition-based architecture development approach 18
Figure 2: Example system block diagram for a satellite drawn in SysML (from [29])............. 18
Figure 3: Pareto plot for possible apollo mission architectures (reproduced from [59])....... 22
Figure 4: A simple control [oop (from [89]) ..ccceeeiiiiiiiiii, 28
Figure 5: The STPA process (from [89]) ..cceviveiiiiiiiiii e, 29
Figure 6: STECA process flow diagram (from [94])ooeereiiiiiiieie e 31
Figure 7: Initial system architecture for TTPS robot (from [14]) ..ccceevviiiiiiiiiiiiiiieee, 32
Figure 8: Alternative architecture for the TTPS robot (from [14]).....ccuvveeeeeeiiiiviiiiiieeeeeeeenes 32
Figure 9: Conceptual overview of safety-driven architecture development framework 35
Figure 10: Overview of behavioral design process to define required control loops............. 36
Figure 11: A simple control structure of the air traffic control systemcccccvvvviieeeeennnnns 37
Figure 12: Example requirement derived from initial STPA analysis (control action in red) ..37
Figure 13: lllustration of the four types of control elements in a conceptual architecture ...38

Figure 14: Deriving control responsibilities and constraints from system requirements 39

Figure 15: Identifying the other control elements from responsibilities and constraints...... 40
Figure 16: Example control elements generated for responsibility Resp-1........ccccceeeeeeeennnns 41
Figure 17: Defining control action targets and feedback sourcescccoeeeveiivvviiiiiieeenennnnns 42
Figure 18: Identifying control action targets and feedback sourcesccccovvvvvvvviieeeeeennnns 43
Figure 19: Generic example of how an architecture option is createdoeeeel. 45
Figure 20: Overview of the structural design processccccceveeiiiiiiiiiiiieeee, 46
Figure 21: Comparing architecture options based on STPA SCENAIIOScceevvvevevriiveiieeeeeeennns 47
Figure 22: Structure of an evaluation criterionccccciii 49
Figure 23: The full safety-driven architecture development framework............................... 52
Figure 24: NAS CONtrol StrUCTUIE.....cuvieeiie e e e e e e e e e e r e e e e e eeenes 55
Figure 25: Examples of how solution-neutral, system-level requirements are generated58
Figure 26: Initial conceptual architeCtureoovvuiiiiiii e e 64
Figure 27: Zoomed-in view of changes made to Resp-4 and Resp-5 due to Reg-88.............. 66
Figure 28: Revised conceptual architecture for collision avoidanceccceevvviiviieeenenenns 67
Figure 29: Zoomed-in control structure for architecture option A1eeeeeeiiiiiiiiiiiiiiieeeeeeees 70
Figure 30: Zoomed-in control structure for architecture option Azevueeiiiiiiiiiiiiiiiieeeeeees 71
Figure 31: Behavior of A; (left) and A; (right) in scenario 1 of Table 20.............................. 73
Figure 32: Behavior of A; (left) and A; (right) in scenario 2 of Table 20......................... 73
Figure 33: Control structure for architecture option Asz........ueeeiiiiiiiiiicce e, 86
Figure 34: Simplified control structure of today’s ATC including TCAScoovvriiiiiieeeneeennns 90
Figure 35: Control structure showing conflicting instructions in the Uberlingen accident91

7

Figure 36:
Figure 37:
Figure 38:
Figure 39:
Figure 40:
Figure 41:
Figure 42:
Figure 43:
Figure 44:
Figure 45:
Figure 46:
Figure 47:
Figure 48:
Figure 49:
Figure 50:
Figure 51:

[llustration of area in higher-level control structure that will be zoomed in on....93
Zoomed-in control structure used in iteration 2 analyses.......ccccceeeveveiieiiiiiiiinnn. 93
Iteration 1 conceptual architecture with Resp-1 highlighted for refinement 99
Refined shared collision avoidance conceptual architectureoooo. 104
Architecture option As with Resp-1.2 control actions and feedback highlighted107
Architecture option As with Resp-1.2 control actions and feedback highlighted108
Behavior of A4 (left) and As (right) in scenario 1in Table 41oeeeeeeeee. 109
Behavior of A4 (left) and A5 (right) in scenario 2 in Table 41 ..., 110
Diagram showing how STPA enables informed architectural design decisions ..113
Iterative refinement of the ATM architecture across design iterations.............. 115
Revising a past architecture option selectioncovvvvviiiiieeeeiiiieeiiiiieeee e, 116
Example 1 of assumptions underlying the definition of Resp-1ccccccuuennnn... 125
Example 2 of assumptions underlying the definition of Resp-4ccccccuuunnnn... 126
Methods for ensuring the validity of underlying assumptions........ccccceeeeeeeennnns 127
Accounting for underlying assumptions during development...........cccccvvvvennnn... 129
Accounting for Reqg-50 in design iteration 2 conceptual architecture 130

List of Ta
Table 1:
Table 2:
Table 3:
Table 4:
Table 5:
Table 6:
Table 7:
Table 8:
Table 9:

Table 10:
Table 11:
Table 12:
Table 13:
Table 14:
Table 15:
Table 16:
Table 17:
Table 18:
Table 19:
Table 20:
Table 21:
Table 22:

Table 23

Table 24:

Table 25

Table 26:
Table 27:
Table 28:

Table 29
Table 30
Table 31
Table 32
Table 33
Table 34
Table 35

bles
Example classification of system requirementsoooiieeeeiiiiiiiiiiciieee e, 39
Example control responsibility and constraintseeuvvieeeeiiiiiiiiiiiciieeeeeeeeeeeeeee, 40
Examples of different types of assignment constraints...........cccoevvvviiiieeeeeeeeeeennnne. 47
Generic example of an architecture comparison table once completed 48
Example characteristics for each control aspecteuevvvveevviviiiiiiieiiiiiiiiiieiieeninnnns 50
Comparison results for generic evaluation criteriain Table 4cccccceeeeeevierevennnn. 51
N A (= 1 T (o T =T PPPPRRN 54
SYSTEM NAZAIS et e e e e e e e e e e e e e ees b e e e eeeeeearanaas 54
System-level safety CONSTraintsvueeeiii i 54
Additional examples of system requiremMents........cccceevvvviieeeeieieieeeiiiieeee e, 59
Example categorization of control requirement and constraint requirements...... 60
Example derivation of control responsibility and associated constraints 61
The four other control responsibilities for collision avoidance...........cccceevvvvvennnn... 61
Identifying process model parts, control actions and feedback for Resp-1 62
Identifying process model parts, control actions and feedback for Resp-3 63
Example of missing feedback identified by updated STPA analysisccccccuuunen.... 65
Examples of assignment constraints derived from updated STPA scenarios 68
Assignment constraints identified from updated STPA scenariosccceevvvvnen. 69
Responsibility assignments for two architecture options........ccccceeveeeeiieiiiiiiicennn. 69
Architecture comparison table for four example scenariosccccuvevveevveveveennnns 72
Examples of assumptions underlying comparison decisionsccccceeeeeeeeeieennnn. 74
Comparison results showing decision making tradeoffs for collision avoidance....75
: Comparison results showing decision making tradeoffs for efficiency 77
Comparison results showing feedback and control inputs tradeoffs..................... 78
: Comparison results showing control path tradeoffscccooovieiiiiiiiienniiieenn, 79
Comparing results identified in existing literature and this research 81
Examples comparing degree of focus on control-related differences 82
Demonstration of how a causal scenario explains an identified benefit................ 83
: Combinations of control actions considered to identify type 1-2 UCCAs............... 94
: Example Type 1-2 UCCAs for shared collision avoidance architecture 95
: Example refined Type 1-2 UCCAs for shared collision avoidance architecture 95
: Example Type 3-4 UCCAs for shared collision avoidance architecture 96
: Examples of refined type 3-4 UCCAs for UCCA-18oovvuieeeiiiieiiiiiiceee e, 96
: Examples of derived system requirements for shared collision avoidance.......... 100
: Additional examples of system requirements for shared collision avoidance100

9

Table 36:
Table 37:
Table 38:
Table 39:
Table 40:
Table 41:
Table 42:
Table 43:
Table 44
Table 45:
Table 46:
Table 47:
Table 48:

Example derivation of refined responsibility and associated constraints 101
The six refined sub-responsibilities Of RESP-1..........uuuvurviiiiiiiriiiiiiiieiiieeieiereeeneenn. 102
Identifying process model parts, control actions and feedback for Resp-1.2 103
Examples of assignment constraints derived from STPA scenarios 106
Two architecture options for assigning RESP-1.2vvvveivirirerrererrieeerereereeenennennn. 107
Architecture comparison table for four example scenariosuevvvvvvvvveennnns 109
Examples of benefits and tradeoffs of Az and As........ouvveeeeeiiiiiiiiiiiiiiieee e, 111
Guiding prompts for identifying underlying assumptionsccccvvvvviieeeeeennnns 121
Example assumptions underlying the NAS control structurecccceeeeeeevevvnnnne. 122
Example assumptions underlying UCAs and scenarios identified in initial STPA..123

Examples of system requirements and their underlying assumptions................. 124
Examples of assumptions underlying comparison decisionscccceeeeeeeeeveennnee. 127
Examples of system assumptions and derived requirements..........cccceeeeevvvvennen. 128

10

Chapter 1 Introduction

1.1 Motivation

Developing complex systems today is becoming more challenging than ever before because
of both an evolution in the characteristics of these systems and a greater emphasis on the
properties that these systems must exhibit [1]. On the one hand, the demand for greater
functionality and greater productivity has given rise to systems with more components that are
more interconnected and interdependent than systems of the past [2]. In addition, there is an
increasing desire to use automation and software to augment or enhance the capabilities of
these systems. Examples of this include the development of self-driving vehicles by the
automotive industry [3], the wide variety of automation and autonomous functions being
introduced onboard current and future aircraft [4, 5] and the development of Terrain Relative
Navigation that was used to guide the landing of NASA’s Mars rover Perseverance in 2021 [6].

On the other hand, these systems are also increasingly expected to exhibit properties such as
safety, security, and sustainability. For example, in the automotive industry, there is much
greater emphasis on functional safety and cybersecurity today as a result of the potential safety
concerns associated with self-driving vehicles operating on public roads [3]. Similarly, in the space
industry, the increasing number of spacecraft operated by government and commercial
organizations has resulted in increased attention being paid to reducing debris and pollution in
space for the safety and sustainability of future space missions [7].

Properties like these are known as Emergent Properties because they are the result of (i.e.,
they emerge from) the behavior of the system and the interactions between system components
[2, 8]. A system will only exhibit these properties if it is designed to achieve the required behavior
while avoiding undesirable behavior and interactions between components.

One set of early design decisions that have an important influence on the system’s behavior
are those made to create a system’s architecture [9]. A System Architecture is defined as an
abstract description of the entities of a system and the relationships between those entities [9].
It is therefore important to develop an appropriate system architecture to ensure that the
desired emergent properties like safety are exhibited by a system. Unfortunately, current
methods for developing system architectures do not provide sufficient support for designing a
system architecture to achieve emergent properties like safety.

The goal of this dissertation is to address this problem by developing an alternative approach
to architecture development that is more suitable for architecting modern complex systems and
that helps systems engineers to be more successful in designing emergent properties into their
system architectures from the beginning.

1.2 Challenges in Architecting Complex Systems

To design a system architecture to achieve emergent properties such as safety and security,
systems engineers need to be able to identify the requirements necessary to achieve those
properties. They can then determine the behavior and structure of the system needed to meet
those requirements [2]. Unfortunately, as systems have become more complex and software-
intensive, current methods for developing system architectures have become limited in their
ability to help systems engineers make appropriate design decisions.

11

One limitation of current methods is that they are not focused enough on the safety-relevant
interactions in a system. Many current methods focus too much on the physical components and
interfaces of a system. The important safety-related interactions thus become hidden amongst
the myriad of system components and interfaces. As a result, it can be difficult for systems
engineers to fully comprehend how their design decisions will impact the behavior of the system,
and they may inadvertently introduce flaws in the system architecture as they create it.

Another limitation of current methods is that they lack a systematic process for identifying
potential architecture options. Although these methods suggest general design principles to use
such as maximizing modularity or minimizing coupling [10, 11, 12], they provide minimal
guidance on when to apply which design principles. Systems engineers are thus left to make these
decisions using their experience and engineering judgement.

Finally, the last limitation of current methods is their reliance on quantitative metrics for
evaluating and comparing architecture options. Historically, detailed system architectures have
been compared using quantitative physical metrics such as mass or thermal performance [13].
However, for properties like safety, it is much harder to identify similar types of measurable
guantitative metrics, especially during the early stages of system development.

1.3 A Systems-Theoretic Approach to Architecture Development

To address these limitations, a new approach to architecture development is needed that
provides more support to help systems engineers design emergent properties like safety into a
system architecture from the beginning [2, 14]. This research proposes Systems Theory as the
foundation for this new approach.

Systems Theory is uniquely suitable because it recognizes the importance of considering the
system as a whole instead of just focusing on the individual components. In addition, a key idea
in Systems Theory is that emergent properties are realized when sufficient constraints are
enforced on the interactions between components. When these constraints are adequately
enforced, the necessary interactions occur while undesirable interactions are avoided [2, 8].

This is an important characteristic of emergent properties because it suggests that to achieve
them, the system must include sufficient control over the behavior of the system components
and the interactions between them to prevent undesirable behavior. For example, to ensure the
safe operation of a self-driving vehicle, there must be adequate control to ensure the vehicle
navigates safely on public roads without colliding with objects or other road users while getting
passengers or cargo to the correct destinations at the desired time. Because Systems Theory
focuses on control in a system, it provides a useful theoretical foundation for a new approach to
architecture development that provides more appropriate design support to help systems
engineers design emergent properties like safety into a system architecture.

In [15], an initial version of a systems-theoretic approach to architecture development was
developed. A key strength of the approach developed in [15] was that it provided guidance for
using the results from a hazard analysis method called Systems Theoretic Process Analysis (STPA)
to identify system requirements and the required system-level behavior. However, a major
limitation was that it lacked a similarly structured and systematic process for creating
architecture options and comparing them. As such, this research aims to extend the initial
systems-theoretic approach developed in [15] and address this key limitation.

12

1.4 Research Objective and Contributions

The goal of this dissertation is to improve the ability of systems engineers to design emergent
properties like safety into a system architecture by extending the initial systems-theoretic
approach developed in [15]. The objective of this research can therefore be stated as follows.

Research Objective: To create an architecture development framework that provides structured
and systematic processes for creating and assessing system architectures.

To address the challenges described in Section 1.2 and achieve the research objective, there
are three main contributions of this research.

Contribution 1: A structured process for comparing identified architecture options based on
safety-relevant criteria to support the development of a preferred architecture option

This contribution addresses the reliance of current methods on quantitative metrics for
evaluating and comparing architecture options. Especially during the early stages of design, when
many design details about the system are not yet known, it can be challenging to identify
appropriate quantitative metrics for properties such as safety and evaluate the performance of
an architecture with respect to those quantitative metrics.

Instead of relying on quantitative comparisons of system architectures, this research
develops a structured process for performing a qualitative, control-oriented comparison of
architecture options. By analyzing each architecture option under consideration using STPA, the
identified scenarios can be compared to determine the benefits and tradeoffs of each
architecture option. Ultimately, these benefits and tradeoffs can be used to inform a decision
about the preferred architecture that best achieves the desired emergent properties.

Contribution 2: More structured and systematic processes for developing and refining the system
behavior and architecture necessary for safety and other emergent properties to be achieved

This contribution addresses the lack of appropriate design support provided by current
methods. This lack of support is the result of current methods not focusing enough on the
control-oriented interactions in a system and only suggesting general design heuristics to help
systems engineers create a system architecture. To address these limitations, the architecture
development framework developed in this research focuses first on defining the control behavior
that a system must achieve to successfully exhibit properties such as safety. Only after the
required behavior is defined is a system architecture created to implement it.

To create the required control behavior, this research extends the guidance provided in [15]
to create a more structured process for identifying the required control elements. The process
also defines how to iterate on the behavioral design. This iteration allows systems engineers to
both fix any flaws and more thoroughly explore the behavioral design space for a system.

Once the required behavior has been defined, this research develops a more structured and
systematic process for using STPA to iteratively identify architecture options that are worth
evaluating and comparing. Using insights gained from the analysis of these options, the process
helps systems engineers to incrementally develop and refine the system architecture.

13

Contribution 3: A supporting framework for identifying and accounting for assumptions made
during architecture development

Especially when designing new systems that do not yet exist, early design decisions are made
under significant uncertainty. For example, the environment in which that system will operate
may not be fully known. To make design decisions despite these uncertainties, assumptions are
typically made about what the system’s behavior or operating environment might be in the
future [16]. However, the effectiveness of those design decisions becomes contingent on the
underlying assumptions remaining valid. If an assumption becomes invalid, the effectiveness of
the associated design decisions may be compromised, and flaws may arise in the system design.

For this reason, although this research is primarily focused on how to make appropriate
architectural design decisions, a supporting framework for identifying and accounting for
underlying assumptions was also developed and demonstrated.

1.5 Case Study: Air Traffic Management and Urban Air Mobility (UAM)

To demonstrate and evaluate the architecture development framework created in this
research, the framework is applied to develop an air traffic management (ATM) architecture for
the National Airspace System (NAS) to enable the implementation of Urban Air Mobility (UAM).
This section provides a brief overview of the architecture problem to be solved.

UAM is a relatively new mobility concept that envisions using small aircraft to transport
passengers or cargo on demand within an urban area [17, 18], similar to the ride hailing services
provided by Lyft and Uber today. To realize this novel transportation concept, one of the major
challenges of interest in this research is the integration of UAM into the NAS.

There is broad recognition that the centralized approach used to manage air trafficin the NAS
today will not feasibly accommodate the addition of UAM flights [18, 19, 20, 21, 22, 23] because
they have very different characteristics than today’s air traffic. For example, UAM is expected to
operate at a higher traffic density, faster pace of flight operations, and perform flights more on-
demand compared to today’s regularly scheduled commercial air traffic [18, 19, 23]. In addition,
UAM aircraft are anticipated to spend most of their flight time flying low and slow over densely
populated urban areas [18, 23] unlike today’s air traffic that spend most of their flight time at
high altitudes away from densely populated areas.

The existing ATM architecture was not built to manage air traffic with these characteristics.
From a workload perspective, the current ATM architecture depends on human air traffic
controllers having centralized control over air traffic [24] and they would be overwhelmed by the
increased traffic density and pace of UAM flight operations [19]. In addition, the current ATM
architecture relies on having enough time and extra space to respond to unexpected incidents
such as emergencies or weather disruptions. However, with the increased traffic densities and
the low and slow flight of UAM aircraft over populated areas, there will be much less time and
space available to respond to disruptions or emergencies when they arise.

For these reasons, it is necessary to re-design the ATM system architecture to accommodate
UAM flights without compromising the level of safety of the NAS. The goal of this case study is
therefore to develop an appropriate ATM system architecture that will be able to safely manage
UAM flights alongside existing aviation operations.

14

Because the ATM system is extremely complex, it needs to be designed incrementally to
ensure that the development effort remains intellectually manageable. This dissertation
therefore develops the ATM architecture for UAM over two design iterations to demonstrate
how this architecture development framework can be used to develop and refine a system
architecture based on incremental insights about the architecture gained during prior iterations.

1.6 Hypotheses and Evaluation

This research explores two main hypotheses, and their evaluation provides support for the
first two research contributions described in Section 1.4. While Contribution 3 is demonstrated
as part of the UAM case study, no formal evaluation is performed.

Hypothesis 1: A systems-theoretic approach can identify relevant criteria for comparing
architectures and evaluating their ability to achieve emergent properties

This hypothesis is evaluated in Chapter 4, where the first design iteration of the UAM case
study is performed to create an initial collision avoidance ATM architecture for UAM. As part of
this design iteration, two architecture options are compared: (1) a centralized collision avoidance
architecture and (2) a decentralized collision avoidance architecture. The benefits and tradeoffs
identified for these two architecture options using this architecture development framework are
then compared to the benefits and tradeoffs identified in similar comparisons that have been
performed in the existing literature. This evaluation demonstrates that this framework identifies
not only the benefits and tradeoffs that have been found in the existing literature but also
additional ones that provide a more comprehensive understanding of the various ways that an
architecture option is able or unable to achieve safety.

Hypothesis 2: A systems-theoretic approach can support making informed design decisions to
iteratively develop and refine the architecture for a system

This hypothesis is evaluated in Chapter 5 by completing a second design iteration for the UAM
case study to refine the initial collision avoidance architecture created in design iteration 1. After
both design iterations are complete, the progression of the ATM architecture over the two
iterations is evaluated. This evaluation demonstrates that the framework enables incremental
refinement of a system architecture and provides the necessary support to help systems
engineers make informed design decisions as they make these refinements.

1.7 Scope

This research is scoped in several ways to ensure appropriate depth of focus. First, the
architecture development framework created in this research is intended to be used during the
concept and architecture development phase of the systems engineering V-model [25, 26]. The
framework begins after stakeholder analysis is complete and assumes that a prioritized set of
stakeholder needs and a statement of the system’s purpose is already available. The framework
ends with the selection of a system architecture that is intended for use in downstream detailed
system design and verification and validation activities. Thus, this research will not consider the
process of eliciting and prioritizing stakeholder needs or the process of verifying and validating
the system. This research will also not consider the creation of a detailed system design. This
ensures that the focus of this research remains on early-stage system architecture development.

15

Second, this research focuses on the process of developing a system architecture and does
not consider the tools and methods for documenting it. This specific focus ensures that a clear
process is defined for creating system architectures using this new approach before considering
the methods and tools needed to support that process. Thus, architecture description
frameworks such as the Department of Defense Architecture Framework (DoDAF) [27] or The
Open Group Architecture Framework (TOGAF) [28] will not be considered. Similarly, the use of
specific modeling languages such as the Systems Modeling Language (SysML) [29] are also not
included within the scope of this research.

Finally, the framework created in this research focuses primarily on designing safety into
system architectures. In addition to preventing traditional losses such as loss of life, injury, or
damage to property, it also includes broader notions of safety such as loss of mission. Although
the author believes this architecture development framework could be applied to design other
emergent properties into systems besides safety, this research focuses primarily on safety.

1.8 Organization of Dissertation
The remainder of this dissertation is organized as follows.

Chapter 2 reviews the available literature from several engineering disciplines to identify the
different types of approaches that are currently used to develop system architectures. The
limitations of these approaches are discussed to identify specific gaps that this research needs to
address. Then, an overview of systems theory and STPA is provided to justify their use as the
foundation for the architecture development framework created in this research.

Chapter 3 describes the development of the safety-driven architecture development
framework. First, the overall approach to architecture development is described by applying key
concepts from systems theory. Then, an overview of the safety-driven architecture development
framework is provided followed by a description of the processes contained within it.

This architecture development framework is then applied over two design iterations to
develop an ATM architecture for the NAS that can manage UAM air traffic alongside existing air
traffic. The first design iteration focuses on developing a high-level collision avoidance
architecture for the NAS to show how the safety-driven architecture development framework
can be used to generate a system architecture based on hazard analysis results. Chapter 4
presents the results from this first design iteration.

The second design iteration then focuses on refining the selected high-level collision
avoidance architecture in iteration 1 to obtain a more detailed definition of the collision
avoidance architecture for the NAS. This design iteration shows how the safety-driven
architecture development framework can also be used to incrementally refine a system
architecture. The results from this second design iteration are presented in Chapter 5.

Chapter 6 develops and demonstrates the supporting framework that was developed to help
identify underlying assumptions during the architecture development process and account for
them as the system architecture is developed.

Finally, Chapter 7 summarizes the conclusions of this dissertation, discusses some of its
limitations and describes possible directions for future work.

16

Chapter 2 Literature Review

Although the process of developing a system architecture is typically considered to be a
systems engineering activity, Systems Engineering is not the only discipline that has created
methods and approaches for developing architectures. In the late 1960s and 1970s, as the size
and complexity of software systems began growing, there was recognition that methods were
needed to facilitate the creation of good software architectures [30, 31]. Later, as systems
engineers began to contend with similar increases in size and complexity of more general
engineered systems, many of the ideas for architecting software systems were adapted by the
Systems Engineering community to design these engineered systems. More recently, the field of
Product Design, which is closely related to Systems Engineering, also developed methods for
creating good product architectures [32].

As a result of these past research efforts, a wide variety of different methods for architecture
development already exist. Instead of simply coming up with yet another new architecture
development method in this research, itis important to evaluate these existing methods to better
understand the limitations that make them ill-suited for designing modern complex systems that
have the characteristics described in Chapter 1. These limitations can then be used to inform the
development of the new framework.

2.1 Current Methods for Architecture Development

In this research, four main types of approaches were identified in the disciplines identified in
the previous section: (1) Decomposition-based methods, (2) Reuse-based methods, (3)
Quantitative methods, and (4) Flow-based methods.

2.1.1 Decomposition-Based Methods

One of the most commonly used approaches for developing system architectures is
decomposition. Decomposition, also known as analytic reduction, is the process of dividing up a
system into its constituent parts or functions [10]. Not only do decomposition-based methods
exist in all of the disciplines surveyed in this research, but decomposition is also the foundation
for processes recommended in safety standards such as 1ISO 26262 [33] and I1SO 21448 [34].

For example, in software engineering, one focus in the 1970s was on modularity and
identifying effective ways to divide a software program up into modules [35, 36, 37]. Two main
ideas were proposed. The first is information hiding where the goal is to divide a system up into
modules such that design decisions contained within one module are hidden from the rest [36].
The second is stepwise refinement where the goal is to incrementally divide a software program
into a series of subtasks, gradually making more detailed design decisions [37].

In Systems Engineering and product design, decomposition is also commonly used to identify
the system requirements and functions [26, 32, 38, 39] and one popular group of methods for
doing this is Model-Based Systems Engineering (MBSE) methodologies. In a widely cited 2008
paper [40], Estefan reviews six of the most popular MBSE methodologies including INCOSE’s
Object-Oriented Systems Engineering Methodology (OOSEM) [11] and others [12, 41, 42, 43, 44].
Although each method contains slight variations, they all follow an overall process that is like that
shown in Figure 1 to generate system requirements, the necessary functions, and the system
architecture to implement those functions.

17

Stakeholder

Needs

Decompose
to obtain System

Requirements

Decompose
to obtain

Assign to system
elements to create System

’L Architecture

Define and Analyze
Interactions Between
Components

Necessary
Functions

Figure 1: Today’s decomposition-based architecture development approach

The result of this decomposition-based process is a system architecture that is typically
represented using an object-oriented model that also focuses primarily on the components (i.e.,
objects) and the interfaces between them. As an example, Figure 2 shows the block diagram for
a satellite drawn using an object-oriented modeling language called Systems Modeling Language
(SysML) [29]. In Figure 2, the satellite is represented in terms of the objects or components (e.g.,
electrical power subsystem) and the interfaces between them (e.g., data flows, power cables).

bdd [package] Structure [DellSat-77 Satellite Structure and Properties])

«block»
DellSat-77 Satellite
values
/mass : kg
satellite , 0.1
eps | 1 aocs | 1 ecs l 1 cdhs | 1
«block» «blocks
«block» : e «block»
Electrical Power S:tt::‘gif: gl Envgg:g\;mal Communication and Data
Subsystem Subsystem Subsystem Handling Subsystem
values values values parts
mass : kg mass : kg mass : kg demad : Demodulator [1]
x : Receiver [1]
eps cdhs | ant: Antenna [2]
= & 1 1 values
dataOut : ~Housekeeping Data mass : kg
cdhs ’ 0.1
dataln : Housekeeping Data
“Blocks primaryComputer
ic Flight Computer 1
Power Cable 2.3 constraints backupComputer

sm : Sufficient Memory | 1.2

vales mod | 1 w1

«constraint»

Sufficient Memory

constraints

{memoryCapacity >=
dataPerOrbit * 3}

parameters

memoryCapacity : Mb
dataPerOrbit : Mb

memoryCapacity : Mb «block» «block»
dataPerOrbit - Mb Modulator Transmitter
«flowSpecification» et

Housekeeping Data «valuelype»

il Real <1

flowProperties
|

intemp:°C | «valueType» «valueType»
in voltage : VDC °C VDC

Figure 2: Example system block diagram for a satellite drawn in SysML (from [29])

18

Limitations of Decomposition-Based Methods

These approaches could be used to design simpler systems of the past because those systems
contained components that behaved relatively independently of each other. As a result, it was
possible to assume that a system could be divided up into components before identifying and
analyzing the interactions. It was also assumed that the system design will be successful if the
behavior of each system element is well understood and has clearly defined interfaces.
Unfortunately, these assumptions are not necessarily valid for today’s software-intensive
complex systems [2, 9, 45]. Instead, the design process needs to be more focused on the control-
oriented interactions in a system. As discussed in Chapter 1, it is these control-oriented
interactions that determine if the system can adequately enforce the safety constraints and thus
exhibit the desired emergent properties.

One of the key limitations of decomposition-based approaches is therefore that the methods
and the underlying system models they use focus too heavily on the components and interfaces
in a system. The control-oriented aspects of the system thus become obscured or hidden, making
it more difficult for systems engineers to recognize the critical interactions that define the control
behavior of the system. For example, the block diagram of the satellite in Figure 2 shows
numerous physical interactions between the satellite’s subsystems but not the interactions that
ensure the satellite is at the right orbital altitude and in the right orientation to fulfill a mission.

Another key limitation is their lack of guidance for how to create the system architecture or
identify possible architecture options. Because there are typically multiple ways to divide up a
system into components [26, 39], rules of thumb known as partitioning heuristics are sometimes
used to help systems engineers decide how to divide up the system into modules. For example,
Design Structure Matrices (DSMs) [46] help identify ways to modularize a system that minimizes
the connections between modules and maximizes a module’s independence. Some additional
examples of partitioning heuristics suggested in program design and MBSE methodologies
include:

Maximizing cohesiveness [11, 47]
Information hiding [11, 35]

Enabling component reuse [11, 47]

4. Minimize difficulty in making changes [11]

wN e

Unfortunately, these heuristics do not always lead to a good system architecture for any
system. A systems engineer must therefore know when to apply which heuristics [48]. However,
decomposition-based methods typically offer little guidance and include minimal system-level
analyses to help systems engineers choose the right heuristic(s) for a given system. For example,
many of the MBSE methodologies use system use cases to inform the decomposition of a system
into functions [11, 42, 47].

In summary, decomposition-based methods are limited in their ability to support the
development of system architectures for modern complex systems for two reasons. First, the
underlying object-oriented system models do not adequately emphasize the control-oriented
aspects of a system. Second, they lack a systematic process for creating the system architecture
or identifying possible architecture options.

19

2.1.2 Reuse-Based Methods

Another approach to architecture development that has received significant research
attention in systems engineering and software engineering is reuse-based methods. Reuse-based
methods are an approach to architecture development that identifies fundamental aspects of a
system design that can be reused (like a template) to solve commonly occurring design problems.
The goal of these methods is to help software engineers or systems engineers to more quickly
identify useful architectures by leveraging the lessons learned from past design efforts.

In the mid to late 1990s, design patterns [49] or architectural styles [30] were created to help
capture and share design experience about how to structure a software system. In essence, they
defined a configurable or re-usable system model [49, 50] that could be tailored to suit a specific
system being designed and they have sometimes helped to identify less obvious system
structures that a software developer might not have identified on their own [49].

Another reuse-based method in software engineering that is similar to design patterns is
software design frameworks. Software design frameworks describe a commonly occurring
problem and the required objects and system structure needed to solve that problem [51]. In
addition, they also contain the code for a reusable main program and the developer decides what
components to plug into it [51, 52]. A commonly cited example of a software design framework
is the Model/View/Controller (MVC) framework for implementing a graphical user interface [51].

The concept of reusable architectures and patterns has also been applied in Systems
Engineering for creating system architectures. For example, INCOSE and NASA both recommend
using reference architectures when creating the system architecture [26, 39]. Like patterns, a
reference architecture is a system architecture for a previous system that a systems engineer can
use to help decide how to architect a new system.

INCOSE has also explored the use of pattern-based design methods in systems engineering
and their MBSE patterns working group [50] created Pattern-Based Systems Engineering (PBSE).
In PBSE, a pattern is a reusable or configurable system model. PBSE is thus an extension of
traditional MBSE methodologies with additional methods for managing patterns and configuring
them to suit the needs of a particular project [50, 53].

Another reuse-based method that has been proposed in systems engineering is Platforming
[54]. Platforming is defined as the sharing of components or processes across a family of products
with the goal to reduce the development costs and lead times by sharing these costs across
multiple products [54]. For example, the automotive industry uses platforming to create families
of vehicles that all use a common foundational vehicle platform [54].

Limitations of Reuse-Based Methods

Although there are potential benefits to using reuse-based methods to create system
architectures, there are also important limitations to consider. First, although the use of reuse-
based methods is often motivated by the ability to share design knowledge and speed up the
design process, these benefits have not been empirically validated. In a 2012 paper [55], Zhang
and Budgen reviewed the literature on software design patterns up to 2009. Although they found
good support for the claim that using patterns improves communication between software
developers and maintainers, they found no evidence that patterns are effective at helping
novices learn about design by sharing design knowledge. They also found inconclusive evidence

20

that the use of patterns has any impact on the productivity of developers or the quality of the
software they produce. In fact, [56] notes that reuse has resulted in significant accidents in
aerospace systems in the past.

Another limitation when using patterns or reference architectures is that it can be challenging
for systems engineers and software developers to make decisions about which patterns to use in
their design. This is because studies have found that focusing on reuse may not necessarily be
the best approach for all systems [55] and choosing which patterns to apply still requires some
prior design experience. Zhang and Budgen highlight this problem in [55] when they note that
software developers first need to gain experience by seeing how others applied a pattern before
they can know how and when to use that pattern in their own designs [55].

Finally, the use of patterns or reference architectures assumes that a good architecture has
already been identified for a given problem. For new versions of existing systems or new systems
that bear significant similarities to existing systems, patterns or reference architectures may be
useful to avoid having to start a design from scratch. However, for new systems that have never
been built before (such as UAM), a “good” architecture will not be available. This makes patterns
and reference architectures of limited use when designing new types of systems. Furthermore,
attempting to use a pattern and reference architecture could limit the opportunities for systems
engineers to come up with new architectures that might perform better for their specific system
than the pattern or reference architecture.

In summary, the main limitations of reuse-based methods are that many of the claimed
benefits have not been validated and these methods can be challenging to apply because they
provide little guidance on how to select the best pattern or reference architecture for a given
system. In addition, although these methods may be beneficial for systems that have established
some amount of design precedent, they are limited in their ability to help systems engineers
design new types of systems where a good architecture has not yet been identified.

2.1.3 Quantitative Methods

In the decomposition-based and reuse-based methods reviewed above, the focus is primarily
on choosing the best way to decompose a system into modules and it is this choice that drives
the creation of a system architecture. However, these methods typically only consider a few
possible architecture options.

An alternative approach is to perform tradespace exploration. A tradespace is defined as the
set of architectures represented on a space defined by two or more metrics [10]. Quantitative
methods aim to explore the architectural tradespace for a system more thoroughly by
systematically identifying possible architecture options and then quantifying and comparing the
performance of these options with respect to a set of performance criteria. This quantitative
comparison allows the system designer to make a data-driven decision about which option is the
best. Thus, in quantitative methods, the performance criteria drive the creation (and selection)
of a system architecture. There are three main types of quantitative methods: (1) enumeration
and evaluation methods, (2) optimization methods, and (3) simulation methods.

21

Enumeration & Evaluation methods

The main goal of enumeration and evaluation methods is to first identify all feasible
architecture options and then evaluate and compare the performance of each one. One simple
way to enumerate architecture options is to use morphological matrices [10]. A morphological
matrix is essentially a table where each row represents a design variable, and each column
represents an alternative value (option) for that design variable. Architecture options are created
by selecting one value for each design variable. For more complex system architectures, an
alternative approach is to represent the design variables and the connections and constraints
between them using a graph [57, 58, 59]. The graph is then traversed and values for each design
variable are chosen to create architecture options.

Once the architecture options are enumerated, the performance of each architecture option
must then be evaluated with respect to a set of performance metrics. One common evaluation
approach is to use designer-provided equations that specify the relationship between
architectural features and the selected performance metrics [58, 59]. Alternatively, a method
called Value Assessment of System Architectures Using Rules (VASSAR) proposed to evaluate
architecture options based on the extent to which it satisfies the stakeholder requirements [57].

Once the performance of all architecture options has been evaluated, they can be compared
to identify tradeoffs between them. This comparison is sometimes done graphically using pareto
front plots [10, 57, 58, 59]. A pareto front plot is essentially a scatter plot where each point
represents an architecture option and the axes represent the performance metrics (e.g., total
utility and cost) that the architecture options are evaluated against. For example, Figure 3 shows
a pareto front plot generated from a retrospective analysis of different mission architectures
developed in the 1960s for the Apollo program [59]. Each point represents a mission architecture
option that is plotted based on its mission success probability (a measure of utility) and initial
mass to low earth orbit (IMLEO) (a measure of cost).

Direct M LOR. & EOR » EOR+LOR

300000
&l 'y
I
250000 :
200000 R |
3 '
& 150000 Ay o !
('] I
-l B [!3
: A B
100000 |—]’ —¥;
I R
E__m-" (5
50000 BT &
o 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.2 0.9 1

mission success probabillity

Figure 3: Pareto plot for possible apollo mission architectures (reproduced from [59])
The pareto front plot thus helps a systems engineer to visualize the tradespace and quickly
identify the architecture options with the best performance. It can also help to identify tradeoffs
22

between architecture options that have similar overall performance but exhibit better
performance on one metric at the cost of worse performance on another metric.

Optimization Methods

While evaluation and enumeration methods provide good coverage of the tradespace for a
system, they can require a significant amount of time and computational resources to evaluate
the large number of architecture options that are generated. To reduce these costs, optimization
methods identify the best (optimal) design for a system by iteratively searching the architectural
tradespace. At each iteration, the goal is to identify architecture options that offer incrementally
better performance than the architecture options found in previous iterations. Iteration stops
when the architecture option with the best performance has been found.

One example of an optimization method used in mechanical engineering and product design
is Axiomatic Design [60], a mathematical approach to system design where a system designer
must select the design parameters that define the system. Matrix-based design equations then
define how the design parameters satisfy the functional requirements [60].

Using these matrix-based design equations, Axiomatic Design provides two design axioms to
help a designer choose the best design parameters for their system. The Independence Axiom
focuses on maximizing the independence between the functions of the system. Based on this
principle, a system designer should select design parameters that minimize the coupling between
the functional requirements. The Information Axiom, then, provides a quantitative approach for
determining how good the design is by calculating the probability that a system successfully
achieves its desired performance with respect to the functional requirements.

While axiomatic design has been applied successfully to the design of physical systems, it is
more difficult to apply to other types of system design because of its narrow focus on functional
independence and information content. In addition, axiomatic design tends to be focused on
design within a specific discipline whereas systems engineers need to consider the concerns from
multiple disciplines simultaneously when selecting an optimum design.

To address this need to optimize across engineering disciplines concurrently, Multi-
Disciplinary Design Optimization (MDO) methods were created. Instead of making discipline-
specific design decisions sequentially (e.g., structural design, then thermal design), MDO
methods optimize the system design over the constraints of multiple disciplines simultaneously.
These methods were initially used to design aerospace systems where strong coupling between
engineering disciplines made it challenging to design systems one discipline at a time [61].

In MDO, the design problem is formulated mathematically using equations that define (1) the
design variables and the range of possible values, (2) the objective function used to calculate the
performance of an architecture option based on the values of the design variables, and (3) the
constraint functions used to quantify the constraints that an architecture option must meet to
be considered feasible [13].

Once the problem has been formulated, a wide variety of different optimization algorithms
can be used to identify the optimal values for the design variables. [62] provides a good overview
of the different classes of optimization algorithms and how to select which algorithm to use based
on the characteristics of the objective function and constraint functions. Although many of the
optimization algorithms used by MDO methods are designed to solve for continuous design

23

variables such as length or mass, there are also optimization methods that are designed
specifically for optimization problems involving discrete design variables [63, 64].

Simulation Studies

Finally, a third type of quantitative method for analyzing and evaluating system architectures
is simulation studies. Although simulation studies do not help to create architecture options, they
provide a way to evaluate and compare them by “operating” a system virtually. Systems
engineers can then obtain quantitative data about the aspects of a system’s behavior that are of
interest before any software or hardware is developed. Simulation studies can thus be used to
compare different architecture options operated in the same simulated environment or scenario.

Simulations are becoming an increasingly popular tool for evaluating the behavior or
performance of a wide variety of different systems architectures [1] and they have been used
extensively in the ATM literature to evaluate ATM architectures and concepts. Given the
relevance of these methods to the UAM case study used in this dissertation, this section provides
a brief overview of the different types of simulation studies in the ATM literature.

The methods used to analyze ATM concepts today can be divided into three main categories.
The first category is physical NAS models that were developed to model specific areas of the NAS
such as runways, airports or terminal airspace at a high level of detail. These models are typically
used to analyze the impact of changes to airspace structure or airport layout on performance
metrics such as capacity or delays [65]. However, Odoni notes in [65] that these models do not
adequately analyze safety.

The second category of models are functional NAS models that model the NAS as a whole but
at a higher level of abstraction and for a specific function such as conflict detection. There are
two main types of functional NAS models: (1) Control-Theoretic Models and (2) Human
Performance Models. Control-theoretic models use mathematical abstraction derived from
control theory to model air traffic management as a control system. The goal of these models is
to identify algorithmic ways to enable multiple decision-making agents to collectively control and
coordinate the movements of aircraft to resolve conflicts and avoid collisions [66, 67, 68].

By contrast, human performance models were developed to model the cognitive functions
and decision-making of air traffic controllers or flight crews. Because the current air traffic control
system is so human-centric, human performance models were needed to analyze the impact of
changes such as new ATM concepts or procedures on human performance metrics such as
workload [69, 70, 71].

Finally, the third category is simulation frameworks that provide the infrastructure needed to
integrate different models into a complete simulation of air traffic flowing through the NAS [72,
73, 74, 75]. These frameworks enable performance metrics such as throughput, capacity or
closest point of approach between aircraft to be calculated. More recently, a new type of
simulation framework called Agent-Based Modeling and Simulation (ABMS) [76, 77] provides a
more dynamic approach to simulation. By modeling the interactions and decision-making of each
agent to match what would occur in the real world, they are used to predict overall system
behavior and performance.

24

Limitations of Quantitative Methods

While quantitative methods have been applied successfully in the aerospace and automotive
industries to create and analyze physical or more detailed architectures, these methods are more
challenging to apply when developing other types of architectures such as conceptual or
functional architectures.

One key reason is that it is much harder to identify relevant quantitative metrics for
evaluating architectures at the conceptual level compared to the physical level. For example,
mass and cost are common quantitative metrics for evaluating a physical architecture. However,
itis more challenging to identify suitable metrics to quantify the safety or security of a conceptual
or functional architecture because safety and security are not physical properties.

Even if quantitative metrics exist, the performance of a conceptual or functional architecture
with respect to a given metric is challenging to evaluate. This is because in the early stages of
system design, many of the design details needed to calculate quantitative metrics are not yet
known. For example, mass and cost can be calculated for a physical architecture but are much
harder to calculate for a conceptual or functional that only defines a set of functions and the
interactions between them, not the details of how they are implemented.

These issues suggest that creating system architectures, especially during the early stages of
system design, is a fundamentally different type of problem solving activity than creating physical
architectures and different techniques are required [78]. DeRemer and Kron make this
observation in [79] when they state that:

Structuring a large collection of modules to form a “system” is an essentially distinct and
different intellectual activity from that of constructing the individual modules [79, p. 80]

In summary, quantitative methods enable more systematic and thorough exploration of a
tradespace compared to decomposition-based or reuse-based methods when creating physical
system architectures. However, because they require architectures to be evaluated strictly in
terms of quantitative metrics, it is challenging to use quantitative methods to evaluate
conceptual or functional architectures for emergent properties like safety.

2.1.4 Flow-Based Methods

The last type of approach to architecture development is flow-based methods. Flow-based
architecture development methods are typically used to design systems where the primary goal
of the system involves flow-based properties such as efficiency or throughput. For example, a
logistics network might be designed using flow-based methods to maximize the speed and
efficiency with which packages can be transported from source to destination. Similarly, a
communications network might be designed using flow-based methods to maximize the data
throughput or the number of clients that can be served.

Flow-based methods model the system as a network of nodes (i.e., a graph) through which
items, energy or data flow through. These graph-based models are then used to identify how
best to link the nodes to achieve the desired properties. Flow-based methods have been used to
design mission architectures and space logistics networks [80], utility, and transit infrastructure
networks in a city [81] as well as software systems [31, 82].

25

Limitations of Flow-Based Methods

While these flow-based methods have been successfully used to design systems to achieve
flow-based properties such as efficiency or throughput, they are not suitable for designing
systems to achieve non-flow-based properties such as safety because they only focus on the flow
interactions between nodes of the system. However, as discussed in Chapter 1, it is the control-
oriented interactions in a system that give rise to emergent properties. Thus, like the object-
oriented models used in decomposition-based methods, flow-based models do not focus enough
on the essential control-oriented interactions that enable emergent properties such as safety to
be achieved.

2.2 Limitations of Current Approaches

In section 2.1, a wide variety of architecture development methods were reviewed. Based on
the limitations discussed for each category of methods, the key limitations that are addressed by
this research are as follows.

First, the modeling approach underlying many of the architecture development methods do
not model the control-oriented interactions in the system that are critical to ensuring that
emergent properties such as safety and security are achieved. Object-oriented system models
focus too much on the physical components and interfaces in a system while flow-based system
models focus too much on flow interactions. As a result, it is much harder for system designers
to reason about the necessary functions and control interactions that should be included in the
system design because they are obscured by these system models.

Second, although many of the architecture development methods recognize the importance
of deciding how to divide up a system into components, they typically offer little guidance on
how to make that decision for a specific system. Some methods (e.g., MBSE methods) offer a
variety of heuristics that a systems engineer can use to inform how they decompose their system.
Other methods rely on the use of patterns or reference architectures that a system designer can
customize like a template. In either case, however, little guidance is provided on how to decide
which heuristics to apply and there is heavy reliance on the experience of the system designer to
make these decisions. Furthermore, for new or novel systems that have never been designed
before, useful heuristics, patterns or reference architectures may not exist yet because a design
precedent has not yet been established.

Third, many of the current architecture development methods evaluate architecture options
using methods that are not suitable for conceptual or logical architectures created at the early
stages of system design. This limitation arises because these methods require architecture
options to be evaluated using quantitative criteria that are easiest to identify when creating a
physical system architecture. However, some desirable emergent properties do not have
associated quantitative criteria that can be easily defined. Furthermore, even if quantitative
criteria are identified, it is much harder to quantitatively evaluate the performance of early-stage
conceptual or logical architectures with respect to those criteria because many of the design
details have not yet been decided.

These limitations thus suggest that there is a need to develop a more structured and
systematic approach for designing emergent properties into system architectures that can be

26

applied starting at the early stages of system design. This research proposes using Systems
Theory as the foundation for this new approach.

2.3 Introduction to Systems Theory

To design emergent properties into modern complex systems, the design process needs to
avoid the limitations discussed in Sections 2.1 and 2.2 by using an approach that is focused on
the control-oriented aspects of a system and emphasizes the need to consider the system as a
whole. Instead of relying on decomposition, architecture development needs to take a holistic
control-oriented approach based on systems theory.

As discussed in Chapter 1, architecting modern complex systems to achieve emergent
properties such as safety is challenging because they are becoming more complex and
interconnected. Because of the increased coupling between components, their behavior is no
longer independent and depends on both the inputs received from other components as well as
the context or environment they are operating in. Unfortunately, decomposition-based
approaches overemphasize the independence of the components [83, 84], making it more
difficult to identify or analyze the emergent behaviors or properties of the system [2, 8, 84].

Systems theory was created in response to this need to view systems more holistically. It
recognizes that the properties or behaviors of the system are not just the sum of the behaviors
of the components and that the system’s behavior depends on the environment in which it
operates [83, 85]. For this reason, Systems Theory emphasizes considering the system as a whole,
including the context or environment in which the system operates.

Systems theory also recognizes that the behavior of a system arises from circular loops of
cause-and-effect relationships instead of linear chains. As Peter Senge states, “reality is made up
of circles but we see straight lines” [86, p. 73]. Instead of understanding the behavior of a system
in terms of one event leading to another (a linear view of causality), Systems Theory views a
system’s behavior as being influenced by feedback in continuously operating circular loops [86,
87]. As a result of these circular loops of cause and effect, behavior in one part of the system can
eventually influence another part of the system even if they are not directly coupled or connected
to each other [45]. For this reason, the behavior of a system arises from the structure of its
control and feedback loops [88].

There are two pairs of key concepts that form the foundation of Systems Theory: Hierarchy
and Emergence, and Communication and Control [2, 8]. First, in systems theory, a system can be
organized into hierarchical levels such that the properties associated with the system elements
at one level arise (i.e., emerge) from the interactions between the parts at the next lower level
[2, 8]. Extending these ideas to engineered systems, any complex system can also be organized
into hierarchies of subsystems, functions or components. Emergent properties such as safety
thus arise from the interactions between the system components at the level below [2].

This leads to the second pair of key concepts: Communication and Control. To ensure that
the necessary interactions between system components occur, components at one level of the
hierarchy can apply controls onto the level below to constrain the interactions that occur at the
lower level [2, 8]. The enforcement of these constraints thus ensures that the required
interactions occur and undesirable interactions are avoided. In addition, the implementation of
these controls requires the communication of both controls down to the components below as

27

well as feedback up to the controller. Communication and control are therefore the means by
which constraints on a system’s behavior are enforced [2].

2.4 Overview of STAMP and STPA

Systems-Theoretic Accident Model and Processes (STAMP) is an accident causality model that
is based on Systems Theory [2]. As in Systems Theory, STAMP emphasizes the importance of
considering the system as a whole. This includes not just the technical aspects such as hardware
and software but also the human operators, the social and organizational aspects as well as the
system’s operating environment. In addition, STAMP also recognizes that emergent properties
such as safety arise from the interactions between the system components. This holistic view of
a system enables STAMP to explain how accidents or undesirable behavior might occur due to
non-linear or indirect causes, design and requirements flaws, and human factors issues in
addition to component failure.

STAMP also treats safety as a control problem rather than a reliability problem. Instead of
focusing on preventing component failure, STAMP focuses on preventing accidents or
unacceptable losses by ensuring the necessary interactions and behaviors occur and undesirable
interactions or behaviors are avoided. This can be done by identifying and enforcing sufficient
constraints on the system’s behavior and the interactions between the system components.

Based on this concept of safety as a control problem, STAMP models the controls in a system
using a hierarchical safety control structure that contains a controlled process and the various
controllers that can influence or control the system’s behavior. This is illustrated in Figure 4.

Controller

Control Process
Algorithm Model

Control Actions Feedback
(via actuators) (via sensors)

Controlled Process

Figure 4: A simple control loop (from [89])

Under this paradigm, a controller enforces the system constraints by applying appropriate
control actions to control a system’s behavior or the interactions between its components. In
turn, the controller receives feedback about the effect of those controls on the system. This
concept of control is interpreted broadly. Although the controls could be technical or physical
controls, they may also be social or organizational controls.

Process models are another important and unique aspect of STAMP. Process models (also
known as mental models for humans) are important for the safe operation of a system because
they are used by controllers to make decisions and select appropriate control actions. For this

28

reason, controllers must receive adequate feedback to keep process models updated over time
to avoid making unsafe decisions based on an incorrect process model. For example, if a pilot’s
mental model of their aircraft is inconsistent with the actual aircraft state, they may provide
control inputs that are unsafe in the context of the actual state of the aircraft.

Based on this theoretical foundation, a hazard analysis technique called Systems-Theoretic
Process Analysis (STPA) was created. STPA takes a more generalized view of accidents and losses.
Although a loss may involve human death or injury, it may also involve other types of losses such
as equipment, mission, financial or information losses. This enables a wide variety of control-
oriented emergent properties to be analyzed using STPA including maintainability [90] and
scalability [91]. Figure 5 shows the four steps in STPA.

STPA

1) Define 2) Model 3) Identify 4) Identify
Purpose of = the Control = Unsafe Control ! Loss
the Analysis Structure Actions Scenarios
—_———m = —— RN [(- ——— === = =
Identify Losses, Hazards | % : I % : : y l 1
Define : L : T ! -/_\'\ Hi_._l_..
System —. Envi 1 — | L | I / \ -
boundary |, EMVironment | | = ‘
jm—t-----] 1 !
| | 1 !
1 1 I
1 1 !
1 1 !
| |

Figure 5: The STPA process (from [89])

STPA analyzes the control loops in a safety control structure to proactively identify potential
flaws and causes of accidents during development before an actual accident occurs [89]. These
flaws and causal factors are identified as Unsafe Control Actions (UCAs) and causal scenarios.

Because of STPA’s focus on identifying potential flaws in control loops, an STPA analysis can
be used to inform how a system should be designed or how to improve an existing design to
mitigate or prevent the UCAs and scenarios. However, a more structured process is needed for
using the STPA results to create and assess architecture options.

2.5 Past Research Using STAMP and STPA for Architecture Development

In addition to the safety-driven approach to architecture development that was developed in
[15], there have been several other research efforts that have also applied STAMP and STPA to
architecture development. This section provides a brief overview of these past research efforts
to highlight some specific aspects of architecture creation and assessment that a systems-
theoretic architecture development framework should address.

Comparing Architecture Options Using STPA
One way that STPA has been used in architecture development is to analyze a series of
architecture options that have already been created and compare the results. For example,
Kharsansky used STPA to compare three architecture options for controlling and managing a
29

constellation of satellites in terms of the reliability and safety of the architecture as well as the
ability to scale the architecture to larger constellation sizes [91].

Similarly, France used STPA to compare four architecture options for an automated park
assist system where each architecture option gives the automation an increasing level of control
over the vehicle and the parking task [92]. France then compared the different architectures in
terms of the number of driver and automation UCAs identified for each option [92].

As a final example, Horney used STPA to analyze two architecture options for controlling the
formation shape of one or more unmanned aircraft that are tethered to a lead human-piloted
aircraft [93]. In one option, the human pilot decided the formation shape and in the other, the
tethered unmanned aircraft decided the formation shape. Horney then compared the two
options in terms of the identified UCAs and scenarios and used them to highlight the potential
challenges of each option [93].

These past research efforts all employ a common strategy for comparing architecture
options. They identify a series of architecture options first, evaluate each one with respect to a
set of pre-determined criteria (e.g., number of UCAs or scenarios) and then compare them based
on those criteria to determine the benefits and tradeoffs of different options.

Although these research efforts are an improvement over the traditional methods for
architecture development, there are two key limitations. First, more guidance is needed on how
to systematically identify the architecture options to be evaluated instead of just using heuristics
or experience. For example, Kharsansky and France defined architecture options in terms of
different levels of automation, a heuristic that is commonly used when deciding how much
automation toinclude in a system. Instead of just relying on heuristics or past experience, a more
systematic process is needed for identifying what architecture options should be considered.

Second, more guidance is needed on identifying the criteria by which architecture options
should be assessed. Instead of just comparing architecture options in terms of the number of
different types of UCAs or scenarios identified, a more structured process is needed to help
identify appropriate metrics of interest for a specific system.

Using STPA to Improve an Architecture

Another way that STPA has been used in architecture development is to analyze an initial
architecture using STPA and use the results to inform changes to improve that architecture.
When done iteratively, the architecture can be improved incrementally.

One method that does this is called Systems-Theoretic Early Concept Analysis (STECA) [94].
STECA is based on systems theory and extends STAMP and STPA to analyze the Concept of
Operations (ConOps) for a system early in the design process. STECA focuses on systematically
identifying missing information, undocumented assumptions and inconsistent or conflicting
information in the ConOps and formulating mitigation strategies to address these problems [94].

To do this, STECA first models the system based on the ConOps using a control structure. It
then defines a set of formal equations that can be used to analyze the control structure for gaps
in @ mathematically rigorous manner. Three main gaps are analyzed: (1) completeness in the
definition of the control loops, (2) constraints fully accounted for, and (3) consistency and clarity
where responsibilities or control actions are shared by multiple controllers in the control

30

structure [94]. STECA then provides a process for modifying the control structure to remedy any
gaps that are identified. The STECA analysis and design process is illustrated in Figure 6.

GENERAL,
SYSTEMS-THEORETIC SAFETY-DRIVEN DESIGN
CONOPS ANALYSIS

ConOps ¢
\ Identify System Hazards

e Demonstration: Section 4.2

| Derive System
Safety Constraints
¥ e Demonstration: Sec 4.2

Identify Control Concepts
e Description: Section 3.2

e Demonstration: Section 4.3 Y
Derive Refined

Safety Constraints

o Description: Sec 3.4

e Demonstration: Chapter 5

Y 7

Identify Hazardous Scenarios

and Causal Factors

e Completeness Criteria: Sec 3.3.1

e Analyze Safety Resp: Sec 4.4.2

e Coordination & Consistency: Sec 3.3.3

o Demonstration: Section 4.4 Y
———,[Refine, Modify

.| Control Structure

" | @ Description: Sec 3.4

e Demonstration: Chapter 5

Figure 6: STECA process flow diagram (from [94])

Another method that uses the results of an STPA analysis to improve an initial system
architecture is the conceptual architecture-based approach described by Leveson in [14]. In this
design process, an initial system architecture (called a conceptual architecture) is analyzed using
STPA to identify UCAs and scenarios that describe potential causes of unsafe system behavior.
Changes to the system architecture can then be identified that will mitigate or eliminate the
identified UCAs or scenarios and the STPA analysis can be updated to reflect the new version of
the system architecture. In [14], this process is applied to the design of a Thermal Tile Processing
System (TTPS) robot.

The TTPS robot is an automated vehicle that was intended to be used to refurbish thermal
tiles on the space shuttle after a space flight. In essence, the robot consisted of a mobile base to
move from one location to another and a robotic arm that serviced the thermal tiles on the space
shuttle. To prevent the mobile base from tipping over while the robotic arm was extended, the
mobile base included stabilizer legs that needed to be deployed and secured before extending
the robotic arm [14]. An initial architecture for this robot used separate controllers to control the
movement of the robotic arm and stabilizer legs as shown in Figure 7.

31

Operations
Management

Control Room

Robot Work
‘ Plarne: ‘ [Clp-erator I':j

TTPE Control System
Movement
Caontroller

|
Mntnr - 5

,qrm—| Injection | Vision Cortroller Location |
Leg]

Figure 7: Initial system architecture for TTPS robot (from [14])

‘Camera ‘

Work Controller

t
Arm Injection
Cantroller Controller

Vision

System
Controller

An STPA analysis of this initial architecture found that poor coordination between the two
controllers controlling the robotic arm and stabilizer legs was associated with numerous
hazardous scenarios. For example, the stabilizer legs could be retracted before the robotic arm
was fully stowed or the robotic arm could be extended before the stabilizer legs were fully
deployed, either of which could cause the robot to tip over.

Based on these STPA results, Leveson finds that many of these hazardous scenarios could be
prevented by using the same controller to control the stabilizer legs and robotic arm instead of
using separate controllers [14]. Having the same controller be responsible for controlling both
the stabilizer legs and robotic arm makes it easier to coordinate their movements. This
alternative architecture is shown in Figure 8.

Operations
Management
I

- Control Room

Robot Work
Planner—‘ ‘Operator }‘:

e '
: [TTPS Control System
Camera ||
_l Work Controller | 5
Injection Visian Movement and Arm |-
Controller System Controller l
Controller T | T g
[H
it I
Injection| |Vision | [Arm || Leg || Motor || Location | |
Controller

[

Figure 8: Alternative architecture for the TTPS robot (from [14])
32

This example illustrates how information about how a system might behave can inform the
development of its architecture. Because the STPA analysis identified that coordinating the
movement of the robotic arm and stabilizer legs would be critical for ensuring safe system
operation, a better architecture was identified that used the same controller to control both
parts. This functional grouping makes it easier to ensure that unsafe behavior would be avoided.

Both STECA and the conceptual architecture-based approach are useful because they help
systems engineers to identify information that can inform changes to the architecture. By helping
to highlight flaws or inconsistencies in a system architecture, both STECA and the conceptual
architecture-based approach provide systems engineers with useful information that can guide
and inform their design decisions. It is this type of design support that a safety-driven architecture
development framework should also strive to provide.

However, both STECA and the conceptual architecture-based approach require an initial
ConOps or conceptual architecture to be defined first to perform the initial analysis on. That
initial architecture is then modified to address any flaws that are found. Instead of creating an
initial architecture and then addressing any flaws, it would be preferable to create an initial
architecture that avoids as many of the flaws as possible from the beginning.

2.6 Summary

This chapter surveyed a wide variety of architecture development methods and identified
several key limitations to be addressed. First, many of these methods do not focus enough on
the control-oriented interactions that are critical to ensuring that emergent properties such as
safety are achieved. Second, they rely primarily on general heuristics to guide the creation of a
system architecture and typically offer little guidance on how to make those design decisions for
a specific system. Finally, they rely on quantitative criteria for comparing architecture options
even though it can be difficult to identify appropriate quantitative criteria for emergent
properties like safety, especially during the early stages of development.

Instead of these traditional approaches, systems theory and STAMP offer a more suitable
approach for designing emergent properties like safety into a system architecture from the
beginning. Because of STPA’s focus on identifying potential flaws in control loops, an STPA
analysis provides useful information that can be used to inform decisions about how a system
should be architected to achieve safety and other emergent properties. The next chapter
describes the architecture development framework that was developed to structure the process
of using STPA results to inform architectural design decisions and create a system architecture
that best achieves the desired emergent properties.

33

Chapter 3 A Safety-Driven Approach to Architecture Development

As described in Chapter 1, this research aims to develop a framework for architecture
development that enables systems engineers to design emergent properties like safety into their
system architectures. To address the limitations of current methods that were described in
Chapter 2, this framework will need to provide three main types of support. First, instead of
simply relying on decomposition to identify the system elements, this framework needs to help
systems engineers reason about what functions and interactions will need to be included in the
system architecture to achieve the desired emergent properties. Second, instead of just relying
on design heuristics, this framework needs to help generate relevant design information that
systems engineers can use to inform their architectural design decisions. Finally, instead of only
using quantitative metrics to evaluate and compare architecture options, this framework needs
to help identify relevant evaluation criteria that systems engineers and analysts can use to
determine how well an architecture option achieves the desired emergent properties. Because
this framework is focused on early-stage architecture development, it is also important that these
criteria can be identified even when few details about the system are known.

To meet these needs and enable systems engineers to design emergent properties into
systems, Systems Theory provides a suitable theoretical foundation for this framework. This
chapter is organized as follows. First, the concepts from Systems Theory (described in Section
2.3) are applied to define a systems-theoretic approach to architecture development. Then, an
overview of the framework is provided followed by the details of how each part of the framework
was developed.

3.1 A Systems-Theoretic Approach to Architecture Development

In any architecture development effort, the overarching goal is to determine how the system
should be designed to achieve the desired emergent properties while avoiding undesirable
behavior. Ultimately, this requires deciding what functions the system needs to perform, what
interactions are needed between functions, what the components of the system should be and
how they should be structured. To create a systems-theoretic approach to architecture
development, the concepts from systems theory can be applied to each of these design decisions.

As discussed in Section 2.3, one of the key concepts from Systems Theory is Holism — the idea
that the behavior of a system depends on the context it operates in. Applying this concept to
architecture development therefore suggests that systems need to be designed as a whole. This
means that design decisions should account for both the interactions between functions or
components of the system as well as the interactions between the system and the environment
in which it operates. These interactions are an especially important aspect of the system design
because the desired emergent properties of a system can only be achieved if the necessary
interactions are designed into a system while avoiding undesirable ones.

Similarly, applying the concepts of hierarchy and emergence as well as communication and
control suggests emergent properties can be designed into a system by enforcing sufficient
constraints to control the behavior of the system components and the interactions between
them. This requires that the system design contains the right components arranged in an
adequate hierarchy with the necessary communication (feedback and control actions) to achieve
the system goals while enforcing constraints on how those goals can be achieved.

34

A system-level design process should therefore assist system designers in creating the system
architecture by helping them to identify the necessary interactions (e.g., control actions and
feedback) and the required system structure. This will ensure that components at a particular
level of the control hierarchy are designed to exert adequate control over the components at the
level below.

3.2 Overview of the Safety-Driven Architecture Development Framework

Based on the overall approach described in the previous section, a new framework for
developing system architectures called the Safety-Driven Architecture Development Framework
(SDADF) was developed to help systems engineers design emergent properties like safety into a
system architecture from the beginning of architecture development. Conceptually, the
framework consists of 3 main parts as illustrated in Figure 9.

Initial STPA identifies how unsafe system
behavior could occur

defines the control
behavior needed to enforce safety constraints

Y

Structural Design Process defines system
architecture that implements control behavior

Figure 9: Conceptual overview of safety-driven architecture development framework

The key overarching idea is that a system should be designed to prevent unsafe or undesirable
behavior. Thus, the first part of this framework is to perform an initial STPA analysis of the system
to identify preliminary information about how unsafe behavior of the system might occur. One
of the strengths of STPA is that it analyzes a system including the context in which that system
operates. Thus, using STPA results to drive design decisions ensures that those design decisions
account for the system’s operating context.

This framework applies the existing STPA process with no changes. However, because few
design details are known during early-stage design, this initial STPA is performed at a high-level
of abstraction to minimize the number of assumptions that need to be made about the system
during the analysis. This initial abstract definition of the system can then be refined as
architecture development progresses.

Once potential unsafe system behaviors have been identified, the next part of the framework
defines the control behavior needed to prevent those unsafe behaviors. Developing the control
behavior before exploring and comparing architecture options allows systems engineers to
determine what the desired behavior of the system should be before creating a system structure
to implement it. Thus, the behavioral design of a system serves as a cognitive steppingstone to
support later reasoning about what the preferred system architecture might be.

35

A Behavioral Design Process was therefore developed to provide a structured process for
using the causal scenarios identified by STPA to define the necessary safety constraints and the
control loops that are needed to enforce them. The output of this part of the framework is a
Conceptual Architecture, a control-oriented system model that represents the various control
elements that are needed in the system and the relationships between them.

Once the desired control behavior has been defined, the final part of this framework involves
creating a system architecture to implement that desired behavior. To do this, a Structural Design
Process was developed to provide a systematic process for deciding how to allocate the control
elements to either new or existing system components to create the system architecture.
Because there can be numerous options for how to allocate the control elements to achieve the
same desired behavior, this process helps systems engineers to systematically explore and
compare different architecture options to identify the one that best achieves the desired
emergent properties.

The remainder of this chapter elaborates on the details of the behavioral and structural
design processes. This framework is then applied to develop and refine an ATM architecture for
UAM in Chapter 4 and Chapter 5.

3.3 The Behavioral Design Process

The purpose of the behavioral design process is to define the control behavior that is needed
to enforce the necessary safety constraints and ensure unsafe or undesirable behavior is
prevented. However, designing an adequate control behavior can be difficult to do because
modern complex systems typically require numerous interdependent safety constraints to be
enforced. The behavioral design may therefore need to contain many control functions and
interactions to adequately enforce all the safety constraints. Furthermore, the interdependence
between control functions makes it difficult to ensure that design decisions made to avoid one
type of unsafe behavior do not inadvertently lead to another.

For these reasons, a structured and iterative process is needed to help systems engineers
incrementally refine the required control behavior and evaluate it to ensure that flaws are not
introduced as the behavior is designed. Figure 10 provides an overview of the behavioral design
process.

Behavioral Design Process

—> Define System Requirements

Y

defines the control]
behavior needed to enforce safety constraints Create Conceptual Architecture

Y

— Update STPA Analysis

Figure 10: Overview of behavioral design process to define required control loops

36

3.3.1 Defining System Requirements

The input to this behavioral design process is the causal scenarios identified by the initial
STPA. As shown in Figure 10, this process starts by using those scenarios to identify appropriate
system requirements. Consistent with STAMP principles, the system requirements define the
safety constraints that will need to be enforced to prevent the unsafe behaviors described in the
STPA causal scenarios. These requirements are intended to be solution-neutral and should only
state what constraint(s) need to be enforced. The requirements should not describe how the
constraints should be implemented or who should enforce the constraints because those
decisions will be made later in the development process when additional design information is
available to make a more informed decision.

As an example, consider a simple, abstracted version of an Air Traffic Control (ATC) system
where Air Traffic Management is a controller that monitors the movement of aircraft in the
airspace and issues a Coordination control action to prevent collisions by coordinating the
movement of aircraft. The control structure for this simple ATC system is shown in Figure 11.

Air Traffic Management

Position
Coordination
Intent
Aircraft 1 Aircraft n

Figure 11: A simple control structure of the air traffic control system

Figure 12 shows an example of how the Coordination control action can be analyzed to derive
a collision avoidance requirement, Reqg-1.

Unsafe Control Action (STPA): Air Traffic Management (ATM) does not Coordinate Aircraft
Movements isi i isi i

h Loss Scenario (STPA): ATM receives feedback about a potential collision but is
preoccupied addressing other collisions and does not address this one

b Reg-1: ATC system shall coordinate the movement of aircraft to
resolve all potential conflicts

Figure 12: Example requirement derived from initial STPA analysis (control action in red)

As illustrated in Figure 12, each requirement defines a constraint that, when enforced in the
system, would prevent or mitigate one or more scenarios. By doing this for all the scenarios
identified in the initial STPA analysis, a set of system requirements are defined that, when
implemented, will adequately control the hazards.

37

3.3.2 Creating the Conceptual Architecture

Once the system requirements have been defined, a Conceptual Architecture is created to
model the control loops that are needed to enforce the safety constraints described in the
requirements. Unlike the system architecture which models the physical components and
relationships between them, the conceptual architecture does not necessarily model the physical
components. Instead, it is a functional control structure that models the control behavior that
the system will need to exhibit in terms of the required control elements and the relationships
between them.

Inspired by the elements of a basic control loop, a conceptual architecture includes four main
types of control elements as shown in Figure 13. The creation of each control element is therefore
a design decision that needs to be made. By defining these four types of control elements,
adequate control loops can be created to enforce the safety constraints described in the
requirements.

Controller

Responsibility: What should be done to enforce a
safety constraint?

[| €
) @ Process Model Parts: What !nformatlorj QQes a Feedback/Inputs:
Control Action(s): controller need to carry out this responsibility?
» What action(s) can be » What feedback or inputs
@ taken to effect control? @ are needed?)

. Who is the target of a » Where do the required

control action? feedback/inputs come

' from?

> Controlled Process

Figure 13: lllustration of the four types of control elements in a conceptual architecture

Defining Control Responsibilities (Control Element 1)

Creating a conceptual architecture starts with identifying the control responsibilities that that
system will need to perform. To ensure that all safety constraints described in the requirements
are enforced, these control responsibilities are derived from the system requirements. However,
not every system requirement generates a new control responsibility because a single control
responsibility may have multiple system requirements that specify different aspects of its
required behavior. For example, one responsibility of the ATM system is to prevent collisions
between aircraft. However, to specify how this responsibility should be carried out, numerous
requirements are needed to describe what feedback is needed, the factors that should be
considered when modifying the path of an aircraft to prevent a collision, and how quickly those
decisions should be made.

For this reason, groups of related system requirements are used to derive the control
responsibilities and their corresponding constraints that specify restrictions on how those
responsibilities should be performed. Figure 14 illustrates how this is done for eight generic
system requirements to generate two control responsibilities and six constraints.

38

"Eeq-1 (Control) ----=-=-=-=-=--~-~- » Responsibility Resp-;\'
A
L) o . i)
Req-2 (Constraint) Constraint RC-1 System
— Req-3 (Constraint)---------- » Constraint RC-2 Requirements
— Req-4 (Constraint)---------- » Constraint RC-3 Group 1
— - iNt) = === == == == > i
_ Req-5 (Constraint) Constraint RC-4 Y,
4 - N
Req-6 (Control) - ----~--~-~---~- » Responsibility Resp-2
System
tﬂeq-? (Constraint) = == === ===« » Constraint RC-5 Requirements
Req-8 (Constraint) - - ----- -~ - » Constraint RC-6) Group 2

Figure 14: Deriving control responsibilities and constraints from system requirements

To form these requirement groups, each system requirement is first categorized as either a
control requirement or a constraint requirement. Control requirements describe a control
decision or control function that needs to be performed. By contrast, constraint requirements
describe restrictions or constraints on acceptable ways that a control decision should be made
or the expected response of the controlled process in the system.

Once the system requirements are classified, they can then be organized into groups where
each group consists of one control requirement and the constraint requirements that apply to it.
This is illustrated by the blue and green requirements on the left side of Figure 14. Grouping the
requirements like this ensures that related requirements are considered together when the
control behavior is developed. For each group of requirements, the control requirement is used
to generate a control responsibility, and the constraint requirements are used to generate
responsibility constraints (RCs) that are associated with the control responsibility.

Continuing the simple ATC system example illustrated in Figure 11, consider the three system
requirements shown in Table 1 that describe several aspects of how air traffic should be managed
to prevent collisions. To the right of each requirement is its classification.

Table 1: Example classification of system requirements

Requirement Category

Reg-1: ATC system shall coordinate the movement of

. . . Control Requirement
aircraft to resolve potential conflicts

Req-2: ATC system shall account for operational
constraints when selecting coordination

- - Constraint Requirements
Req-3: ATC system shall ensure that aircraft have received

the coordination being communicated

All three of the requirements in Table 1 pertain to the same aspect of air traffic control:
coordinating the movement of aircraft to prevent collisions. However, Req-1 describes the
control decision to be made (resolving potential conflicts) while Reg-2 and Reg-3 describe
constraints on the inputs that should be considered when making that decision.

39

Using the three requirements shown in Table 1, a control responsibility (Resp-1) for
preventing conflicts and its associated behavioral constraints (RC-1 and RC-2) can be generated
as shown in Table 2. The system requirement used to generate each responsibility or constraint
is linked in red.

Table 2: Example control responsibility and constraints

Control

p ere Resp-1: Coordinate the movement of aircraft to prevent conflicts [Reg-1
Responsibility P p [Reg-1]

RC-1: Account for operational constraints when selecting

. coordination [Reg-2]
Constraints . . N .
RC-2: Ensure that aircraft have received the coordination being

communicated [Reg-3]

Defining Process Model Parts, Control Actions and Feedback (Control Elements 2, 3 and 4)

Once the control responsibilities and associated constraints have been generated from the
system requirements, the process model parts, control actions, and feedback can then be defined
based on what is needed to carry out each responsibility and meet its behavioral constraints.
Figure 15 illustrates how this is done.

Decisions made Mode! informafion
using information in Process Model kept updated by Feedback
Parts (PM) J (FB)

Responsibility Resp-1

Constraint RC-1
Constraint RC-2
Constraint RC-3

Conirol enacted via Control Actions
(CA)

Figure 15: Identifying the other control elements from responsibilities and constraints

As illustrated in Figure 15, the responsibilities and associated constraints are first used to
generate the process model parts and control actions. Process model parts contain the
information needed by a controller to make appropriate decisions when carrying out a
responsibility. Thus, the process model parts for a given responsibility can be generated by
considering what information will be needed to make the decision described by that
responsibility and its associated constraints. Similarly, the control actions can be generated by
considering what output(s) might be needed by that responsibility to enable effective control.

As described in STAMP, in addition to having the right information in the process model to
make appropriate decisions, it is also important that those process model parts are kept updated
over time and this requires appropriate feedback. Thus, for each process model part, the
necessary feedback required to keep it updated should be identified.

As a concrete example of how process model parts, control actions, and feedback are defined,
Figure 16 shows how these control elements are generated for Resp-1, RC-1, and RC-2 that were
shown in Table 2. To continue maintaining traceability, the responsibility or constraint that was
used to identify each control element is linked in red.

40

Resp-1: Coordinate the movement of aircraft to prevent conflicts [Reg-1]

Constraints: Process Model:

RC-1: Account for operational constraints when PM-1: Planned trajectory [Resp-1]

selecting coordination [Req-2] PM-2: Possible trajectory modifications [Resp-1]

RC-2: Ensure that aircraft have received the
coordination being communicated [Reg-3]

PM-3: Operational constraints [C-1]

PM-4: Acknowledgement of trajectory
modifications [C-2]

Feedback:
Control Actions: FB-1: Planned trajectory [PM-1]
CA-1: Trajectory FB-2: Operational constraints [PM-3]

modifications [Resp-1] .
FB-3: Acknowledgement of trajectory

modifications [PM-4]

v

Figure 16: Example control elements generated for responsibility Resp-1

As shown in Figure 16, coordinating the movement of aircraft (Resp-1) requires identifying a
conflict based on the planned trajectories of aircraft in the airspace (PM-1, updated by FB-1) and
then modifying those trajectories (CA-1) to resolve that conflict. In addition, to account for
operational constraints (RC-1), Resp-1 must know what they are (PM-3, updated by FB-2).
Similarly, to ensure aircraft have received their trajectory modifications (RC-2), Resp-1 must
receive confirmation that the aircraft received the trajectory modification (PM-4, updated by FB-
3). This example therefore illustrates that this process allows systems engineers to carefully
define a control loop for each responsibility by deciding the various control actions and feedback
that are needed to carry out each responsibility and meet its associated constraints.

Defining Control Action Targets and Feedback Sources

By following this process for each of the defined responsibilities, the process model parts,
control actions, and feedback associated with each responsibility can be generated. However,
they cannot be assembled into a conceptual architecture yet until the targets of each control
action and the sources of each piece of feedback are defined. To define the control action targets
and feedback sources, the process model parts and constraints associated with the various
responsibilities can be compared and the following rules can be applied:

o Feedback sources are the responsibilities or controlled process that have the required
information in their process model

e Control action targets are the responsibilities or controlled process whose decision
making must include the information in that control action

By applying these rules to the control actions and feedback associated with each
responsibility, the relationships between responsibilities (and the controlled process) can be
defined in terms of the control actions and feedback that are exchanged between them. Figure
17 illustrates how this is done for three generic responsibilities.

41

Resp-1

Process Model Parts:
PM-1, PM-2, PM-3, PM-5

FB-1 (info for PM-1)]
CA-1 FB-2 (info for PM-2) CA-2 FB-3 (info for PM-3)

FB-5 (info for PM-5)

v v
Resp-2 Resp-3
Constraint: Process Model Parts: | (info for PI-5) | Constraint: Process Model Parts:
» Consider <CA-1>in « PM-1 » Consider <CA-2> in o PM-3
Resp-2 decision making + PM-2 Resp-3 decision making +» PM-5
« PM-4 « PM-6
» <CA-3> executed by » PM-5 » <CA-4> executed by
controlled process controlled process
-~ A
. FB-3 (info for PM-3)
CA-3 FB-4 (info for PM-4 CA-4 .
() FB-6 (info for PM-6)
Y h J

Controlled Process

Process Model Parts:
PM-3, PM-4, PM-6

Legend: CA: Control Action | FB: Feedback |
Figure 17: Defining control action targets and feedback sources

By applying the feedback sources rule, two responsibilities (or a responsibility and the
controlled process) will be connected by feedback if they share the same process model part.
Thus, in Figure 17, Resp-1 receives feedback FB-1, FB-2, and FB-5 from Resp-2 because those two
responsibilities share process model parts PM-1, PM-2, and PM-5. Similarly, Resp-2 receives
feedback FB-4 from the controlled process because the controlled process and Resp-2 share
process model part PM-4. This same reasoning is also how the feedback sources were determined
for the feedback between Resp-3 and Resp-1 and between Resp-3 and the controlled process.

Note that in some cases, there might be more than one responsibility that could serve as the
feedback source for a piece of required feedback. In such cases, a systems engineer will need to
choose which responsibility should serve as the feedback source. For example, in Figure 17, Resp-
1 needs to receive feedback FB-5 for PM-5, and either Resp-2 or Resp-3 could provide that
feedback because they both have PM-5 in their process model. In Figure 17, Resp-2 is chosen as
the feedback source. However, because this behavioral design process is designed to be iterative,
this decision can be revisited and changed later if needed.

Next, by applying the control action targets rule, two responsibilities (or a responsibility and
the controlled process) will be connected by a control action if the constraint for one
responsibility requires that it make use of information contained in a control action provided by
another. For example, in Figure 17, Resp-1 provides control action CA-1 to Resp-2 because of the
Resp-2 constraint that requires CA-1 be considered in Resp-2’s decision making. Similarly, Resp-

42

2 provides control action CA-3 to the controlled process because of the Resp-2 constraint that
requires CA-3 to be used to influence the behavior of the controlled process. This same reasoning
is also how the control action targets were determined for the control actions between Resp-1
and Resp-3 and between Resp-3 and the controlled process.

In addition, Figure 17 also illustrates how control inputs (i.e., lateral coordination) between
two responsibilities might be defined. If two responsibilities share a common process model part
that is not associated with a control action, then lateral coordination or a control input is needed
between them to ensure that the shared process model part remains consistent between them
and does not become misaligned [95].

As a concrete example of how these rules are applied for a specific system, consider how
Resp-1 identified for the simple ATC example might receive the required feedback defined in
Figure 16 and what the target of its control action might be. The feedback sources and control
action target for the feedback and control actions associated with Resp-1 are shown in Figure 18.

Resp-3: Ensure Coordination Options Are Available

Process Model:

PM-5: Proposed trajectory modifications

h

r
FB-4: Proposed
Trajectory Modifications

Resp-1: Identify & Resolve Conflicts

Process Model:

PM-1: Planned trajectory

PM-2: Possible trajectory modifications
PM-3: Operational constraints

PM-4: Acknowledgement of trajectory modifications

F 3

FB-1: Planned trajectory

CA-1: Trajectory FB-2: Operational constraints

modifications FB-3: Acknowledgement of

trajectory modifications

Y

Aircraft

Figure 18: Identifying control action targets and feedback sources

For Resp-1, FB-1, FB-2, and FB-3 all involve feedback about the aircraft and therefore that
feedback is obtained directly from the aircraft. Similarly, CA-1is intended to change the trajectory
of aircraft to resolve a conflict and therefore CA-1 is provided to the aircraft.

Figure 18 also introduces a second responsibility Resp-3 to illustrate how Resp-1 might be a
feedback source for another responsibility. Resp-3 is a responsibility that receives proposed
trajectory modifications and confirms that an aircraft will always have alternate trajectories
available if the proposed trajectory modifications were implemented. Resp-3 therefore needs to
know what trajectory modifications are being proposed (PM-5). Since Resp-1 is identifying
trajectory modifications to transmit to the aircraft and has possible trajectory modifications in its

43

process model (PM-2), Resp-1 is therefore the source of feedback about proposed trajectory
modifications to Resp-3.

Having defined the various control elements and the feedback sources and control action
targets, the control elements can now be assembled to create the conceptual architecture. Once
assembled, the conceptual architecture looks similar in structure to the control structure in
Figure 17. The conceptual architecture therefore represents the desired control behavior of the
system in terms of the responsibilities that will need to be performed and the control actions and
feedback that are exchanged between them and with the controlled process.

In addition, using the traceability that was maintained throughout this process thus far, each
element in the conceptual architecture can be traced directly back to a requirement and an STPA
scenario that motivated its inclusion. Thus, this process also helps to capture the design rationale
underlying the inclusion of each element in the conceptual architecture.

3.3.3 Updating the Initial STPA and Refining the Conceptual Architecture

Finally, the last step of this behavioral design process is to update the STPA analysis of the
system based on the conceptual architecture that was created to refine the causal scenarios
identified in the initial SPTA analysis. This STPA update provides a systems engineer with an
opportunity to evaluate the conceptual architecture they have created to identify any flaws that
might have been inadvertently introduced and the ways in which the conceptual architecture
might not adequately control the system hazards identified at the beginning of STPA.

Based on the updated and refined set of STPA scenarios, systems engineers can then decide
if any of those scenarios could be mitigated or prevented by changing the conceptual
architecture. For example, if a scenario describes a missing piece of feedback, the conceptual
architecture should be modified to add the missing feedback. Sometimes, the STPA scenarios
may also highlight a problem with how the behavior of a responsibility was designed and that
may prompt a reformulation of that responsibility to try to improve its behavior. Once the
necessary modifications have been made to the conceptual architecture, the STPA analysis can
then be updated again to determine if the change had its desired effect and if any new unsafe
behaviors were introduced.

By iteratively updating the conceptual architecture and then updating the STPA analysis, this
behavioral design process gives systems engineers the opportunity to iterate on the design of the
conceptual architecture and explore the behavioral design space for a system. This iteration is
intended to be performed until no further improvements to the conceptual architecture can be
made. Itis at this point that a system designer can proceed to the structural design process where
a system architecture is created to implement this conceptual architecture.

3.4 The Structural Design Process

Once the conceptual architecture is created, the final part of this architecture development
framework is to create a system architecture to implement it using the structural design process.
The goal of this structural design process is therefore to identify the system architecture that best
achieves the desired emergent properties.

To create a system architecture that implements the conceptual architecture, the main
design decision that must be made is who is assigned to perform each of the responsibilities.

44

Once the responsibilities have all been assigned, the control actions and feedback associated with
each responsibility can be assigned accordingly to the same controller. This ensures that each
controller is provided with the appropriate control actions (i.e., authority) and feedback to
perform their assigned responsibilities.

Thus, in this approach, an architecture option represents one possible way to assign the
responsibilities (and their associated control actions and feedback) to either existing or new
controllers in the system. A generic example of how an architecture option is created is shown in
Figure 19.

[Controller 1

i |

[Controller 2 } [Controller 3

A I
Y ¥

[Controlled Process

Responsibility 1

Responsibility 2

Responsibility 3

l

} Responsibility 4

Figure 19: Generic example of how an architecture option is created

The generic system shown in Figure 19 has 3 controllers which collectively control a
controlled process and there are four responsibilities that each need to be assigned to at least
one controller. Thus, one possible architecture option is:

1. Assign Resp-1to controller 1
2. Assign Resp-2 to both controller 1 and controller 3 (shared responsibility)
3. Assign Resp-3 and Resp-4 to controller 3

Although Figure 19 illustrates one possible assignment of these responsibilities, it is not the
only one. The tradespace of possible architecture options is therefore defined by all possible
assignments of responsibilities to controllers. However, this tradespace grows exponentially with
the number of responsibilities and controllers in the system. In general, for a system with n
responsibilities and m possible controller assignments, the number of possible architecture
options (i.e., the size of the tradespace) N is defined by Equation 1. Note that this equation
assumes each responsibility is only assigned to one controller. Relaxing this assumption and
allowing a responsibility to be assigned to multiple controllers further increases the value of N.

N =mn" (D

Thus, in the case of the generic example in Figure 19, with n = 4 responsibilities to be assigned
and m = 3 possible controllers to assign them to, there are theoretically N = 81 possible
architecture options (again, assuming no sharing of responsibilities between controllers). For a
real system with many more controllers and responsibilities, there could be an overwhelming
number of potential architecture options to consider in the tradespace.

45

Because the architecture tradespace grows exponentially with the number of responsibilities
and controllers in the system, it will not be feasible or practical to exhaustively explore every
architecture option before selecting the best or preferred one. Instead of exhaustive
enumeration, a process is needed to guide the exploration of different architecture options and
to highlight those architectures that are worth exploring and comparing.

To do this, an iterative structural design process was developed to help systems engineers
systematically explore alternative architecture options and incrementally improve the system
architecture based on what they learn about the behavior of different architecture options. An
overview of this process is shown in Figure 20.

Structural Design Process

—> Create Architecture Options

A J
Structural Design Process defines system Analyze Architecture Options Using
architecture that implements control behavior STPA

Y

Scenario-Based Comparison of
Architecture Options

Figure 20: Overview of the structural design process

3.4.1 Creating Architecture Options

The inputs to this process are the conceptual architecture and the causal scenarios from the
updated STPA that were identified in the behavioral design process. Recall that in that process,
any scenarios identified in the updated STPA that could be mitigated or prevented by making a
change to the conceptual architecture were addressed. However, there are also some scenarios
that might only be possible to mitigate or prevent with a structural change. It is from these
scenarios that architecture options of interest can be identified.

The first step in this structural design process is to use the causal scenarios to identify
potential responsibility assignments that could help to mitigate or prevent them. In other words,
the goal is to identify what responsibility assignments might be preferable because they help to
mitigate or prevent unsafe behavior. For example, if a scenario involves two responsibilities
having inconsistent information about the same process model part, one way to prevent that
scenario occurring could be to assign the responsibilities to the same controller to avoid having
the same process model part being needed by two different controllers.

For these scenarios where a preferred responsibility assignment could mitigate or eliminate
the occurrence of that scenario, these preferences are recorded as assignment constraints.
Examples of different types of assignment constraints are shown in Table 3.

46

Table 3: Examples of different types of assignment constraints

Assignment Constraint Type | Constraint Notation

Assigning a responsibility to one preferred controller:

Preferred controller Resp-X = Cq
constraint Shared assignment of a responsibility to multiple controllers:
Note: Co and Cp are Resp-X=Cq ACp

controllers in a system Multiple assignment preferences for a responsibility:

Resp-X=C, V (C, A Cp)
Same Controller Constraint | Resp-X = Resp-Y

Different Controller

. Resp-X Resp-Y
Constraint esp-X # Resp

Once these assignment constraints have been identified, they can then be used to decide
what architecture options are created and explored. This is done by first creating a baseline
architecture option that assigns responsibilities to controllers in a way that satisfies as many of
the assignment constraints as possible. Then, for each assignment constraint that is not satisfied
by the baseline architecture option, a change is made to the responsibility assignments to satisfy
that assignment constraint. Thus, different architecture options are created as changes are made
to the assignment of different responsibilities.

3.4.2 Analyzing and Comparing Architecture Options

Once architecture options have been created, the remaining two steps in the structural
design process are to analyze and compare the architecture options to understand how different
responsibility assignments change the behavior of the architecture. This information can then be
used to inform follow-on architectural design decisions. Figure 21 illustrates how architecture
options are analyzed and compared.

o Architecture Option Identified Scenarios
STPA Analysis of Ay - SaTE)
Architecture Options A, ‘ SC-2,5C-3,5C4
A,) SC-2, SC-4
|

| Consolidate 1
I to create I
I master set I
Identified Scenarios

e SC-1

Creation of Architecture sC-2
Comparison Table

Architecture Options | gyajuation

A, A, A, Criteria

SC-3

SC-4

Figure 21: Comparing architecture options based on STPA scenarios

47

As shown in Figure 21, STPA is first used to analyze each architecture option to determine
what unsafe behaviors might occur in each architecture option. Since these architecture options
are different implementations of the conceptual architecture, the STPA analysis performed at the
end of the behavioral design process can be updated and refined again here to reflect the specific
architecture option being analyzed.

From the STPA analysis of each architecture option, causal scenarios are obtained. Some of
these causal scenarios might be unique to the given architecture option while others might occur
for multiple architecture options. For example, in the upper table of Figure 21, scenario SC-1 is
only identified for architecture option A1 and SC-3 is only identified for A,. However, SC-2 is
identified for both A; and As.

Regardless of which architecture option the scenario is identified for, all the scenarios
identified from the analysis of each architecture option are combined into a master scenario set.
This master set is then used to instantiate an architecture comparison table. The lower half of
Figure 21 shows a generic example of what an architecture comparison table looks like before it
is filled out and Table 4 shows what that architecture comparison table looks like once it is
completed for the generic example in Figure 21.

Table 4: Generic example of an architecture comparison table once completed

Identified Scenario Occurs? Evaluation
Scenarios A, A, As Criteria
SC-1 Yes , , EC-1
[Assumption] [Assumption]
SC-2 , Yes Yes EC-2
[Assumption]
EC-3
SC-3 , Yes ,
[Assumption] [Assumption] EC-4
SC-4 Yes Yes Yes N/A

As shown in Table 4, the architecture comparison table has 3 main parts:

1. Identified scenarios: One row is created for each scenario in the master scenario set

2. Scenario occurrence: One column is created for each architecture option being
compared and each cell contains a “yes” or “no” to indicate whether the scenario
occurs for that architecture option

3. Evaluation criteria: A short phrase describing a control-related difference in behavior
between the architecture options

Filling out this architecture comparison table starts with deciding whether each scenario
occurs for that architecture option. For example, in the first row of Table 4 scenario SC-1 occurs
for architecture option A; (because it was identified for that architecture option as shown in the
upper table of Figure 21) but is resolved or does not occur for A; and As. By contrast, in the third
row, scenario SC-3 occurs for architecture A; but does not occur for A1 and As.

48

When deciding if a scenario occurs for an architecture option, it is important to record any
assumptions used to make that decision, especially if it is decided that a scenario does not occur
for an architecture option. In Table 4, these assumptions are denoted by the “[Assumption]”
placeholders in the cells containing “No”. It is important to capture these assumptions because
if that architecture option is chosen for further development, the ability of that architecture to
resolve or avoid that scenario becomes contingent on those underlying assumptions remaining
valid. The supporting framework developed later in Chapter 6 then describes how to ensure they
remain valid as the development of the system progresses.

Once these determinations have been made, they can be used to identify the control-related
differences between architecture options. For each scenario, the behavior of each architecture
option in that scenario is compared and an Evaluation Criterion is generated that describes the
control-related difference(s) in behavior that differentiates the architecture options. For
example, one difference in decision making between centralized and decentralized ATM
architectures that has been identified in the literature [96] could be described by the following
evaluation criterion.

Example evaluation criterion: Responsiveness of trajectory modification decisions to prevent
loss of separation when resolving a multi-aircraft conflict in densely populated airspace

By doing this for each of the scenarios in the master set, the evaluation criteria that are
generated highlight the various control-related differences between the architecture options.

When generating the evaluation criteria, note that each scenario does not necessarily
generate a unique evaluation criterion and it is possible that multiple evaluation criteria might
be identified for a given scenario. This might occur if there is more than 1 aspect of the scenario
where differences in behavior are observed between the architecture options. For example, in
the third row of Table 4, criteria EC-3 and EC-4 are both derived from the same scenario SC-3.

Note also that not every scenario will have an evaluation criterion generated for it because
there may be some scenarios that are found to occur for all architecture options. Scenario SC-4
(the last row of Table 4) is an example of this. This result would suggest that the unsafe behavior
described in that scenario is not prevented or mitigated by any of the architecture options and
therefore no meaningful control-related difference in behavior is observed between architecture
options for that scenario. Thus, as shown in Table 4, no evaluation criterion is generated.

To help guide an analyst or systems engineer in generating an evaluation criterion from a
given scenario, Figure 22 shows the general structure of an evaluation criterion.

Evaluation Criterion Structure:

Example: Responsiveness of trajectory modification decisions to prevent |oss of separation
when

<Characteristic> of <Control Aspect> to prevent <hazard> when

[1] [2] [3] [4]

Figure 22: Structure of an evaluation criterion

As shown in Figure 22, an evaluation criterion consists of four parts, each of which provides
control-relevant information to support the comparison of architecture options. The first two
parts (items 1 and 2) describe what is different about the control behavior of the architecture

49

options in the scenario under consideration. Consistent with the concept of control in systems
theory and STAMP, there are four Control Aspects that should be considered: (1) decision making,
(2) process models, (3) feedback and control inputs, and (4) control path. The Characteristic then
describes a property or attribute of that aspect of control. Table 5 provides some example
characteristics for each control aspect. Note that the characteristics listed in Table 5 are intended
to be used as examples only and do not represent an exhaustive list of every possible attribute
or property that could be identified.

Table 5: Example characteristics for each control aspect

Control Aspect Example Characteristics

e Responsiveness of decision making

e Frequency or complexity of decision making

e The need/ability to make a decision (in certain situations)
e Ease of coordinating two related decisions

Decision Making

e Level of situational awareness available or needed

e Ability to ensure adequate update of a process model part

Process Models e Level of uncertainty associated with a process model part

e Ability to maintain alignment of two related process model parts or
the same process model part across two controllers

e Timeliness of feedback or control input

Feedback and e Ability to interpret/process/verify/respond appropriately to
Control Inputs feedback or a control input

e Use of a certain type of feedback or control input

e Vulnerability of a control path or control action

e Potential for conflict between two related control actions or the
same control action issued by two different controllers

e Responsiveness of controlled process in executing control action

Control Path

The latter two parts of an evaluation criterion (items 3 and 4) describe the conditions under
which the control behavior described in the first two parts occurs. This includes the Hazard that
the control behavior is intended to prevent and the Scenario Context in which that control
behavior is occurring. Combined, these two parts describe why the control behavior is needed
and the circumstances in which it is occurring and both are derived from the causal scenario
under consideration. The hazard is derived from the traceability maintained in STPA between the
scenario and the system-level hazards and the scenario context is derived from the scenarioitself.

Once the architecture comparison table has been completed, the evaluation criteria and the
results in the comparison table can be used to identify benefits and tradeoffs between the
architecture options. For each evaluation criteria, if a scenario does not occur for that
architecture option, there is a benefit for that architecture option with respect to that evaluation
criterion (e.g., better, more responsive, more timely). However, if a scenario does occur for that
architecture option, then there is a tradeoff for that architecture option with respect to that
evaluation criterion. For example, Table 6 shows how the comparison table in Table 4 would be
used to generate benefits and tradeoffs for the three generic architecture options.

50

Table 6: Comparison results for generic evaluation criteria in Table 4

Evaluation Criteria Benefit (+) or Tradeoff (-)
A1 Az A;

EC-1 @
EC-2 @ @
EC-3 @
EC-4 @

By analyzing the comparison results like this, a systems engineer can study the different
control-related aspects of a system’s behavior more systematically to both identify the benefits
and tradeoffs of different architecture options and understand what parts of the architecture
contributed to those benefits or tradeoffs.

Once the comparison results have been generated, systems engineers have two options for
how to make use of these results. One option is that they could decide that one of the
architecture options being compared is the best architecture they can find and therefore they
choose one of those options as the system architecture to move forward with for further
development. Alternatively, they could decide that there exists one or more additional
architecture options that might be better than the ones that have already been identified. For
example, an architecture option representing a combination or hybrid of the responsibility
assignments in two of the already-compared architecture options might be considered. If this is
the case, they can continue iterating through this structural design process by creating those
additional architecture options and then analyzing and comparing those new options using this
same process until they believe they have found the best or their preferred system architecture
to move forward with for further development.

3.5 Summary

This chapter introduced the safety-driven architecture development framework that was
developed to enable systems engineers to design safety and other desired emergent properties
into their system architectures from the beginning of development. Unlike existing approaches
to architecture development, this new approach does not rely on decomposition to create the
system architecture. Instead, it is based on systems theory and focuses on helping systems
engineers to analyze and design the control-oriented aspects of the system to ensure that
appropriate controls are implemented in the system architecture. This ensures that the system
can adequately enforce the necessary safety constraints to avoid unsafe or undesirable system
behavior.

The key idea behind this safety-driven architecture development framework is to use STPA
results to inform behavioral and structural design decisions and there are three main parts to the
framework. First, an initial STPA analysis of the system identifies preliminary information about
how unsafe behavior could occur. Then, the Behavioral Design Process provides a structured way

51

to define the desired control behavior of the system modeled as a conceptual architecture.
Finally, the Structural Design Process provides a systematic way to explore and compare different
system architecture options for implementing the conceptual architecture. Putting all three parts

together, the full safety-driven architecture development framework is shown in Figure 23.

Step 1

Initial Analysis of System Using STPA

|

Step 2

Define System Requirements

!

Step 3

Create Conceptual Architecture

!

System Behavioral Design

Step 4

Update STPA Analysis

l

Step 5

Create Architecture Options

y

Step 6

Analyze Architecture Options Using STPA

!

System Structural Design

Step 7

Scenario-Based Comparison of Architecture Options

Figure 23: The full safety-driven architecture development framework

In the next two chapters, this safety-driven architecture development framework is applied
to develop an ATM system architecture for the NAS that will enable the integration of UAM into

the airspace alongside existing air traffic.

52

Chapter 4 Design Iteration 1: Developing an Initial ATM Architecture

Since the 1930s, commercial/civil air traffic in the NAS has been managed using a centralized
ATM architecture [24] where Air Traffic Control (ATC) is primarily responsible for keeping aircraft
safely separated, especially those flying under Instrument Flight Rules (IFR). Although this
centralized architecture has enabled a safe NAS thus far, it will be challenging to continue relying
on it while introducing UAM. This is because, as discussed in Chapter 1, the characteristics of
UAM air traffic are challenging conventional approaches used to ensure the safety of the NAS.

Because of these challenges, a significant amount of research has been done to define
potential new ATM concepts and architectures that could feasibly manage UAM air traffic. These
include more decentralized ATM concepts such as Free Flight [97], Distributed Air/Ground Traffic
Management (DAG-TM) [98], and more automated approaches to ATM [66, 67, 99]. NASA and
the FAA have also both published concept of operations documents for UAM [17, 100] that
describes the infrastructure that will be needed and the airspace structure that might be used to
safely manage UAM air traffic.

Despite the wide variety of new ATM architectures that have been proposed, the methods
used to analyze or evaluate these architectures for safety face the same challenges described in
Section 2.2. Often, the safety of these ATM architectures is evaluated only after they have been
created. In addition, it can be difficult to evaluate the safety of these ATM architectures using
guantitative metrics, especially early in the development process.

For this reason, the goal of this first design iteration is to apply the architecture development
framework developed in Chapter 3 to develop an ATM architecture for UAM that accounts for
safety considerations from the beginning. This will be done by identifying and then comparing
different possible architecture options to inform a decision about what the preferred ATM
architecture for UAM should be.

Because the ATM architectures developed in the existing literature have primarily focused on
collision avoidance, this design iteration will focus on the same. By aligning the focus of this first
design iteration with that of previous comparisons of ATM architectures, the results obtained
from this case study can be compared to those in the existing literature to evaluate the ability of
this framework to identify suitable criteria for comparing architecture options.

The remainder of this chapter is organized as follows. First, an initial STPA of the NAS is
performed to determine how unsafe behavior might occur when UAM air traffic is introduced
into the airspace. Then, NAS system requirements for collision avoidance and a conceptual
architecture that meets those requirements is developed. Finally, two architecture options to
implement the conceptual architecture are evaluated and compared to determine the benefits
and tradeoffs between them. These benefits and tradeoffs are then compared to those identified
in the existing literature. Finally, the benefits and tradeoffs are used to inform a decision about
what the preferred ATM architecture for UAM should be.

4.1 |Initial Analysis of the NAS Using STPA

STPA begins with the identification of relevant losses, hazards, and system-level safety
constraints. Because this case study focuses on the safe management of air traffic, the system
boundary matches that of the NAS today and includes the various aircraft and operators, the

53

people and components needed to manage air traffic, and the FAA. The losses and hazards also
correspond to those of the NAS and are presented in Table 7 and Table 8 respectively. The
system-level safety constraints derived from those hazards are presented in Table 9.

Table 7: System losses

Loss ID Loss Description
L-1. Loss of life or injury
L-2. Loss or damage to aircraft or equipment
L-3. Nonachievement of mission
L-4. Excessive environmental impact (beyond <TBD> level)
L-5. Loss or damage of critical infrastructure
L-6. Loss of critical community needs
L-7. Loss of public acceptance of UAM

Table 8: System hazards

Hazard ID | Hazard Description Loss Link
Aircraft do not maintain minimum separation (to other L-1, L-2, L-3, L-5,

H-1. flights or surface objects) L-7

H-2. Flight operations are harmful to occupant health L-1, L-3, L-7
Missions (e.g., transportation, police operations) cannot be L-3, L-4, L-7

H-3. completed within acceptable performance limits (e.g.,
within a specified period of time, within delay tolerance)
Environmental effects of flight operations exceed acceptable | L-4, L-7

H-4. levels (e.g., noise, emissions)

H-5. Critical public or aviation infrastructure becomes inoperable | L-2, L-3, L-5, L-6
Public safety is compromised (e.g., because emergency L-1, L-2, L-3, L-5,

H-6. services aircraft are unable to fulfill their mission or airspace | L-6, L-7
exclusions are not maintained)

Table 9: System-level safety constraints

Constraint ID | Constraint Description Hazard Link
C-1. Aircraft must not violate minimum separation standards in H-1
flight (to air and surface objects)
C-2. Flight operations must not be harmful to occupant health H-2
C-3. Missions must be completed within acceptable performance | H-3
limits
C-4. Environmental effects of flight operations must not exceed H-4
acceptable levels (e.g., noise, pollution)
C-5. Critical infrastructure must remain operable H-5
C-6. Flight operations must not compromise public safety H-6

54

Once the losses, hazards, and safety constraints have been identified, the next step in STPA
is to create the control structure. The control structure used to model the NAS is shown in Figure
24. To minimize the number of assumptions needed to create this initial control structure, the
NAS is modeled at a high level of abstraction and this control structure will be incrementally
refined as architecture development progresses.

[Regulators (e.g. FAA, etc)
A A
Rules & Regulations
Regulations Reports Reports Certifications
Audits

Model of flight modes for each | Air Traffic Management
aircraft

(e.g. IFRVFR, phase of flight) |

Model of controller
assignment for each aircraft

Process Model Updates

Model of location and intent of Model of airspace structure Regulations R
aircraft in airspace & & routes Certifications eports
Decision Making .
Audits
Flight Plans
S Requests Directions Clearance Requests
Coordination
Reports Clearances Aircraft Track
Advisories Intentions
v Reports v
UAM Aircraft and Operators Existing Aviation Aircraft & Operators

e.g. Commercial Airlines, General Aviation, Emergency Services, efc

Figure 24: NAS control structure

Since the goal is to analyze the NAS with UAM integrated into it, the lowest level of the control
structure includes both UAM aircraft and operators as well as existing aviation aircraft and
operators, including commercial airlines, general aviation (GA) aircraft, and emergency services.
The next level up in the control structure is Air Traffic Management, an abstract controller that
encapsulates all ATM responsibilities necessary to safely manage and control both existing
aviation air traffic as well as UAM air traffic. Note that this abstract controller does not imply that
a decision has been made about whether UAM air traffic is managed by the same entity as
existing aviation air traffic or a separate one. That decision should be made as part of developing
the ATM architecture for the NAS. This abstract controller is simply a model abstraction used to
enable a broader analysis of air traffic management in the NAS. Finally, the highest level of the
control structure includes federal regulators such as the Federal Aviation Administration (FAA).

It is worth noting that the control actions and feedback associated with UAM aircraft and
operators (left side of Figure 24) are modeled more abstractly than those associated with existing
aviation operations (right side of Figure 24). This reflects what is already known or commonly
assumed about how the NAS might accommodate the introduction of UAM. It is commonly
assumed that the management of existing air traffic will remain similar to how ATC works today
[18]. Therefore, the interactions between ATM and existing aviation aircraft and operators are
modeled to reflect those interactions today. However, because the interactions between ATM
and UAM aircraft have yet to be determined, no assumption about existing operations or a pre-
existing operational concept is made. Instead, the interactions between ATM and UAM aircraft
and operators are modeled abstractly using a control action called Coordination and generic
feedback called Requests and Reports. Later in the development process, these abstract control
actions and feedback will be refined into more detailed ones based on the desired ATM behavior
generated using this framework.

55

The third step in STPA is to generate UCAs. Since the focus of this research is on designing the
ATM system to manage UAM air traffic, the Coordination control action highlighted in red in
Figure 24 was analyzed to identify UCAs and scenarios. It is well recognized that the NAS will need
to exhibit not only safety but also other emergent properties such as throughput and efficiency.
Thus, the UCAs (and scenarios) generated during this initial STPA demonstrate how multiple
emergent properties can be analyzed in an integrated manner. A selected set of example UCAs
involving safety, throughput, and efficiency are presented here to illustrate how these properties
were considered. UCA-1.15 and UCA-1.28 also illustrate how UCAs can affect multiple properties
(e.g., safety and throughput). The full set of UCAs and scenarios can be found in Appendix A.

Examples of UCAs Involving Safety Concerns

UCA-1.1: Air Traffic Management does not coordinate the interaction between two UAM
aircraft or a UAM aircraft and another airspace user when a collision between them is
imminent [H-1, H-3]

UCA-1.2: Air Traffic Management does not coordinate air traffic in the airspace to assist UAM
aircraft in an emergency [H-1, H-2, H-3]

UCA-1.29: Air Traffic Management coordinates the interaction between two aircraft too late
to prevent violation of minimum separation between them [H-1, H-2, H-3]

Examples of UCAs Involving Efficiency Concerns

UCA-1.4: Air Traffic Management does not coordinate air traffic to allow UAM aircraft to
access the airspace when UAM aircraft need to execute a mission and the UAM aircraft meet
the criteria for access to that airspace [H-3]

UCA-1.8: Air Traffic Management does not coordinate the movements of UAM aircraft when
they interfere with the operations of other NAS users [H-1, H-3]

UCA-1.31: Air Traffic Management coordinates air traffic to allow UAM aircraft access to the
airspace too late after the time window in which UAM aircraft need that access [H-3]

Examples of UCAs Involving Throughput Concerns

UCA-1.15: Air Traffic Management coordinates air traffic to allow UAM aircraft to access the
airspace when the NAS does not have sufficient capacity [H-1, H-3, H-4]

UCA-1.28: Air Traffic Management provides coordination to UAM aircraft that does not
satisfy priority needs (e.g., an aircraft running out of fuel needs access to an airport sooner
than one that has plenty of fuel) [H-1, H-2, H-3]

UCA-1.39: Air Traffic Management restricts air traffic for too long after environmental effects
of system operation have returned to acceptable levels [H-3]

The last step of STPA is to generate causal scenarios for each of the UCAs and several example
causal scenarios are presented here for UCA-1.1 and UCA-1.8. These example scenarios illustrate

56

that by starting the STPA analysis early in the development process at a high level of abstraction,
a wide variety of different types of scenarios can be identified.

Example Scenarios for UCA-1.1

UCA-1.1: Air Traffic Management does not coordinate the interaction between two aircraft when
a collision between them is imminent [H-1, H-3]

CS-1.1.1-2: Air Traffic Management has received feedback about the potential conflict but does
not issue coordination because it is preoccupied with other tasks and does not have the capacity
to process the feedback it receives. Air Traffic Management therefore does not recognize the
potential conflict and does not provide coordination to prevent it.

CS-1.1.2-2: Air Traffic Management does not receive feedback about the potential conflict
because there are more aircraft in the airspace than Air Traffic Management is capable of
detecting and tracking simultaneously. As a result, it receives incomplete feedback about the
aircraft present in the airspace.

CS-1.1.4-1.2: Air Traffic Management provides coordination and it is received by the aircraft but
is not effective in preventing violation of minimum separation. This might occur if the aircraft is
preoccupied with another task and is unable to execute the coordination provided by Air Traffic
Management in a timely manner. It may also occur if the provided coordination is incorrect or
insufficient for resolving the conflict.

Example Scenarios for UCA-1.8

UCA-1.8: Air Traffic Management does not coordinate the movements of UAM aircraft when they
interfere with the operations of other NAS users [H-1, H-3]

CS-1.8.1-2: Although Air Traffic Management receives feedback about this interference, it does
not issue coordination because Air Traffic Management wrongly believes that UAM aircraft’s
impact on other NAS users is negligible or tolerable by the other NAS users and therefore there
is no need to issue coordination to reduce the impact.

CS-1.8.2-4: Air Traffic Management does not receive feedback that UAM aircraft are interfering
with the operations of other NAS users because the impact to their operations occurs gradually
or there is a small impact to a large number of NAS users and Air Traffic Management does not
receive feedback about the overall extent of the impact to the operations of other NAS users.

CS-1.8.4-2: Air Traffic Management provides coordination when UAM aircraft interfere with the
operations of other NAS users. The coordinated solution is received by the UAM aircraft but it
does not prevent the interference because it was provided by Air Traffic Management at the last
minute.

4.2 Developing the Collision Avoidance Conceptual Architecture

The next part of this architecture development framework is the behavioral design process
where a conceptual architecture is developed to adequately control the hazards and prevent

57

undesirable behavior. As discussed at the beginning of this chapter, this design iteration is
primarily focused on safety and the collision avoidance aspect of air traffic management. Thus, a
conceptual architecture for collision avoidance was developed to mitigate or prevent the UCAs
and scenarios that will lead to H-1 (i.e., violation of minimum separation). Although not
demonstrated in this research, this same process can be applied to control the other hazards.

4.2.1 Identifying NAS System Requirements for Collision Avoidance

The behavioral design process starts with identifying the system requirements that describe
the safety constraints necessary to mitigate or prevent the scenarios identified using STPA from
occurring. Figure 25 shows examples of how system requirements were derived from specific
UCAs and scenarios in the initial STPA analysis. Traceability between scenarios and requirements
is recorded using the links and “«l” symbol in the square braces. This traceability records the
rationale for each requirement by linking it to the scenario that each requirement is intended to
mitigate or prevent.

Table 10 then shows some additional examples of collision avoidance requirements that were

generated. The full set of collision avoidance requirements generated for this design iteration is
presented in Appendix B.

UCA-1.1: Air Traffic Management does not coordinate the interaction between two UAM
aircraft or a UAM aircraft and another airspace user when a collision between them is
imminent [H-1, H-3]

CS-1.1.1-2: Air Traffic Management has received feedback about the potential conflict but
does not issue coordination because it is preoccupied with other tasks and does not have the
capacity to process the feedback it receives. Air Traffic Management therefore does not
recognize the potential conflict and does not provide coordination to prevent it. [Req-3,
Req-4]

CS-1.1.2-2: Air Traffic Management does not receive feedback about the potential conflict
because there are more aircraft in the airspace than Air Traffic Management is capable of
detecting and tracking simultaneously. As a result, it receives incomplete feedback about the
aircraft present in the airspace. [{ Reg-8]

Reqg-3: ATM system shall ensure that sufficient capacity is available to detect and coordinate
all aircraft that have or will need access to the airspace [CS-1.1.1-2]

Reqg-4: ATM system shall coordinate the movement of aircraft to resolve any potential
conflicts [CS5-1.1.1-2]

Req-8: ATM system shall only allow as many users to access the airspace as it is capable of
detecting, tracking and coordinating [CS-1.1.2-2]

Figure 25: Examples of how solution-neutral, system-level requirements are generated

58

Table 10: Additional examples of system requirements

Req ID | Requirement
Req-6 ATM system shall ensure that acceptable coordination options are always available
9 for aircraft to avoid violation of minimum separation.
Req-10 ATM system shall account for intended movements of aircraft in addition to current
9 trajectories to detect potential collisions
ATM system shall ensure that information about the intent, mission, acceptable
Reqg-11 | operational impacts and future intended movements of aircraft is available, does not
contain errors and is kept updated
ATM system shall coordinate the movements of other aircraft to prevent violation
Req-12 | of minimum separation with an aircraft that is unable to communicate or not
responding
Req-13 ATM system shall ensure that aircraft have acknowledged receipt of the
9 coordination being communicated
Req-17 ATM system shall ensure that coordination provided to the aircraft does not cause
9 additional violation of minimum separation
Req-83 ATM system shall ensure that any proposed coordination has new alternative

trajectories available before issuing the proposed coordination

4.2.2 Creating the Conceptual Architecture

Once the system requirements have been generated, the next step in the behavioral design
process is to create a conceptual architecture to define the control behavior that will ensure UAM
air trafficis safely managed. As described in Chapter 3, this is done by first categorizing the system
requirements as either control requirements or constraint requirements. As an example, Table
11 shows how the ten requirements shown in Figure 25 and Table 10 are categorized.

59

Table 11: Example categorization of control requirement and constraint requirements

Category Requirement

Reqg-3: ATM system shall ensure that sufficient capacity is available to
detect and coordinate all aircraft that have or will need access to the
airspace

Req-4: ATM system shall coordinate the movement of aircraft to resolve
any potential conflicts

Control Reqg-6: ATM system shall ensure that acceptable coordination options are
Requirements | always available for aircraft to avoid violation of minimum separation.

Reg-8: ATM system shall only allow as many users to access the airspace as
it is capable of detecting, tracking and coordinating

Reqg-11: ATM system shall ensure that information about the intent,
mission, acceptable operational impacts and future intended movements of
aircraft is available, does not contain errors and is kept updated

Req-10: ATM system shall account for intended movements of aircraft in
addition to current trajectories to detect potential collisions

Reqg-12: ATM system shall coordinate the movements of other aircraft to
prevent violation of minimum separation with an aircraft that is unable to
communicate or not responding

Constraint

. Reqg-13: ATM system shall ensure that aircraft have received the
Requirements

coordination being communicated

Reqg-17: ATM system shall ensure that coordination provided to the aircraft
does not cause another violation of minimum separation

Req-83: ATM system shall ensure that any proposed coordination has new
alternative trajectories available before issuing the proposed coordination

Of the ten requirements shown in Table 11, the first five requirements (blue rows) are control
requirements because they describe specific control functions or decisions that need to be made.
By contrast, the latter five requirements (green rows) describe constraints or specifications for
how conflicts should be resolved.

Once the requirements have been categorized as control or constraint requirements, groups
of requirements can then be created where each group is defined by a control requirement and
the related constraint requirements that apply to it. A control responsibility and associated
responsibility constraints can then be generated for each group. As an example, Reg-4 describes
the need to prevent conflicts and Reg-10, Reqg-12, Reg-13, Reg-17, and Reg-83 all describe
restrictions on how conflicts should be resolved. Thus, these six related requirements can be
grouped together.

Table 12 shows the control responsibility and associated constraints that are derived from
these requirements, and each responsibility and constraint is traced to the requirement it was
derived from using the links in the square braces. The four other control responsibilities identified

60

in this design iteration are shown in Table 13 and were derived from the other four control
requirements listed in Table 11.

Table 12: Example derivation of control responsibility and associated constraints

Requirements Group

Req-4: ATM system shall coordinate the movement of aircraft to resolve any potential conflicts
Req-10: ATM system shall account for intended movements of aircraft in addition to
current trajectories to detect potential collisions
Req-12: ATM system shall coordinate the movements of other aircraft to prevent
violation of minimum separation with an aircraft that is unable to communicate or not
responding
Reg-13: ATM system shall ensure that aircraft have received the coordination being
communicated
Reg-17: ATM system shall ensure that coordination provided to the aircraft does not
cause another violation of minimum separation
Reqg-83: ATM system shall ensure that any proposed coordination has new alternative
trajectories available before issuing the proposed coordination

Control Responsibility (Resp) and Associated Constraints (RC)

Resp-1: Coordinate the movement of aircraft to prevent conflicts [Reg-4]
RC-2: Account for planned trajectory when identifying conflicts [Reg-10]
RC-4: Ensure coordination decisions do not cause secondary conflicts [Req-17]

RC-15: Continue resolving conflicts even if one or more aircraft are unable to
communicate or are not responding [Req-12]

RC-26: Ensure that aircraft have received coordination being communicated [Req-13]
RC-58: Confirm alternative trajectories are available for any proposed coordination

[Req-83]
Table 13: The four other control responsibilities for collision avoidance
Control Requirement Control Responsibility
Reqg-3: ATM system shall ensure that the number of
active flights in the airspace does not exceed its Resp-2: Ensure sufficient capacity is
capacity to detect and coordinate any eminent available

collisions between any aircraft in the airspace

Reqg-6: ATM system shall ensure that acceptable
coordination options are always available for aircraft
to avoid violation of minimum separation.

Resp-3: Ensure coordination options
are available

Req-8: ATM system shall only allow as many users to

. . . Resp-4: Manage access to the
access the airspace as it is capable of detecting,

. - airspace
tracking and coordinating. P
Req-11: ATM system shall ensure that information Resp-5: Manage airspace state
about the intent, mission, acceptable operational information

61

impacts and future intended movements of aircraft is
available, does not contain errors, and is kept

updated.

Having defined these five responsibilities and their associated constraints, the required
process model parts, control actions, and feedback can then be identified. Table 14 shows an
example of the control elements defined for Resp-1. Table 15 shows an example of the control
elements defined for Resp-3. The full set of control actions and feedback for all five
responsibilities in this design iteration are shown in Appendix B.

For each of the feedback and control actions in Table 14 and Table 15, the feedback sources
and control action targets are also identified using the process described in Section 3.4. In
addition, traceability between each control element and the responsibility or associated
constraint that was used to generate it is recorded using the links in the square braces.

Table 14: Identifying process model parts, control actions, and feedback for Resp-1

Resp-1: Coordinate the movement of aircraft to prevent conflicts
RC-2: Account for planned trajectory when identifying conflicts
RC-4: Ensure coordination decisions do not cause secondary conflicts

RC-15: Continue resolving conflicts even if one or more aircraft are unable to
communicate or are not responding

RC-26: Ensure that aircraft have received the coordination being communicated
RC-58: Confirm alternative trajectories are available for any proposed coordination

Summary of
Desired Behavior

If any object or aircraft is within <TBD distance> of any aircraft in the
airspace with a closure rate of <TBD closure rate>, a collision is
imminent and the two aircraft should be provided with direction to
avoid a potential collision.

If an aircraft is unable to communicate, the trajectories of other aircraft
should be modified to avoid conflicting with the non-communicative
aircraft.

<Rationale for the threshold distance and closure rate >

Process Model
Parts & Required
Feedback/Inputs

e Feedback from the aircraft:

o Aircraft track (position, heading, ID, speed) [Resp-1]

o Planned trajectory [RC-2, RC-4]

o Acknowledgement of trajectory modifications [RC-26]
e Input from Resp-5: Aircraft not communicating [RC-15]
e Input from Resp-3: Alternate trajectories available [RC-58]

Required Control
Actions/Outputs

e Control action to the aircraft and output to Resp-5: Trajectory
modifications [Resp-1]

e Control action to the aircraft only: Request acknowledgement of
trajectory modifications [RC-26]

62

Table 15: Identifying process model parts, control actions, and feedback for Resp-3

Resp-3: Ensure coordination options are available
RC-25: Ensure that there is sufficient airspace available to allow alternative trajectories

to be selected

RC-54: Ensure that initiated traffic management plans are accounted for when
identifying coordination options

RC-88: Ensure that further coordination options are available for any proposed

coordination

Summary of
Desired Behavior

Continuously evaluate the trajectory and track of all aircraft to ensure
that there are always alternative movement options available for the
aircraft if its trajectory needs to be modified.

If an aircraft’s trajectory is being modified, the proposed new trajectory
should be evaluated to ensure it has alternative movement options
available.

Process Model
Parts & Required
Feedback/Inputs

e Feedback from the aircraft:

o Aircraft track (position, heading, ID, speed) [Resp-3]

o Planned trajectory [Resp-3]
e Input from Resp-2: Active traffic management programs [RC-54]
e Feedback from Resp-1: Proposed trajectory modifications [RC-88]

Required Control
Actions/Outputs

e Control action to Resp-4 and Resp-1: Alternate trajectories [Resp-3,
RC-25]

e Control action to Resp-1: Confirmation/rejection of trajectory
modifications [RC-88]

Having defined the five control responsibilities and their corresponding control actions and
feedback, an initial conceptual architecture for collision avoidance can be created and this is

shown in Figure 26.

63

[Regulators

Airspace Access
Priorities
Alr Traffic Management (ATM)
Initiate traffic
Resp-3:
. rogram
Resp-2: _ PIOOTM_, Ensure coordination options
Ensure sufficient capacity is available are available
T
‘ Remove aircraft track T ‘
Alternate Trajectories
Resp-5 Current| |Initiate traffic
Manage airspace state information workload | |program ?\tgrmtatg
rajectories
1 [Remove aircraft Proposed
. track tfaje:tnry Confirmation/
Initiate traffic ¥ ;jl'rfa]ett:lory) modifications reject trajectory
program adifications | | Ajrcraft not modifications
communicating
Confirm conflict free traj
Resp-4 Trajectory modifications Resp-1:
Manage access to the airspace — — Prevent conflicts
Incoming aircraft
4
Aircraft Track
Aircraft Track| | Request
Aircraft Track Flight Plan q .
Planned Trajecto /
Flight Plan| |Modifications Airorap| | AiToraft Track Jectory | | Trajectory Modifications
Aircraft i
Trajecto Ops Constraints N
Trajectory | Ops Constraints| |Approve/Reject Jectory| | Request P Rfe;queml acknoué\zfadgfmem
access Ops Constraints planned Aircraft Capabilities o repEetony modhieatons
QOps Constraints Preferred trajectory Trajectory modification
flight plan| [Flight plan Al . .
ircraft i Acknowledge trajectory modifications
Aircraft modifications| |modification Capabilities Rele?' aireraft g) Y options
Capabilities options P trackitrajectory
Preferred Trajectory Modification

. Existing Aviation
[UAM Aircraft & Operators HAircraﬂ Py Opera!ions}

Figure 26: Initial conceptual architecture

As shown in Figure 26, this conceptual architecture now provides a more detailed definition
of what needs to be contained in the ATM architecture to safely manage UAM air traffic. The five
control responsibilities listed in Table 13 refine the orange “Air Traffic Management” box and
specify the control actions and feedback needed to safely manage air traffic. Starting at the
bottom of the orange box, the first row of responsibilities are Resp-1 and Resp-4. Resp-1 is the
responsibility for identifying and resolving conflicts, and Resp-4 is the responsibility for managing
access to the airspace and ensuring that aircraft only enter UAM airspace when they meet the
requirements for operating in it.

Above these responsibilities is Resp-5, the responsibility for managing information about the
state of the airspace. This includes ensuring that aircraft track and trajectory data is not tampered
with and that any erroneous track data for an aircraft is reported so that the other responsibilities
can account for those errors in their decision making.

Finally, the top-most row of responsibilities includes Resp-2 and Resp-3. Resp-2 is the
responsibility for ensuring there is sufficient capacity to manage the air traffic that needs access
to the airspace and can initiate a traffic management program to help manage temporary surges
in air traffic if necessary. Resp-3 is the responsibility for receiving proposed trajectory
modifications and confirming that an aircraft will have alternate trajectories available if the
proposed trajectory modifications are implemented. Resp-3 therefore prevents aircraft from
being placed on a trajectory with no options to change it if needed.

Although all five responsibilities in Figure 26 are contained within the “Air Traffic
Management (ATM)”, this does not necessarily imply that the current ATM system will be used
to implement the responsibilities needed to manage UAM aircraft.

64

4.2.3 Updating the Initial STPA Analysis

Having created the initial conceptual architecture shown in Figure 26, the initial STPA analysis
of the NAS can be updated to reflect the design decisions that have been made thus far. To do
this STPA update, the losses and hazards remain the same and the UCAs and scenarios are refined
to reflect the design details in the conceptual architecture. For example, the UCAs and scenarios
identified for the abstract Coordination control action can be refined now that Trajectory
Modifications has been identified as one of the more specific control actions. In addition, new
UCAs and scenarios may also be identified. This STPA update therefore provides an opportunity
to determine what unsafe behaviors might occur in the conceptual architecture.

When the initial conceptual architecture shown in Figure 26 was analyzed, several instances
of missing control elements were identified, and changes were made to the conceptual
architecture to address these issues. This section discusses one example of a change that was
made based on the updated STPA results and then presents the final conceptual architecture that
was created after several rounds of iteration. The full updated STPA can be found in Appendix C.

One design flaw in the initial conceptual architecture that was identified by STPA was the
inability to adequately prevent a collision between two aircraft if track and trajectory information
is not available for an aircraft before it enters an area of airspace where UAM aircraft are
operating. Table 16 shows how the initial STPA was updated to identify this refined scenario and
the additional requirement that was derived from it.

Table 16: Example of missing feedback identified by updated STPA analysis

Original UCA-1.1: Air Traffic Management does not coordinate the

UCA Uodat interaction between two aircraft when a collision between them is imminent
ate
P Updated UCA-1.1.1: Resp-1 does not provide Trajectory Modifications when

the trajectories of two aircraft are in conflict

Original Scenario CS-1.1.2-5: The Air Traffic Management is not aware of
future intended movements of the aircraft and wrongly assumes that the
aircraft will continue on their current trajectories. Based on this information,
the Air Traffic Management wrongly believes that a collision is not imminent.

Refined Scenario CS-1.1.1-2.1: Resp-1 is not aware of the planned trajectory
of the aircraft because at least one of the two aircraft enters the UAM
Update environment without its tracking and trajectory information having been fully
received. This could occur if the aircraft is allowed by Resp-4 to enter the
UAM environment before tracking and trajectory information can be fully
collected by Resp-5. As a result, Resp-1 either does not know the aircraft is
there or has the wrong belief about the trajectory of that aircraft and
therefore wrongly believes that no collision is imminent.

Scenario

Additional Req-88: ATM system shall ensure that tracking and trajectory information is
Requirement | present for an aircraft before it enters the UAM operating environment [CS-
1.1.1-2.1]

65

As can be seenin Table 16, CS-1.1.1-2.1 occurs because the availability of track and trajectory
information is not considered by Resp-4 before allowing an aircraft entry into UAM airspace. In
other words, there is missing coordination between Resp-4 and Resp-5 to ensure that an aircraft
can be adequately tracked, and its trajectory is known before it enters UAM airspace. This missing
coordination is highlighted by the orange arrows in the partial control structure shown on the
left side of Figure 27.

Resp-5

Manage airspace state information

Resp-5
Manage airspace state information

Incoming | | Aircraft info
Aircraft | | available

Aircraft Track | | Request

Aircraft Track | | Request
- Al ft Track
Resp-4 , Aircraft Track Resp-4 Aircraft | | e
Manage access to the airspace Aircraft Manage access to the airspace Trajectory | | Request
Trajectory | | Request planned
Flight Plan) planned Flight Plan Ops Constraints i
Flight Plan‘ Modifications Ops Constraints | | trajectory Flight Plan | | Modifications P trajectory
))) Aircraft | | Reject aircraft
Ops Constraints| | Approve/Reject Aircraft | | Reject aircraft Ops Constraints | | Approve/Reject Capabilities tratJ:k!trajectory
access Capabilities | | track/trajectory access

Preferred

flight plan | | Flight plan
modifications | | modification

Preferred |

flight plan| | Flight plan
modifications| | madification

options options
‘ UAM Aircraft & Operators ’ [UAM Aircraft & Operators
(a) Initial Conceptual Architecture (b) Revised Conceptual Architecture

Figure 27: Zoomed-in view of changes made to Resp-4 and Resp-5 due to Req-88

Thus, to mitigate this refined scenario, Reg-88 was added to ensure that track and planned
trajectory information are available for all aircraft before an aircraft is allowed access to UAM
airspace. The conceptual architecture was then updated to add the necessary control action and
feedback between Resp-4 and Resp-5 to meet this new requirement. Thus, as shown on the right
side of Figure 27, in the revised conceptual architecture, Resp-4 now provides feedback to Resp-
5 about any aircraft inbound to airspace where UAM aircraft are operating and Resp-5 must
confirm to Resp-4 that aircraft information (e.g., aircraft track and planned trajectory) is available
before Resp-4 allows the aircraft to enter UAM airspace. This modification to the conceptual
architecture therefore meets Req-88 and resolves CS-1.1.1-2.1

4.2.4 Revised Collision Avoidance Conceptual Architecture

Figure 28 shows the revised conceptual architecture for collision avoidance that was created.
Compared to the initial conceptual architecture shown in Figure 26, this revised conceptual
architecture contains the same five responsibilities. However, changes were made to some of the
interactions between the responsibilities as well as the control actions and feedback exchanged
with the aircraft based on the scenarios identified in the updated STPA.

66

[Regulators]

T x
‘ Airspace Access
Priorities

v

Air Traffic Management (ATM)

Initiate traffic Resp-3:
5 rogram i A
~ Resp-2:) g Ensure coordination options are
Ensure sufficient capacity is available available
Consolidated airspace state T
Initiate traffic
program Alternate Trajectories
Resp-5 Current| | Initiate traffic
Manage airspace state information workload| | program :
Alternate trajectories
" 0 N Proposed
Qonso\:dattec‘i Consolidated trajectory | | Confirmation/reject
Incoming| |2"ePace stae Trajectory | |airspace state modifications | |rajectory modifications
Aircraft| | aircraft Info Modifications | | Aircraft not
JAvailable “commumoatmg l
Confirm conflict free traj.
Resp-4 Trajectory modifications Resp-1:
Manage access to the airspace Prevent conflicts
Incoming aircraft
* D
|
Request Trajectory Modifications
Flight Plan Aircraft Track | | Aircraft Track
i Modifications Request ackr 1t of
Flight Plan Aircraft Trajectory Acknowledge trajectory modifications Tra\lecto‘ ' Modifi
Brofared Approve/Reject | Preferred Trajectory Modification : 4
referrex raiactor i i
fight plan access Ops Constraints | | trajectory Reason for trajectory deviation Trajectory modification options
miadlfications: Flight plan Aircraft Capabilities | | Reject aircraft Request reason for deviation
modification options track/trajectory
y

UAM Aircraft & Operators Existing Aviation Aircraft &
Operations

Figure 28: Revised conceptual architecture for collision avoidance

4.3 Exploring and Comparing NAS Architecture Options

Having defined a suitable conceptual architecture for collision avoidance, the structural
design process can now be used to identify a NAS system architecture to implement this
conceptual architecture.

4.3.1 Identifying Assignment Constraints

First, assignment constraints need to be identified because they inform the architecture
options that are created. These assignment constraints are generated using the causal scenarios
from the updated STPA analysis of the conceptual architecture that was conducted at the end of
the behavioral design process.

The discussion in Section 4.2.3 showed how some of the causal scenarios identified in the
STPA analysis of the conceptual architecture could be prevented or mitigated by making changes
to the conceptual architecture. However, there were also some scenarios that could not be
prevented by changing the conceptual architecture but could be mitigated by making an
informed choice about how to assign the various responsibilities. It is from these scenarios that
assignment constraints (i.e., preferred assignments) are derived. Table 17 shows four example
scenarios, the assignment constraints derived from each scenario and the reasoning that led to
each assignment constraint being defined. Additional examples of assignment constraints are
shown in Appendix C together with the STPA scenarios.

67

Table 17: Examples of assignment constraints derived from updated STPA scenarios

UCA-1.1: Resp-1 does not provide Trajectory Modifications when the trajectories of two

aircraft are in conflict

Scenario

Assignment
Constraint

Reason for Assignment
Constraint

CS-1.1.1-1.1: The potential conflict is
recognized and Resp-1 attempts to
resolve the conflict. However, Resp-3
does not confirm that the trajectory
modifications still have alternate
trajectory options. As a result, Resp-1 is

Resp-1 = Resp-3

Avoids the need to
communicate across
controllers in the control
structure to receive
confirmation that alternate
trajectory options are

unable to issue trajectory modifications. available

CS-1.1.1-1.2: Although feedback about a
potential conflict is received, Resp-1 is

Distributing the decision

. . . Resp-1 = making among the aircraft
preoccupied with resolving one set of)
. . Aircraft v (ATM could help reduce workload
conflicts and therefore does not issue X) ..
. e . A Aircraft) and increase decision
trajectory modifications to resolve this makine capacit
other conflict. g capacity
CS-1.1.1-2.3: Resp-1 does r?ot recellve Unlike ATM, aircraft have
feedback about the potential conflict
. . better access to feedback
because it does not receive timely
Resp-1= about detected ground
feedback on the presence of new ground .
. Aircraft v (ATM hazards and could make
hazards (e.g., a new construction crane).)
. L A Aircraft) faster and more accurate
It therefore does not believe a collision is . .
S e trajectory modification
imminent and does not modify aircraft .. .
. . decisions to avoid them
trajectories.
CS-1.29.1-1.3: Although the imminent
collision is recognized, the process of Under high density traffic
generating a resolution repeatedly gets situations, ATM would be
interrupted by new conflicts due to the better able to anticipate
density of air traffic. As such, before the Resp-1=ATM future conflicts and can pre-

emptively avoid them
instead of only reacting to
conflicts as they occur

trajectory modifications can be issued,
they need to be recalculated and thus the
trajectory of aircraft are not modified
until it is too late to avoid a collision

The scenarios listed in the left column of Table 17 all involve the behavior of Resp-1. For each
of these scenarios, it was decided that there was a preferred assignment of Resp-1 that would
potentially better mitigate the scenario. For example, scenario CS-1.1.1-1.1 describes inadequate
communication between Resp-1 and Resp-3 that would be easiest to prevent if the two
responsibilities were assigned to the same controller in the control structure so that they do not
need to communicate across controllers. Thus, Resp-1 = Resp-3 is the assignment constraint to
indicate this preference for Resp-1 and Resp-3 to be assigned to the same controller.

68

Similarly, scenario CS-1.1.1-1.2 describes a situation in which a period of high workload while
resolving a conflict leads to Resp-1 being unable to resolve a second imminent conflict. This
suggests that Resp-1 is vulnerable to disruptions in decision making that could potentially be
alleviated if that decision making was either only assigned to the aircraft or shared between ATM
and the aircraft so that the aircraft could sometimes help to make those decisions. Thus, the
assignment constraint is Resp-1 = Aircraft V (ATM A Aircraft).

From the 55 scenarios identified in the STPA analysis of the conceptual architecture
(performed at the end of the behavioral design process), it was determined that 28 of them could
potentially be mitigated by a preferred responsibility assignment. Table 18 shows the assignment
constraints that were identified and the number of scenarios that could potentially be mitigated
by each constraint.

Table 18: Assignment constraints identified from updated STPA scenarios

| Assignment Constraint Notation # of
Scenarios
1 | Assign Resp-1 and Resp-3 to same Resp-1 = Resp-3 2
controller
2 | Assign Resp-1to ATM Resp-1=ATM 5
Assign Resp-1 either to UAM aircraft or Resp-1 = Aircraft vV (ATM 21
share it between UAM aircraft and ATM | A Aircraft)

4.3.2 Creating Architecture Options to Explore

Based on the information in Table 18, assignment constraints 2 and 3 were explored first
because they impact the greatest number of scenarios. Based on these two assignment
constraints, two candidate architecture options for how to assign Resp-1 were created and the
responsibility assignments for each option are shown in Table 19.

Table 19: Responsibility assignments for two architecture options

Option A; Option A;
Resp. ID | Responsibility Centralized Decentralized
Collision Avoidance | Collision Avoidance

Resp-1 Identify and resolve conflicts ATM Aircraft
Resp-2 Ensure sufficient capacity is available ATM ATM

Resp-3 Ensyre coordination options are ATM ATM

available

Resp-4 Manage access to the airspace ATM ATM
Resp-5 Manage airspace state information ATM ATM

As highlighted in Table 19, note that the only difference between the two architecture
options is the assignment of Resp-1. This was done to ensure that any differences in behavior
could be directly attributed to the difference in assignment of Resp-1. For the other four
responsibilities, they are assigned to ATM in both architecture options to mirror the architecture
that is used in today’s air traffic control system.

69

Architecture option A; assigns Resp-1 only to ATM and it represents a centralized collision
avoidance architecture where ATM is responsible for identifying and preventing conflicts. This is
essentially the same architecture that is used in today’s air traffic control system. By contrast, A»
assigns Resp-1 only to the aircraft and it represents a decentralized collision avoidance
architecture where the aircraft are responsible for identifying and preventing conflicts. This
architecture is comparable to the Free Flight concept that was proposed by the German
Aerospace Center and others in the early 2000s [101]. A1 and A; therefore represent diverse
architectures for collision avoidance and comparing them can provide insight into how best to
assign the various responsibilities.

To illustrate the differences in these two system architectures, simplified control structures
for architecture options A; and A; are shown in Figure 29 and Figure 30 respectively. Both figures
show a zoomed-in version of the control structure in Figure 24 to focus on the differences in the
ATM-aircraft and aircraft-aircraft interactions between architecture options. In each figure, Resp-
1is shown in orange and the Trajectory Modifications control action (the main control action for
Resp-1) is highlighted in red to show how its location in the control structure changes between
architecture options.

In addition, because each aircraft has the same interactions with ATM, the control actions
and feedback between ATM and the aircraft are only listed for one aircraft in the control
structure and it is implied that they apply to the other aircraft as well.

Air Traffic Management (ATM)

» Resp-2: Ensure sufficient capacity

» Resp-3: Generate alternate trajectories

» Resp-4: Manage access to the airspace

» Resp-5 Mainatain consolidated airspace state

A ~

Acknowledge modifications
Trajectory modifications Flight plans

Approve Access Request Aircraft Track
Flight Plan Modifications Planned trajectory
Alternate Trajectories Operational constraints

Aircraft capabilities

---------- L L P e

h 4 A

Aircraft Controller Aircraft Controller

Y h J

Aircraft Subsystems Aircraft Subsystems

1
1
1
1
1
1
1
1
1
1
! Control Inputs
1
1
1
1
1
1
1
1
1
1

Aircraft n

r
1]
1]
1]
1]
1]
1]
1]
1]
L
1
1 Control Inputs
1]
L
Ll
Ll
Ll
Ll
Ll
Ll
Ll
Ll

Figure 29: Zoomed-in control structure for architecture option A;

70

Air Traffic Management (ATM)

+ Resp-2: Ensure sufficient capacity

+ Resp-3: Generate altemate trajectories

+ Resp-4: Manage access to the airspace

+ Resp-5: Mainatain consolidated airspace state

A
Approve Access Request Flight plans
Flight Plan Modifications Planned trajectory
Alternate Trajectories Operational constraints
Initiate Traffic Program Aircraft capabilities
Consolidated airspace state Proposed trajectory modifications
Incoming Aircraft Aircraft Track
R 2 I R 2 B :
Aircraft Controller » Aircraft Controller
h Trajectory Modifications
Acknowledge Modifications
Trajectory modification options
Control Inputs

Y Y

Aircraft Subsystems Aircraft Subsystems

'
'
'
.
Preferred trajectory modification ¢ Control Inputs
'
'
'
'
'
'

Aircraft 1 Aircraft n

Figure 30: Zoomed-in control structure for architecture option A,

4.3.3 Evaluating and Comparing Architecture Options

Having created these two architecture options, they can now be further analyzed using STPA
and compared. For conciseness, this section will focus on the comparison results derived from
the STPA analyses of each option. As an example, Table 20 shows four scenarios and the
comparison results derived from them for the two architecture options. The full comparison table
showing all the STPA scenarios that were used to compare these two architecture options can be
found in Appendix D.

71

Table 20: Architecture comparison table for four example scenarios

Scenario
| Scenario Occurs? | Evaluation Criteria
Ay | A
Although the imminent collision is recognized, Responsiveness of
<controller(s) performing Resp-1> gets repeatedly trajectory modifications
1 interrupted by changing flight conditions and it Y decisions to prevent loss
constantly needs to modify its solution. As a result, [A1] es of separation when flight
a final solution is not selected until it is too late to conditions change
prevent a collision rapidly
<Controller(s) performing Resp-1> do not receive Timeliness of ground
feedback about the potential conflict because they hazards feedback to
are unable to receive timely feedback on the prevent loss of
2 | presence of new ground hazards (e.g., a new Yes separation when
construction crane). As a result, it does not believe a [A2] | resolving a conflict
collision is imminent and does not try to modify involving terrain or
aircraft trajectories to avoid the collision ground obstacles
<Controller(s) performing Resp-1> issue trajectory Vulnerability of

modifications that do not result in collision.
However, during transmission to the aircraft, part of
3 | the trajectory modification is dropped (e.g., duetoa | Yes
communications error). As a result, the aircraft only
receives part of the trajectory modifications and
that causes a conflict with another aircraft €rrors occur

providing trajectory
modifications to prevent
[a3] | loss of separation when
communication (path)

Frequency and
complexity of trajectory
modifications decisions
[a4] | to prevent loss of
separation when
resolving a conflict

Although feedback about the potential conflict is

received, <controller(s) performing Resp-1> do not
4 | issue trajectory modifications because they are Yes
preoccupied with resolving one set of conflicts and
do not attend to feedback about a subsequent set.

Table 20 shows that this scenario-based comparison of architecture options can identify
evaluation criteria that cover multiple areas of control. The first and fourth criteria involve
decision making, the second criterion involves feedback, and the third criterion involves the
control path. To illustrate how the evaluation criteria in Table 20 were derived, the difference in
behavior of architecture options A; and A; in the first and second scenarios are illustrated in
Figure 31 and Figure 32 respectively.

72

Air Traffic Management (ATM)

Air Traffic Management (ATM)

1
|
|
Aircraft Aircraft !
Trajectory Track Trajectory || Track |
Medifications Modifications !
Ops Ops 1 Repeatedly
Constraints Constraints 1 Revised
1 Aircraft 1 Controller Coordination Aircraft 2 Controller
Aircraft 1 Controller Aircraft 2 Controller 1
|
Control Flight Control Flight | Control | [Flight Control | | Flight
Inputs Conditions Inputs Conditions I Inputs Conditions Inputs Conditions
(Changing) (Changing) | (Delayed) | | (Changing) (Delayed) | | (Changing)
|
Aircraft 1 Aircraft 2 I Aircraft 1 Aircraft 2
Subsystems Subsystems I Subsystems Subsystems

A1: Centralized Collision Avoidance

A2: Decentralized Collision Avoidance

No unsafe behavior Unsafe Behavior Identified

Figure 31: Behavior of A; (left) and A, (right) in scenario 1 of Table 20

Air Traffic Management (ATM)

Air Traffic Management (ATM)

1
|
|
. _ I
Trajectory | | |dentified Trajectory | | |dentified 1
Modifications conflict Modifications conflict I
(Delayed) | | (Delayed) (Delayed) | [(Delayed) I
|
1 Aircraft 1 Controller |Coordination | Aireraft 2 Controller
Aircraft 1 Controller Aircraft 2 Controller | Resp-1 Resp-1
|
Clontrol Detected CI?]ntl::sl Detected 1 Control | | Detected Control
NPUts | | ground hazards P ground hazards | Inputs | | ground hazards Inputs
(Delayed) (Delayed) I
Aircraft 1 Aircraft 2 | Aircraft 1 Aircraft 2
Subsystems Subsystems Subsystems Subsystems
(Detects ground (Detects ground | (Detects ground (Detects ground
hazard) hazard) | hazard) hazard)

A1: Centralized Collision Avoidance
Unsafe behavior identified

A2: Decentralized Collision Avoidance
No unsafe behavior

Figure 32: Behavior of A; (left) and A; (right) in scenario 2 of Table 20

First, consider scenario 1 (Figure 31). In this scenario, flight conditions (e.g., operational
constraints, weather etc.) are changing rapidly and therefore the acceptable conflict resolution
options are changing as well. Under these conditions, no unsafe behavior is observed for
architecture option A; because when Resp-1 is assigned to ATM, ATM is the sole decision maker
and can quickly adapt its decision making as the flight conditions change. In addition, ATM has
broader situational awareness of the state of the airspace and could anticipate some of these
changes. As a result, it can select appropriate trajectory modifications and issue them to the
aircraft with minimal delay. By contrast, in option A; where Resp-1 is assigned to the aircraft, the
aircraft must coordinate with each other to collectively make safe trajectory modification
decisions. Therefore, when conditions are changing rapidly, the aircraft will likely need to
repeatedly revise their coordination to select appropriate trajectory modifications based on the
updated flight conditions. This repeated revision of coordination can therefore delay their

73

selection of trajectory modifications and therefore delay the aircraft in taking appropriate control
inputs to resolve the conflict.

Comparing the behavior of architecture options A1 and A; in this first scenario therefore
shows that the main behavioral difference between them is the responsiveness with which
trajectory modification decisions can be made when flight conditions change rapidly. Specifically,
architecture option A; enables more responsive decision making than A,. This therefore leads to
the formulation of the evaluation criterion for scenario 1 that is shown in Table 20.

Next, consider scenario 2 (Figure 32). In this scenario, the aircraft detect a ground hazard that
was not previously known and recognize that their trajectories conflict with that detected ground
hazard. Unsafe behavior is observed for architecture option A; because when Resp-1 is assigned
to ATM, ATM must first receive feedback about the ground hazard from the aircraft before it can
identify the conflict and decide how to resolve it. Thus, because ATM is dependent on the aircraft
to provide this feedback about ground hazards, there is a delay before ATM can issue trajectory
modifications. Depending on the length of the delay and the distance to the ground hazard, there
may not be enough time to resolve the conflict before a collision occurs. By contrast, in option
A,, as soon as the ground hazard is detected, the aircraft can begin coordinating to resolve the
conflict and no unsafe behavior occurs due to communications delay.

Thus, comparing the behavior of architecture options A; and A; in this second scenario shows
that the main behavioral difference between them is the timeliness with which ground hazards
feedback is received when resolving a conflict involving terrain or ground hazards. Specifically,
architecture option A; enables more timely feedback about ground hazards than A;. This leads
to the formulation of the evaluation criterion for scenario 2 that is shown in Table 20.

As these decisions are made, it is also important to record any underlying assumptions used
to make these decisions. Table 20 also shows that each time it is decided that a scenario does
not occur for an architecture option, any assumptions that were used to make that decision are
identified and the assumption IDs are indicated in italicized text in the corresponding cell. The
assumptions linked in Table 20 are shown in Table 21.

Table 21: Examples of assumptions underlying comparison decisions

ID Assumption

It is assumed that ATM will not have to coordinate conflicts as frequently because it
A-1 | has broader situational awareness of the future state of the airspace and can better
resolve multiple conflicts over longer time horizons in a more coordinated fashion.

It is assumed that UAM aircraft would have onboard sensing capable of detecting
A-2 | ground hazards with enough range to allow time for the aircraft to respond to avoid a
collision with the ground hazard.

It is assumed that with the aircraft sharing responsibility for preventing conflicts with
A-3 | ATM, a component failure (e.g., on ATM or on one of the aircraft) should not
compromise the ability of other aircraft to prevent conflicts.

It is assumed that even if an initial set of aircraft are preoccupied with resolving a set
A-4 | of conflicts, any new aircraft would identify the conflict and coordinate its own set of
trajectory modifications to avoid the other group of aircraft.

74

As discussed briefly in Chapter 3, it is important to identify these assumptions because the
ability of an architecture to prevent a specified scenario is contingent on these assumptions being
valid. Thus, if one of these architecture options is chosen for further development, then any
downstream design decisions must not violate the assumptions associated with that architecture
option. Chapter 6 provides a more detailed discussion of how to ensure that these assumptions
remain valid as the design process progresses.

In this design iteration, a total of nineteen evaluation criteria were identified across all
aspects of control. These evaluation criteria highlighted key benefits and tradeoffs in three main
areas of control: (1) decision making, (2) feedback and control inputs, and (3) control path. The
remainder of this section will discuss the benefits and tradeoffs identified in each of these areas
of control. The list of all nineteen evaluation criteria can be found in Appendix D.

Decision Making Tradeoffs for Collision Avoidance

The first finding from this comparison is that the two architecture options exhibit important
differences in the ability of ATM or the aircraft to make safe and appropriate trajectory
modification decisions to resolve conflicts. Table 22 shows the four evaluation criteria that
highlight these differences.

Table 22: Comparison results showing decision making tradeoffs for collision avoidance

ID Evaluation Criteria Benefit (+) or Tradeoff (-)
Ax Az
EC-1 | Frequency and complexity of trajectory modifications e
decisions when resolving a conflict
EC-4 | Ability to make appropriate trajectory modification
decisions to prevent loss of separation when multiple e

conflicts occur

EC-5 | Responsiveness of trajectory modification decisions to
prevent loss of separation when resolving a multi- @
aircraft conflict in densely populated airspace

EC-6 | Responsiveness of trajectory modifications decisions to
prevent loss of separation when the state of the @

airspace changes rapidly or a conflict involves

restrictive operational constraints

The first two rows of Table 22 (EC-1 and EC-4) show that when Resp-1 is assigned to the
aircraft (as it is in Ay), the ability of the system to make appropriate trajectory modification
decisions is improved in two key ways. First, by assigning Resp-1 to the aircraft, the frequency
and complexity of the decisions made by each aircraft is lower. This is because allowing the
aircraft to perform Resp-1 distributes the decision making for conflict resolution. As a result,
multiple groups of aircraft can resolve smaller conflict sets in parallel, making it easier to select
appropriate trajectory modifications. This is possible when the traffic density is low because
conflicts are more likely to occur further apart in space and therefore can be resolved

75

independently. By contrast, when Resp-1 is only assigned to ATM, ATM is the sole decision maker
and must resolve all conflicts of any size that might occur at any time.

The other improvement is that when multiple conflicts occur, they can be better resolved by
the aircraft than by ATM. This is because distributing the decision making to the aircraft allows
the aircraft to resolve different conflicts in parallel. By contrast, when Resp-1 is assigned to ATM,
ATM must resolve all the conflicts by itself.

However, the latter two rows of Table 22 also show these benefits may not be realized by
architecture A, under some challenging air traffic conditions. EC-5 shows that if the traffic density
is high, assigning Resp-1 to ATM (as it is in A1) allows ATM to make more responsive (i.e., timely)
trajectory modification decisions. Similarly, EC-6 shows that if the state of the airspace is
changing rapidly or a conflict involves multiple restrictive operational constraints (e.g., an
emergency, fuel or battery range limits etc.), assigning Resp-1 to ATM (as it is in A1) allows ATM
to make more responsive trajectory modification decisions. Architecture option A1 can achieve
these benefits because under these more challenging air traffic conditions, it is necessary to
coordinate the resolution of these conflicts to avoid causing secondary conflicts. Thus, when
Resp-1 is assigned to ATM, ATM’s broader situational awareness of the state of the airspace
allows it to more easily make multiple simultaneous trajectory modification decisions to resolve
many potential conflicts while accounting for all relevant operational constraints. In addition,
ATM'’s broader situational awareness allows it to more easily anticipate future changes to the
state of the airspace and pre-empt future conflicts or problems before they can occur. By
contrast, if the aircraft are performing Resp-1, their more limited situational awareness of the
state of the airspace makes it harder for them to anticipate future conflicts. In addition, their
ability to make timely decisions may be impaired by the need to coordinate trajectory
modification decisions with other aircraft.

Taken together, the above comparison results show that, when traffic density is low or in less
challenging air traffic circumstances, assigning Resp-1 to the aircraft is beneficial because this
architecture option lowers the frequency and complexity of trajectory modification decisions and
enables better resolution of conflicts when multiple conflicts occur at the same time. However,
when air traffic circumstances become more challenging (e.g., high traffic density, strict
operational constraints etc.), assigning Resp-1 to ATM enables better coordinated and more
timely trajectory modification decisions to be made to resolve any potential conflicts.

Decision Making Tradeoffs for Efficient Management of Airspace

Although this design iteration was primarily focused on safety, several evaluation criteria
were also identified that involved efficiency. The comparison of these two architecture options
showed that architecture option A; enables better decision making for ensuring (1) efficient use
of the airspace and (2) that high-priority flights receive the necessary precedence to complete
their flights. Table 23 shows the two evaluation criteria (EC-7 and EC-8) that illustrate these
differences in behavior.

76

Table 23: Comparison results showing decision making tradeoffs for efficiency

ID Evaluation Criteria Benefit (+) or Tradeoff (-)
Az Az
EC-7 | Responsiveness of trajectory modifications decisions to
enable aircraft to complete missions when reducing @
spacing between aircraft to accommodate additional air
traffic
EC-8 | Responsiveness of trajectory modification decisions to
inability to complete missions when a high-priority flight @
needs to be given precedence for mission completion

As shown in Table 23, architecture option A; exhibits more responsive decision making when
making trajectory modifications to reduce the spacing between aircraft and to ensure that a high-
priority flight can complete its mission without interference from other, lower-priority air traffic.
These two benefits of option A1 are achieved because, when Resp-1 is assigned to ATM (as it is
in A1), ATM has broader situational awareness of the current and future state of the airspace. As
a result, ATM is better equipped than the aircraft to make trajectory modification decisions to
either make more efficient use of the airspace to accommodate more aircraft or prioritize a high-
priority flight.

In addition, ATM’s role in the system is to serve the needs of all airspace users in a fair and
consistent manner. Thus, ATM is less likely to act unfairly toward any particular airspace user and
will prioritize flights that need that priority in a consistent manner. By contrast, if Resp-1 is
assigned to the aircraft, some aircraft may select trajectory modifications that protect their own
self-interest (e.g., efficiency of their own trajectory) at the expense of other NAS users.

Feedback and Control Inputs Tradeoffs

Another interesting finding from this comparison was that there is a tradeoff between
needing to receive control inputs from other controllers (in the control structure) and the ability
to receive timely environmental feedback to inform trajectory modification decisions. Table 24
shows the comparison results for the five relevant evaluation criteria that illustrate this tradeoff.

77

Table 24: Comparison results showing feedback and control inputs tradeoffs

ID Evaluation Criteria Benefit (+) or Tradeoff (-)

Az

of separation when resolving a conflict

EC-13 | Timeliness of operational constraints feedback to
prevent loss of separation when operational

A
EC-12 | Timeliness of ground hazards feedback to prevent loss e
constraints are changing frequently

EC-14 | Timeliness of aircraft capabilities, flight conditions and
operational constraints feedback to prevent loss of e
separation when resolving a conflict

EC-15 | Use of “confirmation of trajectory modifications” input e
to prevent loss of separation when resolving a conflict

EC-16 | Use of “mutual agreement” input to prevent loss of
separation when resolving a conflict involving @
numerous aircraft and/or densely populated airspace

The first three rows of Table 24 (EC-12, EC-13, and EC-14) show that when Resp-1 is assigned
to the aircraft (as it is in architecture option A;), one of the benefits is that it is easier for the
aircraft to obtain timely feedback on environmental or flight conditions such as aircraft
capabilities, flight conditions, operational constraints, and ground hazards. This is especially
important if operational constraints or flight conditions are changing frequently. Architecture
option A; exhibits this benefit because when Resp-1 is assigned to the aircraft, the aircraft have
direct access to data about these conditions through on-board sensors (an assumption that is
recorded in the comparison results of this architecture option) and direct communication with
each other. By contrast, when Resp-1 is assigned to ATM, ATM is dependent on the aircraft or
other third-party sources (e.g., weather providing services etc.) to provide feedback about these
elements and therefore ATM’s ability to receive timely feedback is poorer compared to the
aircraft.

However, the last two rows of Table 24 (EC-15 and EC-16) shows that when Resp-1 is assigned
to the aircraft (as it is in Az), one of the tradeoffs is that it becomes necessary to receive two
control inputs before trajectory modifications can be selected. The first is confirmation of
trajectory modifications. This input is necessary because coordination is needed between Resp-
1 and Resp-3 to ensure that a proposed set of trajectory modifications has alternate trajectories
available before those trajectory modifications are provided to the aircraft. Recall that in both
architecture options, Resp-3 is assigned to ATM. Thus, when Resp-1 is assigned to the aircraft,
the aircraft need to wait for ATM to confirm their proposed trajectory modifications before they
can execute them, and this could potentially slow down the ability of the aircraft to resolve a
conflict. By contrast, when Resp-1 is also assigned to ATM (as it is in A1), coordination between
Resp-1 and Resp-3 occurs within ATM and input from another control element is not required.

The other control input is mutual agreement between aircraft. This input is necessary
because when Resp-1 is assigned to the aircraft, the aircraft must work together to coordinate

78

their selection of trajectory modifications. This coordination ensures that the modifications they
select do not conflict with each other in addition to not conflicting with other nearby aircraft. By
contrast, when Resp-1 is assigned to ATM, this mutual agreement is not needed because ATM is
the sole decision maker and need not coordinate its decision with any other control element.

Control Path Benefits of Architecture Option Az

The last interesting finding from this comparison was that there are some important control
path benefits of architecture option A, over option A; that arise because the decision making
associated with Resp-1 is distributed among the aircraft. Table 25 shows the evaluation criteria
that illustrate these benefits.

Table 25: Comparison results showing control path tradeoffs

ID Evaluation Criteria Benefit (+) or Tradeoff (-)
A1 A;
EC-17 | Vulnerability of providing trajectory modifications to
prevent loss of separation when a component failure @

compromises decision making

EC-18 | Vulnerability of providing trajectory modifications to
prevent loss of separation when errors with the @
communications path occurs

modifications to prevent loss of separation when

EC-19 | Responsiveness of execution of trajectory @
trajectory modifications have been issued

The first two rows of Table 25 (EC-17 and EC-18) show that when Resp-1 is assigned to the
aircraft (as it is in Az), the control path is less vulnerable to communications errors or component
failures that could lead to compromised decision making. Architecture A, exhibits this benefit
because, when Resp-1 is assigned to the aircraft (as it is in A;), the inability of one or a group of
aircraft to resolve a conflict or accurately transmit trajectory modifications does not necessarily
compromise the ability of other aircraft to do so. Thus, even if one aircraft is not communicating,
the other aircraft have the capability to maneuver to avoid the non-communicative aircraft,
thereby still successfully preventing a collision. By contrast, when Resp-1 is assigned to ATM, if
ATM is unable to resolve a conflict or accurately communicate its trajectory modifications to the
aircraft, the ability of architecture option A: to perform adequate collision avoidance is
significantly compromised because no one else is assigned the responsibility to resolve collisions.

In addition, the third row of Table 25 (EC-19) shows that when Resp-1 is assigned to the
aircraft, the aircraft are likely to be more responsive in executing the selected trajectory
modifications. Architecture A; exhibits this additional benefit because, when Resp-1 is assigned
to the aircraft, they are the ones selecting trajectory modifications and therefore know that they
will soon need to execute those trajectory modifications. By contrast, when Resp-1 is assigned to
ATM, ATM could identify and resolve a conflict, but the aircraft may be delayed in executing
ATM'’s selected trajectory modifications if they are preoccupied with other tasks and do not
attend to the trajectory modifications right away.

79

4.4 Evaluation of Comparison Results Against Existing Literature

Having generated a set of benefits and tradeoffs by comparing a centralized and
decentralized ATM architecture, the goal of this section is to evaluate whether the framework
was able to identify relevant criteria for comparing architecture options. As discussed in Section
2.2, one of the limitations of current architecture development methods is that they are heavily
reliant on quantitative metrics, which are challenging to identify during the early stages of
development for evaluating emergent properties like safety. Thus, this comparison seeks to
determine if this framework overcomes this limitation and can generate relevant qualitative
criteria for comparing architecture options.

As discussed at the beginning of this chapter, although this research employs a novel, control-
oriented approach to compare architecture options, several studies in the existing literature have
already compared centralized and decentralized ATM architectures. In the existing ATM
literature, several simulation studies have compared the performance of today’s ATC system (a
centralized architecture) with several proposed decentralized ATM architectures such as Free
Flight and Distributed Air-Ground Traffic Management (DAG-TM). In this section, the benefits and
tradeoffs discussed in Section 4.3.3 are compared to those identified in the existing literature to
determine (1) if the benefits and tradeoffs found in previous simulation studies are also found
using this approach and (2) if this approach is able to identify additional benefits and tradeoffs
that are relevant for deciding how best to assign the control responsibilities to achieve emergent
properties such as safety and efficiency.

One of the challenges in performing this comparison of results is that the existing studies that
this research is being compared to are not of the same type. The framework proposed in this
research employs STPA (a qualitative analysis method) to analyze proposed architecture options
whereas the existing ATM literature uses simulation studies (a quantitative analysis method). As
a result, the centralized and decentralized architectures analyzed in this research are defined at
a relatively high level of abstraction whereas the architectures analyzed in the existing ATM
literature are defined at a much more detailed level to enable their implementation in a
simulation. Consequently, the benefits and tradeoffs identified in this research are qualitative
and less detailed while the benefits and tradeoffs identified in the existing literature are typically
guantitative and more detailed.

For these reasons, this comparison focuses primarily on the qualitative observations made in
the existing literature rather than on the quantitative findings to ensure the same types of
findings are being compared. However, to ensure this evaluation does not unfairly discount
guantitative results, a qualitative finding is also considered to have been found by the existing
literature if it could have reasonably been identified using the quantitative results of a research
study. In addition, this comparison focuses only on qualitative observations that are at the same
level of abstraction as those identified in this research. Thus, the more detailed benefits or
tradeoffs that are identified in some of the existing literature are not considered.

It is also worth noting that this evaluation only includes a limited number of existing research
studies and is not meant to be an exhaustive comparison to all studies comparing centralized and
decentralized ATM architectures. However, repetition of some of the findings across studies
suggests that they are converging toward a common set of benefits and tradeoffs that will be
used for this evaluation.

80

Quantitative Comparison of Benefits and Tradeoffs

Table 26 shows the number of benefits and tradeoffs identified by the existing literature and
using the framework developed in this research, grouped by the different aspects of control.

Table 26: Comparing results identified in existing literature and this research

Control Aspect Found in Existing Found Using This
Literature Framework
Decision Making 5 8
Process Models 1 3
Feedback and External Inputs 0 5
Control Path 3 3
TOTAL 9 19

Table 26 shows that of the nineteen benefits and tradeoffs identified using the architecture
development framework developed in this research (Appendix D), only nine were also identified
by the existing literature. At this level of abstraction, all the benefits and tradeoffs that were
identified by the existing literature were also found using this framework. Furthermore, except
for the control path, this framework identified more benefits and tradeoffs in each of the control
aspects than the existing literature. In fact, benefits and tradeoffs related to feedback and
external inputs are not identified at all in the existing literature whereas this research identifies
five of them. Together, these results suggest that this framework identifies more benefits and
tradeoffs with better coverage over the various aspects of control than the methods used in
existing research.

This is important because, as discussed at the beginning of Chapter 3, the ability of an
architecture to achieve the desired emergent properties is dependent on its ability to adequately
control the system’s behavior to avoid unsafe behavior. Thus, better coverage over the various
aspects of control ensures that all aspects that contribute to achieving adequate control are
considered when identifying the benefits and tradeoffs of each architecture option.

While the quantitative differences shown in Table 26 are encouraging, they are not enough
by themselves to establish the contributions of this research. This is because, in addition to being
able to find more benefits and tradeoffs, it is also important to establish that the benefits and
tradeoffs that are found are also relevant for understanding the behavior of an architecture to
inform downstream design decisions. For this reason, the remainder of this section qualitatively
compares the benefits and tradeoffs identified in this research to those identified in the existing
literature. In the remainder of this section, three main qualitative benefits of this architecture
development framework are discussed.

Qualitative Comparison 1: Focus on Control-Related Differences

One of the important qualitative differences between the benefits and tradeoffs identified in
this research compared to those identified in the existing literature is that those identified in this
research are more focused on control-related differences in behavior between the architecture
options. To illustrate this, Table 27 shows several benefits and tradeoffs identified in the existing
literature (left column) and the equivalent ones identified using this framework (right column).

81

Table 27: Examples comparing degree of focus on control-related differences

Benefit/Tradeoff Identified

Benefit/Tradeoff Identified in Existing Literature . .
Using This Framework

“Decentralized approach had 229% more collisions
than the centralized approach” [102, p. 192] In a centralized collision avoidance

architecture, ATM makes more
responsive trajectory modifications
decisions to prevent loss of
separation when the state of the
“The centralized conflict resolution produced a total of | airspace changes rapidly or a

3.2% of scenarios with losses of separation [...] whereas | conflict involves restrictive

the decentralized architecture produced a total of 3.4% | Operational constraints

of scenarios with losses of separation” [103, p. 7]

“The centralized strategy suppresses the [occurrence of
secondary conflicts] over the entire range of traffic
densities” [96, p. 325]

In a decentralized collision
avoidance architecture, the aircraft
have more limited situational
awareness of airspace state to
prevent loss of separation selecting
trajectory modifications under
challenging air traffic conditions

For the decentralized free flight concept, “the
estimated mean probability of collisions per 20 minutes
aircraft flight equals 5.22x107°, which is equal to a
probability of collisions per aircraft flight hour of
1.6x10#” [104, p. 9], which the authors deem to be a
high risk of collision

As shown in Table 27, the benefits and tradeoffs identified in the existing literature are
typically focused on the aspects of an ATM system’s behavior that are quantifiable and
observable. However, these quantifiable differences in behavior do not necessarily describe the
control behavior of an architecture. For example, the left column of Table 27 shows that the
differences between centralized and decentralized architectures are typically reported in terms
of quantitative metrics such as the number or percentage of conflicts or collisions that were
detected or the probability of collision.

By contrast, the benefits and tradeoffs identified using this framework are more focused on
the control-related differences in behavior between architecture options. For example, as shown
in the first three rows of Table 27, instead of just observing that the decentralized architecture
had more collisions or more secondary collisions than the centralized architecture, this
framework identifies that it is ATM’s ability to make more responsive (i.e., more timely) decisions
in a centralized architecture that enables it to more adequately resolve any potential conflicts.
Similarly, in the last row of Table 27, instead of just observing that a decentralized architecture
has a higher probability of collision, this framework identifies that it is because the aircraft have
more limited situational awareness of the airspace state that they are more likely to inadequately
resolve a conflict.

Qualitative Comparison 2: Determining the Source of Observed Behavioral Differences

Another important qualitative difference between the benefits and tradeoffs identified in this
research compared to those identified in the existing literature is that it is easier to determine

82

what aspect of the ATM architecture contributed to the identified benefit or tradeoff. To
illustrate this difference, consider the following two examples from the existing literature.

First, in [104], the authors offer the following explanation for their finding that the
decentralized free flight concept has a high risk of collision:

There appeared to be five different collision events. [...] Four of the five collisions were
due to a growing number of multiple conflicts that could not be solved in time under the
operational concept adopted. [104, p. 9]

In this first example, although the authors of [104] describe that the collisions occurred due
to the growing number of multiple conflicts occurring, they don’t explain why their decentralized
free flight concept could not resolve those conflicts.

The second example is in [102], where the authors offer the following explanation for why
the decentralized approach had more collisions than the centralized approach:

This can be explained by the increased number of messages required by this approach,
which [is] associated with the communications overhead, [resulting] in a larger time to
reach an agreement [102, p. 192]

In this example, the authors of [102] include in their explanation the element of their
decentralized architecture that contributed to the observed increase in collisions (i.e., the
communications overhead). However, they do not offer further explanation of why the
communications overhead occurs.

These two examples illustrate that in the existing literature, it can be difficult to determine
what aspects of the ATM architecture contributed to those benefits and tradeoffs. By contrast,
the framework developed in this research makes it easier to determine why an identified benefit
or tradeoff occurs because each one is derived from a specific STPA causal scenario that includes
details about what control structure elements are involved. Thus, each benefit and tradeoff can
be easily traced to specific element(s) in the system architecture. For example, Table 28 shows
one of the benefits of a centralized architecture that was identified in this research and the causal
scenario that it was derived from.

Table 28: Demonstration of how a causal scenario explains an identified benefit

A centralized collision avoidance architecture exhibits more
responsive trajectory modifications decisions to prevent loss of
separation when the state of the airspace changes rapidly or a
conflict involves restrictive operational constraints

Benefit

Although the imminent collision is recognized, <controller(s)
performing Resp-1> gets repeatedly interrupted by new conflicts due
Associated STPA to the density of air traffic. As such, before the trajectory

Causal Scenario modifications can be issued, they need to be recalculated and thus
the trajectories of aircraft are not modified until it is too late to enact
the new trajectories to avoid a collision

Comparison Result occur in architecture option A: (centralized architecture)
for This Scenario DOES occur in architecture option A, (decentralized architecture)

83

Table 28 illustrates how the causal scenario associated with a benefit or tradeoff makes it
easier to determine how one of the architectures might exhibit better or worse behavior. One of
the benefits of a centralized collision avoidance architecture identified by this framework is that
it exhibits responsive trajectory modification decisions when the state of the airspace changes
rapidly or a conflict involves restrictive operational constraints. This benefit is observed because
when ATM resolves conflicts centrally, it can pre-emptively resolve multiple conflicts
simultaneously without needing to interrupt its decision making for each new conflict as they
occur. Therefore, no unsafe behavior related to this causal scenario occurs in architecture option
Ai. By contrast, when the aircraft resolve their own conflicts, any new conflicts or changes to the
conflicts they are resolving will interrupt their decision making and require them to re-evaluate
their trajectory modification decisions. Thus, unsafe behavior related to this causal scenario does
occur in architecture option A,.

Qualitative Comparison 3: Consideration of Different Air Traffic Contexts

Finally, the last qualitative difference between the benefits and tradeoffs identified in this
research compared to those identified in the existing literature is that the ones identified in this
research were derived from a broader consideration of different air traffic contexts. This
difference was observed because many of the simulation studies in the existing literature that
were considered in this comparison (e.g., [96, 102, 105, 106]) only considered nominal air traffic
conditions involving varying levels of air traffic density. Only [97, 101, 103] considered off-
nominal conditions such as input/output errors, component failures, delays or flight crews not
flying the aircraft according to the trajectories needed to prevent a collision.

By contrast, the scenarios generated in the various STPA analyses performed in this design
iteration included the following air traffic contexts:

e High or low traffic density

e Nominal, degraded, and emergency conditions

e Interactions between different types of air traffic/aircraft (e.g., emergency response
flights, high-priority flights, etc.)

e Inclement weather conditions

e Airspace that includes restrictions (e.g., temporary flight restrictions (TFRs))

This framework enables benefits and tradeoffs to be derived from a broader consideration of
air traffic contexts because architecture options are compared based on the qualitative causal
scenarios generated by STPA. Thus, different air traffic contexts (e.g., traffic density, weather
conditions etc.) and different combinations of those contexts can be easily included in the UCAs
and causal scenarios when performing STPA. This is more challenging to do in a simulation study
because each new context or combination of contexts requires an additional execution of the
simulation or additional development effort to incorporate the new context or combination of
contexts into the simulation.

4.5 Designing the Preferred Collision Avoidance Architecture

Finally, to conclude this design iteration, a preferred collision avoidance architecture for
managing UAM air traffic needs to be designed based on the insights gained from comparing
architecture options A; and A,.

84

As discussed in Section 4.3.3, architecture option A; exhibits benefits that are desirable if the
airspace is anticipated to routinely have high air traffic density or challenging air traffic
conditions. This is because in architecture option Aj, assigning Resp-1 to ATM centralizes the
responsibility for resolving conflicts with ATM. This allows ATM to make better coordinated, more
timely, and more responsive conflict resolution decisions because it has the necessary situational
awareness of the overall state of the airspace to resolve multiple conflicts simultaneously. ATM
can also more easily anticipate future changes to the state of the airspace and act accordingly to
pre-empt future conflicts or problems before they occur.

However, the tradeoffs associated with architecture option Ai are that ATM is required to
make complex and frequent conflict resolution decisions because it is solely responsible for
preventing all potential conflicts. In addition, the control path for issuing trajectory modifications
is vulnerable to disruptions because ATM must make all conflict resolution decisions and be able
to transmit appropriate trajectory modifications to the aircraft. Thus, any disruption in ATM’s
ability to make timely decisions or transmit trajectory modifications to the aircraft would
significantly compromise its ability to adequately resolve conflicts.

On the other hand, Section 4.3.3 also identified that architecture option A; exhibits benefits
that are desirable if the airspace is anticipated to routinely have only low air traffic density. This
is because when the air traffic density is low, less coordination is required to resolve different
sets of conflicts. Thus, because architecture option A, distributes the responsibility for conflict
resolution to the aircraft, they can make less complex and less frequent conflict resolution
decisions by resolving different sets of conflicts in parallel instead of resolving them all
simultaneously. In addition, the control path is less vulnerable because the inability of some
aircraft to perform adequate collision avoidance does not compromise the ability of other aircraft
to do so. Furthermore, the aircraft can more easily receive timely feedback about aircraft
capabilities, flight conditions, and operational constraints. They can therefore make quicker
decisions to modify their trajectories in response to changing environmental conditions.

However, the main tradeoff associated with A, is the need for the aircraft to coordinate
among themselves to select appropriate trajectory modification decisions. Because the aircraft
must coordinate among themselves to select appropriate trajectory modifications, how quickly
the aircraft can make trajectory modification decisions depends significantly on (1) the number
of aircraft involved in the conflict, (2) the density of the surrounding airspace, and (3) the number
of operational constraints of the aircraft involved in the conflict that must be considered. If any
of these factors are high (e.g., conflict involving many aircraft, dense airspace, numerous tight
operational constraints etc.), the aircraft may be significantly slower than ATM at making
trajectory modification decisions because they need to coordinate those decisions.

Unfortunately, the traffic conditions in UAM are unlikely to be predictably high density or low
density at any given time. This is because the on-demand nature of UAM flights means that flights
may occur with limited advance notice. As a result, there may be times when air traffic is
unexpectedly light, and the behavior of the decentralized architecture would be preferable.
However, there may be other times when a sudden unexpected surge in air traffic causes a period
of very high traffic density, and the behavior of the centralized architecture would be preferable.

For this reason, this research proposes a hybrid of the two architecture options. Instead of
just selecting either A; or A,, this research proposes a more flexible shared collision avoidance

85

architecture (designated as architecture option Asz) where Resp-1 is assigned to either ATM or
the aircraft. By sharing the collision avoidance responsibility between ATM and the aircraft,
either ATM or the aircraft could decide to resolve a conflict depending on who is better equipped
to make the necessary decisions in each situation. The full control structure for architecture
option Az is shown in Figure 33.

Federal Regulators (e.g. FAA)

A A A
Airspace access priorities

Air Traffic Management (ATM)

» Resp-2: Ensure sufficient capacity
« Resp-3: Generate alternate trajectories
« Resp-4: Manage access to the airspace

Airspace » Resp-5: Mainatain consolidated airspace state
access
priorities A A
Flight plans

Trajectory modifications | | pianned trajectory
Approve access requests | | ajreraft tracks
Flight plan modifications | | operational constraints
Alternate trajectories | | aircraft capabilities
Initiate traffic mgmt program | | Acknowledge modifications

_Incoming aircraft | | possiple traj. mods
Consolidated airspace state | | confirm conflict free traj.

Unresolved collision risk Trajectory modifications

v Y

UAM Aircraft & Operators l

UAM Aircraft UAM Aircraft

v

v

Existing Aviation
Trajectory Modifications Aircraft & Operators
Acknowledge Modifications

Trajectory modification options
Preferred trajectory modification

"l
<

-~

Figure 33: Control structure for architecture option As

Because the traffic circumstances in UAM are likely to be dynamic and unpredictable, the
benefit of architecture option Az (where ATM and the aircraft share responsibility for preventing
conflicts) is that it could dynamically allocate that responsibility depending on the prevailing air
traffic circumstances. For example, when traffic density is high or an emergency arises, ATM
could resolve conflicts instead of the aircraft. This would allow As; to be capable of making
responsive and better coordinated trajectory modification decisions in high density traffic
situations like in A1. However, if only a few aircraft are involved in an isolated conflict, the aircraft
could resolve that conflict instead of ATM. This would allow Az to offer the same benefits as A..
These benefits include a reduction in decision making complexity and frequency when selecting
trajectory modifications, the ability to receive timely feedback about environmental conditions
and a less vulnerable control path for providing trajectory modifications.

It is worth noting that these benefits of A; are contingent on two key assumptions. First, it is
assumed that As can be feasibly implemented during detailed system design and that none of the
required system elements are impossible to design or implement. Second, it is also assumed that

86

there are no significant tradeoffs of A; (e.g., mode confusion) that might negate the expected
benefits. These two assumptions are important because if either of these assumptions are not
true, the expected benefits of this shared collision avoidance architecture may not be realized,
or it will require far more development effort to realize them than anticipated.

These two design assumptions therefore represent two open design issues that need to be
explored to confirm that architecture option As (the shared collision avoidance architecture) is
the preferred ATM architecture for UAM. For this reason, a second design iteration was
conducted in this research to refine the shared collision avoidance architecture to determine the
feasibility of implementing it and better understand any potential tradeoffs. This work will be
presented next in Chapter 5.

4.6 Summary

This chapter described the results of the first of two design iterations performed in this
research. In this first design iteration, the goal was to apply the safety-driven architecture
development framework described in Chapter 3 to develop an initial collision avoidance
architecture that will be able to safely manage UAM air traffic. To do this, the NAS was first
analyzed at a high level of abstraction to identify a set of system-level collision avoidance
requirements. Those requirements were then used to create a conceptual architecture that
defined the control behavior that would be needed to ensure safe operation with respect to
collision avoidance.

Two architecture options were then created and compared to determine the preferred way
to implement the conceptual architecture in the ATM system architecture. Architecture option
A1 was a centralized architecture option where ATM was responsible for collision avoidance, and
architecture option A, was a decentralized architecture option where the aircraft were
responsible for collision avoidance.

The comparison of these two architecture options showed that the preferred architecture
option depended on the air traffic circumstances that would be encountered. If traffic density
was expected to be high, architecture option A; would ensure better coordinated and timely
trajectory modification decisions. By contrast, if traffic density was expected to be low,
architecture option A; would enable reduced decision-making complexity and a less vulnerable
control path for providing trajectory modifications.

These benefits and tradeoffs were then compared to the benefits and tradeoffs identified by
comparisons of centralized and decentralized ATM architectures in the existing literature. This
comparison showed that this framework identifies more benefits and tradeoffs that covered
more areas of control than the existing literature. In addition, a qualitative comparison of the
benefits and tradeoffs identified by this research to those identified in the existing literature
showed that this framework offers three additional benefits. First, this framework generates
benefits and tradeoffs that are more focused on control-related differences which enhances
safety understanding. Second, this framework makes it easier to determine what aspects of the
architecture give rise to the observed benefits and tradeoffs. Third, this framework allows
benefits and tradeoffs to be derived from a broader consideration of different air traffic contexts.

87

These results therefore provide support for hypothesis 1 of this dissertation and demonstrate
that the framework developed in this research can identify relevant criteria for comparing
architecture options and evaluating the architectures’ ability to achieve emergent properties.

Hypothesis 1: A systems-theoretic approach can identify relevant criteria for comparing
architecture options and evaluating their ability to achieve emergent properties

Finally, to conclude this first design iteration, the preferred collision avoidance architecture
for UAM was designed. Because UAM flights are expected to occur on-demand instead of being
scheduled in advance, it is unlikely that traffic density will always be predictably high or low. Thus,
based on the insights gained from comparing architecture options A1 and A, architecture option
Az was proposed that assigns the responsibility for collision avoidance to both ATM and the
aircraft. This architecture option would enable the ATM system to adapt its collision avoidance
behavior and vary the extent to which identified conflicts are resolved by ATM or the aircraft to
suit the prevailing air traffic circumstances.

However, the selection of architecture option Az assumes that it can be feasibly implemented
and that there are no significant tradeoffs that would compromise the safety of Asand negate its
expected benefits. It is therefore important to validate these assumptions to confirm if As is
indeed the preferred ATM architecture for UAM. Thus, a second design iteration is needed to
refine architecture option As to better understand the feasibility of its implementation and its
tradeoffs. The next chapter presents the results from this second design iteration.

88

Chapter 5 Design Iteration 2: Refining the Collision Avoidance
Architecture

In design iteration 1, the goal was to select the collision avoidance architecture for managing
UAM air traffic in the NAS. By applying the architecture development framework developed in
Chapter 3, a shared collision avoidance architecture was selected where the responsibility for
resolving conflicts (Resp-1) is shared between ATM and the aircraft. However, the selection of
this architecture as the preferred option was contingent on two key assumptions: that it could
be feasibly implemented and that the tradeoffs would not outweigh the expected benefits.

So, to investigate the validity of these assumptions, a second design iteration was conducted
to refine the shared collision avoidance architecture that was created in design iteration 1. The
goal of design iteration 2 can therefore be stated as follows:

Iteration 2 Goal: Define how ATM and the aircraft will share responsibility for collision avoidance
and work together to adequately resolve conflicts

This chapter presents the results of this second design iteration. First, a past accident is
introduced to illustrate how unsafe behavior can occur in an existing ATM architecture with
shared responsibility for collision avoidance. Then, the shared collision avoidance architecture
developed in design iteration 1 is analyzed using STPA to identify how unsafe behavior could
occur. The results from this STPA analysis are then used to develop a refined conceptual
architecture for shared collision avoidance. Next, potential architecture options for
implementing this refined conceptual architecture are created and compared to identify the
potential benefits and tradeoffs. Finally, the results from both design iterations are reviewed to
evaluate the ability of the framework to help systems engineers incrementally refine a system
architecture and make more informed design decisions.

5.1 lllustration of Unsafe Behavior: The Uberlingen Accident

The shared collision avoidance architecture developed in design iteration 1 represents a
more collaborative approach than exists today for sharing the responsibility for collision
avoidance between ATM and the aircraft. However, the concept of sharing collision avoidance
responsibility between a ground-based controller and an airborne controller is not entirely new.
The use of the Traffic Collision Avoidance System (TCAS) onboard commercial aircraft to augment
the collision avoidance capabilities of ground-based Air Traffic Control (ATC) is a simpler version
of a shared collision avoidance architecture that is already operating in the NAS. Although this
system has helped to prevent numerous mid-air collisions, some have still occurred. It is
therefore informative to study what could go wrong in this simpler version of shared collision
avoidance involving ATC and TCAS to inform the hazard analysis of what could go wrong in the
more collaborative shared collision avoidance architecture that this research is proposing to use
for UAM.

Background: Brief Overview of TCAS

TCAS is a collision avoidance system installed on commercial aircraft that is designed to help
identify and prevent mid-air collisions between aircraft [107]. It does this by monitoring the
airspace around an aircraft and warns pilots if a nearby aircraft presents a collision risk. Although

89

ATC’s primary role is to maintain separation between aircraft, TCAS was designed to serve as a
backup collision avoidance system in cases when a conflict is not identified and resolved by ATC.

When a potential conflict is identified by TCAS, there are two types of alerts it can issue [107].
The first is called a traffic advisory (TA) that simply warns the flight crew that a nearby aircraft
may be a collision risk, but no action is required to be taken. The other type of alert is a resolution
advisory (RA) that includes a recommended maneuver (to either climb or descend) to prevent a
collision. FAA regulations and the operations manuals of many airlines require that if flight crews
receive an RA from TCAS, they are to execute the recommended maneuver even if that RA is
contradictory to an instruction provided by ATC. Figure 34 shows a simplified control structure
that illustrates how TCAS works within the ATC system.

Air Traffic Control
Verbal feedback . .
: :] Directions Verbal feedback
Directions from flight crew from flight crew
TCAS
| Resolution Coordination Resolution I
Flight | Advisory Messages Advisory | Flight
4 TCAS TCAS &
Crew Crew
Control Sensor Transponder Transponder Control Sensor
Inputs Data Data Data Inputs Data
k4 A 4
Aircraft Subsystems ‘ Aircraft Subsystems
Aircraft 1 Aircraft 2

Figure 34: Simplified control structure of today’s ATC including TCAS

Although ATC and TCAS are both responsible for identifying and resolving collisions, their
responsibilities are not completely overlapping because TCAS only attempts to resolve conflicts
that might occur within a limited period of time. By contrast, ATC will attempt to resolve any
conflict that it identifies. Thus, if ATC identifies a conflict well in advance of a collision occurring,
ATC will provide directions (e.g., climbs, descents, turns) to the flight crew and the flight crew will
provide control inputs to the aircraft to carry out ATC’s directions. However, if ATC does not
identify a conflict soon enough, TCAS might identify that conflict and issue an RA to resolve the
conflict. If an RA is issued, the flight crew similarly will need to provide control inputs to the
aircraft to comply with the RA.

Figure 34 illustrates two noteworthy features of how TCAS is integrated into the ATC system.
First, there is no direct feedback or communication of any kind between TCAS and ATC. TCAS
therefore operates entirely independently of ATC and the only way ATC receives feedback about
a TCAS RA is when the flight crew provides that feedback verbally via radio communications.

The other noteworthy feature is that this architecture makes it possible for flight crews to
receive conflicting instructions about how to maneuver the aircraft and they must decide which
instructions to execute. For example, if a conflict is identified at the same time by both ATC and
TCAS, ATC and TCAS could choose different ways to maneuver the aircraft to resolve the conflict.
This would result in the flight crews receiving conflicting instructions. To avoid confusion, flight

90

crews are expected (by procedure) to always comply with the TCAS RA, even if that means
ignoring ATC instructions. This policy ensures a consistent set of instructions are executed.

The Uberlingen Accident

On 1 July 2002, Bashkirian Airlines flight 2937 and DHL flight 611 collided with each other
over Uberlingen, Germany while under the control of Zurich Air Traffic Control [108]. Just prior
to the accident, both aircraft were cleared to cruise at 36000 feet but the Zurich air traffic
controller handling those flights did not realize that he had cleared two aircraft on conflicting
flight paths to cruise at the same altitude.

Less than a minute before the crash, the Zurich air traffic controller recognized that the two
aircraft were in conflict and chose to resolve it by keeping flight 611 at 36000 feet and instructing
flight 2937 to descend. This decision alone was adequate and would have resolved the conflict.
However, very shortly after flight 2937 begins its descent, the TCAS on both aircraft identified
the same conflict. Unfortunately, because TCAS operates independently of ATC, TCAS chose a
different way to resolve the conflict and instructed flight 611 to descend while instructing flight
2937 to climb. As a result, although the flight crew of flight 611 only received instructions from
TCAS to descend, the flight crew of flight 2937 received conflicting instructions: an instruction
from Zurich ATC to descend and an instruction from TCAS to climb [108]. This scenario is
illustrated in the simplified control structure shown in Figure 35.

Zurich Air Traffic Control
No direction Unable to inform ATC of Descend
provided TCAS-directed descent
i Descend Climb i
Flight |, TCAS TCAS imb__, Flight
Crew Crew
Descend Descend
Aircraft Subsystems ‘ Aircraft Subsystems
DHL Flight 611 Bashkirian Flight 2937

Figure 35: Control structure showing conflicting instructions in the Uberlingen accident

Faced with this scenario, the flight crew of flight 611 followed established procedures and
complied with the RA from TCAS instructing them to descend. Unfortunately, because the flight
crew of flight 2937 had been trained differently than the flight 611 flight crew, they did not follow
the same procedure of always complying with the TCAS RA. Instead, they chose to ignore the
TCAS RA and follow the instruction from Zurich ATC to descend. As a result, both aircraft
descended toward each other, resulting in a mid-air collision [108].

As has been published in several reports following the accident [108, 109], there were
numerous factors that contributed to the accident. However, focusing on the role of the ATC
architecture in this accident, two factors are relevant. First, because TCAS and ATC operate
independently of each other, TCAS provides no feedback to ATC if an RA is generated, and they

91

do not coordinate to decide if TCAS or ATC is resolving the conflict. Instead, both TCAS and ATC
independently try to resolve the conflict and it is up to the flight crew to resolve any conflicting
instructions that are provided to them.

Second, this architecture for integrating ATC and TCAS depends on the flight crews
consistently following a fixed procedure and always complying with the TCAS RA. Thus, when the
flight crews do not follow this procedure consistently (in this case due to differences in training),
this Uberlingen accident becomes possible.

Implications for designing the shared collision avoidance architecture

The Uberlingen accident illustrates how even in a relatively simple shared collision avoidance
architecture, independent decision making and conflicting instructions can lead to unsafe conflict
resolution decisions and inadequate collision avoidance. This suggests that for the more
collaborative shared collision avoidance architecture selected in design iteration 1, it will be even
more important to design it to avoid unsafe behavior because it contains more opportunities for
inadequate collision avoidance than today’s ATC system. This is because, compared to TCAS, the
shared collision avoidance architecture requires a more advanced airborne collision avoidance
system that is given larger scope and expanded authority to resolve conflicts. Unlike TCAS, the
shared collision avoidance architecture selected in design iteration 1 allows the aircraft to resolve
any conflict in trajectories instead of just conflicts within a limited radius of the aircraft’s current
position. In addition, aircraft can make any change to their trajectory instead of just climbs or
descents.

For these reasons, the purpose of the STPA analysis that will be presented in the next section
is to analyze the shared collision avoidance architecture to obtain some initial information about
how unsafe behavior like what happened in the Uberlingen accident could lead to inadequate
collision avoidance. Those analysis results can then be used to refine the conceptual architecture
to ensure that this shared collision avoidance architecture is designed to prevent accidents like
the Uberlingen accident from occurring.

5.2 STPA Analysis of Shared Collision Avoidance Architecture

To refine the shared collision avoidance architecture, the STPA analysis that was performed
in design iteration 1 is updated again to consider all the ways in which ATM and the aircraft might
be unable to adequately resolve conflicts. As with previous STPA analyses in this research, the
losses and hazards are the same as those identified in Table 7 and Table 8 respectively. However,
a zoomed-in version of the control structure created in iteration 1 (shown in Figure 33) is used
because the goal of this analysis is specifically to refine how ATM and the aircraft will need to
work together to adequately resolve collisions. Figure 36 highlights the area of the control
structure from iteration 1 that will be zoomed-in on and Figure 37 shows the zoomed-in version
of the control structure that will be used in this design iteration.

92

Federal Regulators (e.g. FAA)

Airspace

A
Airspace access priorities

Resp-1: Prevent collisions

Resp-2: Ensure sufficient capacity
Resp-3: Generate alternate trajectories
Resp-4: Manage access to the airspace

Air Traffic Management (ATM)

access
priorities

Resp-5: Mainatain consolidated airspace siate

A

Trajectory modifications
Approve access requests
Flight plan modifications
Alternate trajectories
Initiate traffic mgmt program
Incoming aircraft
Consolidated airspace state
Unresolved collision risk

Y

Flight plans
Planned trajectory
Aircraft tracks
Operational constraints
Aircraft capabilities
Acknowledge modifications
Possible traj. mods
Confirm conflict free traj.
Trajectory modifications

UAM Aircraft & Operators

UAM Aircraft

.
>

UAM Aircraft

\J

Y

Resp-1: Prevent collisions

Trajectory Modifications

Resp-1: Prevent collisions

Existing Aviation

A

Aircraft & Operators

Acknowledge Maodifications
Trajectory modification options
Preferred trajectory modification

Focus of STPA Analysis in Iteration 2

Figure 36: lllustration of area in higher-level control structure that will be zoomed in on

Regulators (e.g. FAA)

t

Air Traffic Management (ATM)

Trajectory Modifications
Approve access request
Flight plan modifications

Alternate trajectories
Initiate traffic program
Consolidated airspace state
Incoming aircraft

Acknowledge modifications
Flight plans

Planned trajectory
Operational constraints
Aircraft capabilities

Proposed trajectory modificati
Aircraft track

Aircraft Controller

ons

Selected trajectory modifications

Y

Aircraft Controller

Regulators <«
Other Aircraft —>}

Control Inputs

A J

1
1
1
1
1
! Aircraft Subsystems
:
1
1
1

UAM Aircraft 1

Trajectory Modifications
Acknowledge Modifications
Trajectory modification options
Preferred trajectory modification

Control Inputs

A J

Aircraft Subsystems

UAM Aircraft n

Figure 37: Zoomed-in control structure used in iteration 2 analyses

'«— Regulators
:_>Other Aircraft

93

As shown in Figure 37, the zoomed-in control structure now models each aircraft as being
comprised of an aircraft controller and the physical subsystems of the aircraft. This highlights the
fact that to resolve a conflict in this shared collision avoidance architecture, the aircraft controller
may either be given trajectory modifications selected by ATM or it may work with the controllers
of other aircraft to select appropriate trajectory modifications for themselves. Regardless of how
the trajectory modifications are selected, the aircraft controller eventually needs to decide what
control inputs to provide to the aircraft subsystems to execute the trajectory modifications. Thus,
by zooming in on the interactions between ATM and the aircraft, the control structure shown in
Figure 37 better focuses the analysis on how the collective behavior of ATM and the aircraft may
lead to inadequate resolution of conflicts.

Because this architecture requires ATM and the aircraft to work together to resolve conflicts,
ATM and the aircraft are essentially collaborative controllers working as a team. Thus, STPA-
Teaming [32] was used to analyze the Trajectory Modifications control action to determine how
ATM and the aircraft collectively providing (or not providing) trajectory modifications could lead
to unsafe behavior. The remainder of this section presents examples of the analysis results, and
the full STPA-Teaming analysis can be found in Appendix E.

Consistent with the STPA-Teaming process [32], after creating the control structure to model
the system, the next step is to generate unsafe collaborative control actions (UCCAs). As shown
in Figure 37, either ATM or the aircraft can provide the Trajectory Modifications control action.
Table 29 shows the three main combinations of this control action that were considered to
identify type 1-2 abstracted UCCAs. The far-right column of Table 29 also describes the types of
unsafe behaviors that are covered by each combination.

Table 29: Combinations of control actions considered to identify type 1-2 UCCAs

Either ATM or
the aircraft

While the other

Unsafe Behaviors Covered

Does not provide

Does not provide

Trajectory
Modifications

Trajectory
Modifications

Identifies how a collision might remain
unresolved by both ATM and the aircraft

Provides
Trajectory
Modifications

Does not provide

Trajectory
Modifications

Identifies how either ATM or the aircraft might
provide unsafe trajectory modifications

Does not provide

Trajectory
Modifications

Provides
Trajectory
Modifications

Duplicate - Same as #2

Provides
Trajectory
Modifications

Provides
Trajectory
Modifications

Identifies how conflicts or inconsistencies in
trajectory modifications might occur

For each of these combinations of control actions, multiple abstracted Type 1-2 UCCAs were

identified and Table 30 shows examples of these UCCAs. Note that UCCA-17 is essentially the
UCCA involved in the Uberlingen accident discussed in Section 5.1.

94

Table 30: Example Type 1-2 UCCAs for shared collision avoidance architecture

Either ATM or

Modifications

Modifications

ID) While the others | Context
one of the aircraft
UCCA-1 id id when the trajectories of two aircraft are
Dogs not provide Dogs not provide | ;. nflict [H-1]
Trajectory Trajectory hen th - f ireraf
UCCA-3 Modifications Modifications w en. the trajectory ofanaircra t,
conflicts with an obstacle or terrain [H-1]
when the modifications will result in a
UCCA-11 | provides Does not provide | secondary collision with another aircraft
Trajectory Trajectory [H-1]
Modifications Modifications when the modifications will cause a
UCCA-14 . . .
collision with an obstacle or terrain [H-1]
Provides Provides when the trajectory modifications
UCCA-17 | Trajectory Trajectory J ¥

conflict with each other [H-1]

For UCCAs where neither ATM nor the aircraft provide trajectory modifications (e.g., UCCA-1
and UCCA-3), no further refinement of these UCCAs is needed because no additional detail is
required to identify scenarios for those UCCAs. However, the other UCCAs can be refined and
Table 31 shows examples of refined UCCAs for UCA-11 and UCCA-17.

Table 31: Example refined Type 1-2 UCCAs for shared collision avoidance architecture

ID Sub-ID ATM Aircraft 1 Aircraft n Context
Provides Does not hen th
rrovides id when the

UCCA-11.1 | Trajectory rO.VI € modifications
Modifications Trajectory ill Iti
Modifications willresuitina

UCCA-11 secondary

—Does.dnot Provides collision with
UCCA-11.2 %r Trajectory another

) . y Modifications aircraft [H-1]

Modifications

Provides Provides %
UCCA-17.1 | Trajectory Trajectory p_

Modifications | Modifications Trajectory

Modifications whgn the

Does not Provides Provides :r:zjji(z:gions

UCCA-I7 | yeca-17.2 | Rrovide Trajectory Trajectory conflict with
Trajectory Modifications Modifications
Modifications each other

[H-1]
Provides Provides Provides
UCCA-17.3 | Trajectory Trajectory Trajectory
Modifications | Modifications Modifications

95

As shown in the first two rows of Table 31, UCCAs where either ATM or the aircraft (but not
both) provide trajectory modifications can be refined to consider UCCAs where ATM provides the
unsafe control action (and the aircraft do not) and UCCAs where the aircraft provide the unsafe
control action (and ATM does not). In Table 31, UCCA-11.1is an example of the former and UCCA-
11.2 is an example of the latter.

Similarly, UCCA-17 can also be refined to consider three UCCAs:

1. ATM and one of the aircraft provide conflicting trajectory modifications (UCCA-17.1)

2. Two aircraft select conflicting trajectory modifications (UCCA-17.2)

3. ATM and the aircraft all select conflicting trajectory, some or all of which are
conflicting (UCCA-17.3)

For Type 3-4 UCCAs, this analysis assumes that Trajectory Modifications is a discrete control
action that simply indicates to aircraft what their new trajectory should be. Thus, only one type
of Type 3-4 UCCA was considered: one controller provides trajectory modifications before the
other controller provides trajectory modifications. Table 32 shows two examples of Type 3-4
UCCAs and Table 33 shows the three refined UCCAs identified for UCCA-18.

Table 32: Example Type 3-4 UCCAs for shared collision avoidance architecture

Either ATM Then the Context
or the other
aircraft
when ATM and the aircraft are attempting to
UCCA-18 | provides Provides PHNg

resolve the same conflict [H-1]

Trajectory Trajectory

UCCA-19 | Modifications | Modifications When ATM and the aircraft are modifying

trajectories for different reasons [H-1]

Table 33: Examples of refined type 3-4 UCCAs for UCCA-18

Sub-ID Trajectory Modifications Then trajectory Context
provided by Modifications provided by
UCCA-18.1 ATM Aircraft n when ATM and the
UCCA-18.2 Aircraft n ATM aircraft are attempting
to resolve the same
UCCA-18.3 Aircraft 1 Aircraft n conflict [H-1]

Once the UCCAs have been identified, causal scenarios can then be developed. To illustrate
how this was done for the shared collision avoidance architecture, example scenarios for three
UCCAs are presented in this section.

96

Example scenarios for UCCA-1

UCCA-1: Neither ATM nor the aircraft provide trajectory modifications when the trajectories of
two aircraft are in conflict [H-1]

CS-2.1.1-1: The aircraft attempt to resolve the conflict and ATM does not. However, when the
aircraft attempt to verify with ATM that their selected trajectory modifications will have alternate
trajectory options available, ATM does not confirm this and therefore the aircraft are unable to
select trajectory modifications before the collision occurs.

CS-2.1.1-2: ATM allows the aircraft to resolve the conflict. However, if the conflict involves a large
number of aircraft or numerous operational constraints, it may take too long for the aircraft to
coordinate among themselves to resolve the collision. As a result, neither ATM nor the aircraft
issue trajectory modifications to prevent the conflict.

CS-2.1.1-4: ATM and the aircraft both assume the other is better equipped to resolve the conflict
or they each wrongly believe the other will resolve the conflict. As a result, each waits for the
other to resolve the conflict and neither of them selects trajectory modifications to prevent it.

Example scenarios for UCCA-11.1

UCCA-11.1: ATM provides trajectory modifications (and the aircraft do not) when the
modifications will result in a collision [H-1]

CS-2.11.1.1-1: ATM selects trajectory modifications that contain secondary conflicts. It does this
believing that it would be faster to issue these first and then resolve the secondary conflicts later.
However, ATM becomes busy resolving other conflicts and does not return in time to resolve
these secondary conflicts before a collision occurs. Furthermore, the aircraft believe ATM will
resolve them and don't try to resolve them on their own.

CS-2.11.1.2-2: Other aircraft are about to but have not yet modified their trajectories and
therefore ATM has not received any feedback that the trajectories of some aircraft are about to
be modified when it begins to identify its own trajectory modifications. If it does not receive and
process feedback later that the trajectories of some aircraft have been modified, ATM will
identify trajectory modifications based on the outdated aircraft trajectories and select trajectory
modifications that it does not realize are in conflict with the updated trajectories of some aircraft.

CS-2.11.1.3-1: ATM correctly selects trajectory modifications that will not result in a collision.
However, during transmission to the aircraft, some of the trajectory modifications are dropped
(e.g., due to a communications error) and only some of the aircraft receive trajectory
modifications. As a result, aircraft that did receive trajectory modifications may now conflict with
those that did not receive trajectory modifications. However, since the aircraft believe that ATM
is managing the collision, they do not check these modifications and simply execute them.

97

Example scenarios for UCCA-17.1

UCCA-17.1: ATM and the aircraft both provide trajectory modifications when they conflict with
each other [H-1]

CS-2.17.1.1-1: Both ATM and a UAM aircraft identify a potential conflict with another aircraft
that is not equipped to perform self-separation. The UAM aircraft proceeds to resolve the conflict
under the assumption that the other aircraft will not change trajectory and are able to identify a
solution first. However, ATM can control that other aircraft (e.g., by coordinating with
conventional ATC). Thus, although ATM knows the aircraft has already selected trajectory
modifications, ATM provides what it believes to be a better solution but that conflicts with those
of the aircraft.

CS-2.17.1.1-6: Multiple sets of conflicts are occurring and ATM and the aircraft have received
feedback about them and are attempting to resolve them. While the aircraft are each only
attempting to resolve their own local conflict, ATM is resolving all these conflicts together
because it believes it can resolve them more efficiently. As a result, although the aircraft have
selected trajectory modifications already, ATM provides a conflicting set to the aircraft.

CS-2.17.1.2-1: Both ATM and the aircraft identify a potential conflict and attempt to resolve it. If
they both select trajectory modifications at about the same time, neither ATM nor the aircraft
will receive feedback that the other has already selected trajectory modifications before they
provide their own. Thus, they both provide trajectory modifications that conflict with each other.

5.3 Developing the Shared Collision Avoidance Conceptual Architecture

Having analyzed the shared collision avoidance architecture using STPA-Teaming, the
identified scenarios can be used to refine the conceptual architecture created in design iteration
1 to define the control elements that are needed to adequately manage shared collision
avoidance. Because this design iteration is focused on deciding how to implement shared
collision avoidance, Resp-1 (the responsibility for resolving conflicts) will be refined in this design
iteration to determine the more detailed sub-responsibilities that will need to be performed.
Figure 38 shows a refocused version of the conceptual architecture created in design iteration 1
that highlights Resp-1 that will be refined.

98

[| Regulators |

I

/el N
1
! |
: Resp-2: Resp-3: Resp-5 X
| X Ensure sufficient capacity Ensure coordination options are Manage airspace state ! |
' is available available information :
: :
e ate e R PR R R |
| ‘ W Current workl:)adT Al.t'.emate tr_aiecmries
Initiate traffic program

Trajectory modifications

Consolidated airsapce state |

I Resp-1:
Prevent Conflicts

Confirm conflict free traj.

Resp-4 Trajectory modifications
Manage accesstothe |« 11— /
\ airspace Incoming aircraft

—_— —_— J— — — J— R J— -

~— [— — —

Trajectory Modifications

Acknowledge trajectory modifications Request acknowledgement of
Preferred Trajectory Modification trajectory modifications
Reason for trajectory deviation

Trajectory modification options

Request reason for deviation

l .

UAM Aircraft & Operators Existing A\uatlc.m Aircraft &
Operations

Figure 38: Iteration 1 conceptual architecture with Resp-1 highlighted for refinement

This section describes how this refinement of Resp-1 is done. First, additional system
requirements are generated that define the additional safety constraints necessary to ensure
safe shared collision avoidance. The augmented set of system requirements are then used to
define a refined set of sub-responsibilities of Resp-1 and the process model parts, control actions
and feedback that are needed for each sub-responsibility. Finally, the sub-responsibilities are
assembled to create the refined conceptual architecture.

5.3.1 Additional System Requirements for Shared Collision Avoidance

Based on the scenarios identified using STPA-Teaming, additional system requirements can
be generated that describe the additional safety constraints needed to ensure safe shared
collision avoidance. Table 34 shows three examples of how requirements are derived from the
scenarios and Table 35 shows several more examples of system requirements generated to
prevent unsafe behavior arising from shared collision avoidance. The full set of additional system
requirements generated in this design iteration are listed in Appendix F.

Note that CS-2.17.1.2-1 (second row of Table 34) is essentially the scenario that occurs in the
Uberlingen accident. Thus, by identifying that scenario now during development, the necessary
system requirements can be generated and the right control elements can be designed into the
ATM architecture to prevent an accident like the Uberlingen accident from occurring.

99

Table 34: Examples of derived system requirements for shared collision avoidance

Scenario

Derived Requirement

CS-2.1.1-4: ATM and the aircraft both assume the other is
better equipped to resolve the conflict or they each wrongly
believe the other will resolve the conflict. As a result, each
waits for the other to resolve the conflict and neither of them
selects trajectory modifications to prevent the conflict.

Req-121: An explicit decision
must be made about who is
resolving a potential conflict

CS-2.17.1.2-1: Both ATM and the aircraft identify a potential
conflict and attempt to resolve it. If they both select
trajectory modifications at the same time, neither receives
feedback that the other has already selected trajectory
modifications before they select their own. Thus, they provide
trajectory modifications that conflict with each other.

Reqg-123: If multiple
potential resolutions to a
conflict are identified, an
explicit decision must be
made about which trajectory
modifications to execute

CS-2.17.1.1-6: Multiple conflicts occur, and ATM and the
aircraft are attempting to resolve them. While the aircraft are
each only attempting to resolve their own local conflict, ATM
is resolving all these conflicts together because it believes it
can resolve them more efficiently. As a result, although the
aircraft have selected trajectory modifications already, ATM
provides a conflicting set to the aircraft.

Req-124: Under <TBD>
conditions, to better
coordinate the resolution of
conflicts, it must be possible
to temporarily require that
all trajectory modification
decisions be made centrally.

Table 35: Additional examples of system requirements for shared collision avoidance

ID Requirement

Req-103
must be able to take over and resolve it.

If either ATM or the aircraft is unable to resolve a potential conflict, the other

Req-104 | Conflicts must continue to be resolved even if the ability of ATM or one aircraft to
do so is compromised.

Req-108 | Any aircraft within <TBD> distance of an identified conflict must be included in
coordination to ensure secondary collisions are avoided.

Req-136 | Trajectory modification decisions must account for aircraft changing trajectories

Req-144 | Air traffic priorities must be determined and adhered to consistently when making
trajectory modification decisions

Req-145 | The ability of aircraft to execute their planned trajectory to the required

navigational performance must be monitored and modifications reconsidered if
they are unable to execute their planned trajectories sufficiently accurately

5.3.2 Creating the Refined Conceptual Architecture for Shared Collision Avoidance

Once these additional system requirements have been generated, refined responsibilities can
then be identified. To do this, the additional requirements derived from the STPA-Teaming results
are combined with the original requirements used to define Resp-1 to create an expanded set of
requirements.

100

From this expanded set of requirements, new requirements groups are formed. As was done
in iteration 1, each requirement group is defined by a control requirement and the constraint
requirements that apply to it. The difference in this iteration is that the control requirements are
more detailed than those in iteration 1. More detailed control responsibilities and associated
responsibility constraints can then be generated for each group.

Table 36 shows an example of one requirement group and the refined responsibility and
constraints that were derived. Table 37 summarizes the six responsibilities that were identified
in this iteration to refine Resp-1. The full set of control actions and feedback for all six
responsibilities in this design iteration are shown in Appendix F.

Table 36: Example derivation of refined responsibility and associated constraints

Requirements Group

Req-121: An explicit decision must be made about who is resolving a potential conflict

Reqg-103: If either ATM or the aircraft is unable to resolve a potential conflict, the other
must be able to take over and resolve it.

Req-104: Conflicts must continue to be resolved even if the ability of ATM or one
aircraft to do so is compromised.

Reqg-108: Any aircraft within <TBD> distance of an identified conflict must be included
in coordination to ensure secondary collisions are avoided.

Reg-109: A potential conflict that remains unresolved after <TBD> of being identified
must be prioritized and resolved within <TBD> time.

Control Responsibility (Resp) and Associated Constraints (RC)

Resp-1.2: Decide which controller is resolving a conflict [Req-121]
RC-78: Allow ATM and the aircraft to take over from each other to resolve a conflict
[Reqg-103]
RC-79: Continue preventing conflicts even if the ability of ATM or one of the aircraft to
do so is compromised [Req-104]

RC-83: Aircraft within <TBD> of an area where a potential conflict might occur should
be included in coordination [Req-108]

RC-84: Prioritize and resolve any conflict within <TBD> time that remains unresolved
after <TBD> of being identified [Req-109]

101

Table 37: The six refined sub-responsibilities of Resp-1

Control Requirement Control Responsibility

Reqg-4*: ATM system shall identify and resolve any

conflict with an aircraft’s trajectory including conflicts Resp-1.1: Identify and resolve
between two aircraft trajectories or a conflict of an potential conflicts

aircraft trajectory with terrain

Req-121: There must be an explicit decision on who will Resp-1.2: Decide which

be resolving a conflict controller is resolving a conflict

Req-123: If multiple potential resolutions to a conflict are
identified, an explicit decision must be made about which
trajectory modification instructions to execute

Resp-1.3: Arbitrate conflicting
conflict resolution proposals

Req-145: The ability of aircraft to execute their planned
trajectory to the required navigational performance must
be monitored and trajectory modifications reconsidered
if they are unable to execute their planned trajectories
sufficiently accurately

Resp-1.4: Ensure aircraft are
adequately following their
planned trajectory and any
modifications made to it

Req-144: Air traffic priorities must be determined and Resp-1.5: Prioritize air traffic to
adhered to consistently when making trajectory inform trajectory modification
modification decisions decisions

Reqg-124: Under <TBD> conditions, to better coordinate
the resolution of conflicts, it must be possible to
temporarily require that all trajectory modification
decisions be made centrally.

Resp-1.6: Establish when
trajectory modification decisions
need to be made centrally

* Note: In iteration 1, Req-4 was used to derive Resp-1. In iteration 2, it is used again to derive the
more detailed responsibility Resp-1.1

At this point, it is worth noting that this process has identified control responsibilities that
could help to prevent accidents like the Uberlingen accident from occurring if they were
implemented in the ATC system architecture. For example, consider Resp-1.2. As discussed in
Section 5.1, the ATC system that existed at the time of the Uberlingen accident was designed
such that TCAS and ATC operated independently with no direct communication between them.
Thus, a responsibility like Resp-1.2 was not included because federal regulations and FAA
guidance prescribe that ATC and TCAS are both responsible for resolving any conflict that they
identify. Even in today’s ATC system, a responsibility like Resp-1.2 does not exist even though it
could help to prevent unsafe independent conflict resolution decisions being made by ATC and
TCAS by clarifying which of them will make the resolution decision for a given conflict.

For this shared collision avoidance architecture, however, Resp-1.2 is critically needed
because it will enable the active decision making necessary to allow the ATM system to adapt its
collision avoidance behavior to the prevailing air traffic circumstances. Thus, this architecture
development framework can help to design the behavior of this responsibility and decide how to
incorporate it into the ATM architecture.

102

Having defined these six refined responsibilities, the required process model parts, control
actions and feedback as well as the control action targets and feedback sources for each refined
responsibility can then be defined using the same process that was used in iteration 1 (and
described in Section 3.3). Table 38 shows an example of how these control elements were
defined for Resp-1.2 to enable it to adequately manage and coordinate the conflict resolution
efforts of ATM and the aircraft. Each control element is traced to the responsibility or constraint
that it was derived from to record the rationale for including each control element. The control
elements for all six refined responsibilities can be found in Appendix F.

Table 38: Identifying process model parts, control actions and feedback for Resp-1.2

Resp-1.2: Decide which controller is resolving a conflict
RC-78: Allow ATM and the aircraft to take over from each other to resolve a conflict

RC-79: Continue preventing conflicts even if the ability of ATM or one of the aircraft to
do so is compromised

RC-83: Aircraft within <TBD> of an area where a potential conflict might occur should
be included in coordination

RC-84: Prioritize and resolve any conflict within <TBD> time that remains unresolved
after <TBD> of being identified

Summary of
Desired
Behavior

When a potential conflict is identified, consider the conditions under which
the conflict will occur and decide if it would be more easily resolved by
ATM or the aircraft. Once a decision is made, inform both ATM and the
aircraft of who is assigned to resolve the conflict. The conditions might
include:

1. Current workload of ATM and the aircraft
2. Traffic density and number of aircraft involved in the conflict
3. Urgency of the conflict

Process Model

e Feedback from Resp-1.1:
o ldentified conflicts [Resp-1.2]

Parts & o Requested controller to resolve a conflict [RC-78, RC-85]

Required o Unable to resolve conflict [RC-78, RC-79]

Feedback/Inputs | ¢ Input from Resp-4: Anticipated airspace state [Resp-1.2, RC-83]
e Feedback from Resp-1.4: Unresolved collisions [RC-79, RC-84]

Required e Control actions to Resp-1.1:

Control o Assigned controller resolving conflict [Resp-1.2]

Actions/Outputs o Aircraft involved in conflict [RC-83]

Once the required control elements are defined for all the refined responsibilities, they can
be assembled to create the refined shared collision avoidance conceptual architecture shown in

Figure 39.

103

Regulators

— — — — — o — — — o— — — —
/ :","""_"'""""""'“"""""'"______""""""'___"'"""": \
. Resp-2: Resp-5 .
! s are s ! \
/o :
A:- """""""""""""""""" K'_""___"__""""'______""""""'__'I \
l curn vorkload ‘H‘Iter"a:e trajectories
e P ni
Trajectory modifications state I
| R Resp-1: "~
’ Prevent Conflicts Resp-1.6: h |
4 Establish centralized * N
| ,’ Resp-1.5: decision making \
onfirm 1 Prioritize air traffic I \
mplement fully |
| | al-p 4 Traffic centralized | |ldentified :
‘ | Resp-4 o t : Identified | priorities collision avoidanceJ conflicts X |
Y access | | conflicts Resp-1.2: 1
| In g 1 . Decide which controller is resolving a conflict !
T aircraft | Aircraft > i
‘] involved in - 1 |
. conflict Ident!fled I
| | . Cc.mtroller conflicts Controller((o i tont 1
| Ops assigned to assigned unresolved | |
. constraints resolve Request toresolve| | @ o te 1
| 1 for conflict controller conflict I
\ identified Aircraft 1 |
. conflict Aircraft Unable to resolve unable to 1
| ! involved in | | conflict communicate '
1 conflict 1 |
1 Acknowledge 1
| | Traffic Proposed conflict to resolve I
| priorities assignment 1 |
I transfer Assignment I
| I transfer accepted 1
I Controller Y 1
1 assigned Resp-1.4: 1 |
| 1 to resolve Ensure potential conflict is resolved 1
: 1
‘ : conflict Trajectory‘ Unresolved 1 |
| I modifications Collision Risk I
1 1
] Identified | | Reason for 1 I
‘ ‘ | 1 conflicts ineff. traj. mod. 1
I I
1 r = Selected h 1 ,
1 Resp-1.3: traj. mods. Resp-1.1: [
\ \ Arbitrate any Identify and Resolve Potential Conflicts !
\ conflicting conflict 7
\ + |resolution proposals 1 (Performed by both ATM and UAM) ’ /
h) ’
~ -
Al Th e ___ B - ,/
— — — — — — — — I — — — — /
Acknowledge trajectory
modifications Trajectory Modifications
Reason for
Received Selected Detected ground Regquest lc;aje_ctory Requesft
Trajectory trajectory hazards aclfnowledgemc;nl (.)f eviation ,reasc’” F”
Modifications modifications) rajectory modifications L) ineff. traj.
Request trajectory Prevailing flight mod.
change Request reason for conditions
deviation/ineff traj. mod.
Reason for trajectory
| | deviation |

UAM and Existing Aviation Aircraft

Figure 39: Refined shared collision avoidance conceptual architecture

As shown in Figure 39, this refined conceptual architecture still contains all the
responsibilities and interactions that were defined in the conceptual architecture that was
created in the first design iteration. Because of the design decisions made in this design iteration,

104

Resp-1 (the responsibility for resolving conflicts) has now been refined into six more detailed
responsibilities with a more detailed set of control actions and feedback between them.

Per the decision made in design iteration 1, both ATM and UAM are responsible for
identifying and resolving conflicts (Resp-1.1). Therefore, Resp-1.1 is depicted in Figure 39 with
multiple boxes to represent that there are multiple copies of this responsibility in the conceptual
architecture. Above that are the other five sub-responsibilities that control the various aspects
of when and how Resp-1.1 is carried out. These responsibilities include deciding who should
resolve an identified conflict (Resp-1.2), arbitrating conflicting trajectory modifications (Resp-1.3)
and ensuring that potential conflicts are resolved or re-evaluated if they remain unresolved
(Resp-1.4). In addition, above Resp-1.2 are two higher-level traffic management responsibilities.
Resp-1.5 prioritizes the air traffic involved in a conflict to ensure that air traffic is prioritized
appropriately, and those priorities are followed consistently when resolving conflicts, regardless
of whether ATM or the aircraft resolve the conflict. Resp-1.6, then, monitors the state of the
airspace and the collisions that are occurring to decide when it might be beneficial to temporarily
resolve all conflicts centrally to minimize the amount of coordination required before a conflict
is resolved. Resp-1.6 can then implement this centralized decision making “mode” using its
control action to Resp-1.2.

Figure 39 therefore shows that this behavioral design process enables systems engineers to
refine a conceptual architecture and define the control behavior needed to prevent accidents
like the Uberlingen accident from occurring. For example, responsibility Resp-1.2 (discussed
earlier in this section) now has its control actions and feedback defined and the conceptual
architecture shows how its behavior, in conjunction with other responsibilities, ensures that the
efforts of ATM and the aircraft to identify and resolve conflicts are adequately coordinated.

5.4 Comparing Architecture Options for Implementing Shared Collision Avoidance

Having defined this conceptual architecture for shared collision avoidance, it can then be
analyzed using STPA to generate scenarios that can inform what architecture options should be
considered to implement it. This section discusses how the STPA results were used to create
architecture options for comparison and the full STPA analysis of the refined conceptual
architecture can be found in Appendix G.

Of the six refined responsibilities, three of them have relatively straightforward assignments.
Per the decision made in iteration 1, Resp-1.1 should be assigned to both ATM and the aircraft
since this shared collision avoidance architecture intends for both ATM and the aircraft to be able
to resolve conflicts. For Resp-1.5 and Resp-1.6, because they essentially involve making higher-
level traffic management decisions such as prioritizing air traffic and deciding when conflicts
should all be resolved centrally, it is likely that assigning them to ATM will be the best option (of
course, other assignment options could be explored if desired).

However, it is less clear if Resp-1.2, Resp-1.3, and Resp-1.4 should be assigned to ATM or the
aircraft. Given the relevance of Resp-1.2 to the Uberlingen accident, this research therefore
focuses on using the results from the STPA analysis of the refined conceptual architecture to
explore different architecture options for assigning Resp-1.2.

105

5.4.1

Based on the STPA analysis of the refined conceptual architecture, several scenarios
suggested that there could be potential benefits to assigning Resp-1.2 to either ATM or the
aircraft. Table 39 shows examples of these scenarios, the assignment constraints derived from

Identifying Assignment Constraints and Creating Architecture Options

them, and the reason for that preferred assignment.

Table 39: Examples of assighment constraints derived from STPA scenarios

] Assignment | Reason for Assignment
Scenario . .
Constraint Constraint
CS-3.1.1-5: Neither ATM nor the aircraft are assigned . .
. . . . This assignment
to resolve a conflict. This could occur if the aircraft
. . . . ensures that the
identify an urgent conflict but need to wait for a .
. . aircraft can respond to
decision on who should resolve the conflict. By the . .
. urgent conflicts quickly
time they receive that decision, there is not enough . .
. . e when they identify
time to select trajectory modifications before the them
conflict occurs. Rgsp-l.z -
Aircraft The airerafth
.. . . e aircraft have more
CS-3.11.1.1-2: ATM is inappropriately assigned to .
. timely access to
resolve a conflict based on outdated feedback about .
. . , . feedback about flight
flight conditions or aircraft capabilities. It therefore s .
. e) conditions or aircraft
selects trajectory modifications that the aircraft - .
. capabilities to inform
cannot adequately execute and a collision occurs. . .
decision making
CS-3.1.2-1: ATM is inappropriately assigned to
resolve a conflict even though it is already under a It is easier for ATM to
high workload. Thus, the additional conflict know its own workload
assignment exceeds ATM'’s capabilities and it is than for the aircraft to
unable to make an adequate trajectory modification estimate that
decision in time. Resp-1.2 =
CS-3.1.2-4: The aircraft are assigned to resolve a ATM ATM has broader
conflict based on the urgency of the conflict but situational awareness
using outdated information about its context. of the state of the
However, at least one of them is in a critical phase of airspace and the
flight (high workload) and they do not select trajectory constraints
trajectory modifications before a collision occurs. for each aircraft

The preferred assignments in Table 39 suggest that there are potential benefits to assigning
Resp-1.2 to either ATM or the aircraft as described by the reason for each assignment constraint.
These two assignments are therefore worth exploring to determine the benefits and tradeoffs
between them. For this reason, this design iteration explores these two potential architecture
options for implementing Resp-1.2 in the ATM architecture.

Table 40 provides an overview of how each of the six refined responsibilities are assigned in
these two architecture options. As in design iteration 1, only one responsibility’s assignment is
changed (Resp-1.2). The assignments for the other responsibilities are kept the same for both

106

architecture options. So, Resp-1.1 is assigned to both ATM and the aircraft (consistent with the
decision in design iteration 1) and Resp-1.3, Resp-1.4, Resp-1.5, and Resp-1.6 are all assigned to
ATM only. Simplified control structures for each of these two architecture options are shown in

Figure 40 and Figure 41.

Table 40: Two architecture options for assigning Resp-1.2

Option A4 Option As
- Centralized Airborne
Resp. ID | Responsibility)]
Allocation of Allocation of
Conflicts Conflicts
Resp-1.1 | Identify and resolve potential conflicts ATM & Aircraft | ATM & Aircraft
Resp-1.2 | Decide which controller is resolving a conflict ATM Aircraft
Arbitrate any conflicting conflict resolution
Resp-1.3 y g ATM ATM
proposals
Resp-1.4 | Ensure identified conflicts are resolved ATM ATM
Resp-1.5 | Prioritize air traffic ATM ATM
Resp-1.6 | Establish centralized conflict resolution ATM ATM
Air Traffic Management (ATM)
4 A A -T
Identified collisions & ops
Controller assigned constraints
to resolve conflict
Request controller to
Trajectory Acknowledge Aircraft involved resolve conflict
modifications | | Medifications in conflict
Unable to resolve conflict
Selected | | Received Proposed
trajectory Trajectory assignment transfer Acknowledge conflict to
modificatiions | | Modifications resolve
Selected trajectory
modifications Assignment transfer
accepted
UAM Aircraft 1 Controller v v UAM Aircraft n Controller
Y Onboard Onboard v

Collision Avoidance | Collision Avoidance

| paone i Tra). Mods Resp-1.1 < _ | [Resp-11 —>| Flight |

| Proposed trajectory modifications | ! : Controller
Request traj. change Trajectory constraints | i i
Aircraft capabilities Confirmed traj‘ mods. R e o et
Acknowledge traj. — x| T r

mods.
Control Control
Inputs Inputs |

UAM Aircraft 1Subsystems UAM Aircraft n Subsystems

Architecture Option Ay
Figure 40: Architecture option A, with Resp-1.2 control actions and feedback highlighted

107

Air Traffic Management (ATM)

Resp-1.1
A A A r
Identified Collisions
Acknowledge Request controller Request to resolve
. to resolve conflict i
drl;i_i]e::_tory modifications conflict
modifications
Received Acknowledge Aircraft involved in
Selected trajestory | [y ieciory conflict to resolve | | conflict
modificatiions it
Modifications Unable to resolve Controller assigned to
conflict resolve conflict
Selected trajectory
modifications
UAM Aircraft 1 Controller v ¥ UAM Aircraft n Controller
: \ 4 Onboard Onboard . L4 .
Collision Avoidance Collision Avoidance : :
| Fiight Traj. Mods » —> | Flight |
Controller Resp-1.1 < Resp-11 _J Cont?oller
L] Request traj. change Resp-1.2 i Resp-1.2 ' '
4 Aircraft capabilities :
Acknowledge traj. TR Req. Ctrir to Resolve Conflict | A T
mods. T Proposed trajectory modifications
Trajectory constraints
Control Confirmed traj. mods. Control
Inputs Inputs
Y
‘ UAM Aircraft 1 Subsystems ‘ | UAM Aircraft n Subsystems ‘

Architecture Option A5
Figure 41: Architecture option As with Resp-1.2 control actions and feedback highlighted

As shown in Figure 40, architecture option As assigns Resp-1.2 to ATM. Thus, in this
architecture option, the aircraft can provide feedback to ATM of any identified conflicts. ATM can
then decide to resolve the conflict itself or assign it to the aircraft to resolve. However, the aircraft
do not resolve a conflict until ATM assigns the conflict to them.

By contrast, architecture option As (Figure 41) assigns Resp-1.2 to the aircraft, thus essentially
inverting the relationship between ATM and the aircraft when performing Resp-1.2. In this
architecture option, ATM can indicate to the aircraft any identified conflicts. The aircraft can then
decide to resolve the conflict themselves or request ATM’s assistance to resolve it. However,
ATM does not resolve a conflict until an aircraft makes the request for it to do so.

5.4.2 Evaluating and Comparing Architecture Options

As was done in iteration 1, STPA can then be used to analyze and compare these two
architecture options. Table 43 shows two example scenarios that illustrate two tradeoffs that
were identified. The remainder of this section discusses several other benefits and tradeoffs that
were identified from this comparison. The full comparison table showing all the STPA scenarios
that were used to compare these two architecture options can be found in Appendix H.

108

Table 41: Architecture comparison table for four example scenarios

Scenario Evaluation Criteria
Scenario Occurs?
As As
ATM identifies an urgent conflict that needs
to be resolved. However, <controller Responsiveness of
performing Resp-1.2> takes too long to trajectory modification
decide who should resolve a conflict. By the Yes | decisions to prevent loss
time ATM receives that decision, there is not of separation when ATM
enough time to select trajectory resolves an urgent conflict
modifications before the conflict occurs
The aircraft identify an urgent conflict that .
Responsiveness of
needs to be resolved. However, <controller . N
. trajectory modification
performing Resp-1.2> takes too long to .
. . decisions to prevent loss
decide who should resolve a conflict. By the | Yes)
. . , . of separation when the
time the aircraft receive that decision, there .
) . . aircraft resolves an urgent
is not enough time to select trajectory conflict
modifications before the conflict occurs B

The two scenarios in Table 41 show that the assignment of Resp-1.2 changes the ability of
ATM or the aircraft to make timely trajectory modifications decisions to resolve a conflict. This
observation can be made by comparing how architecture options As and As behave in each of
these two scenarios. Figure 42 illustrates their behavior in scenario 1 and Figure 43 illustrates
their behavior in scenario 2.

Air Traffic Management (ATM) | Resp-1.1
(Identifies urgent conflict)
p-1.2

ATM resolves
conflict

Trajectory
medifications

ATM resolves
conflict

Trajectory
modifications

Aircraft 1 Controller |

| Aircraft 2 Controller

Control Control
Inputs Inputs
Aircraft 1 Aircraft 2
Subsystems Subsystems

A4: Centralized Allocation of Conflicts

No unsafe behavior

Figure 42: Behavior of A4 (left) and As (right) in scenario 1 in Table 41

Air Traffic Management (ATM) | Resp-1.1

(Identifies urgent conflict)

Urgent conflict
identified

Request ATM
resolve conflict

Trajectory mods
(Delayed)

ATM
resolves
conflict

Urgent conflict
identified

Request ATM
resolve conflict

Trajectory mods
(Delayed)

Aircraft 1 Controller

Aircraft 2 Controller
Resp-1.2

Control Inputs

Control Inputs

(Delayed) (Delayed)
Aircraft 1 Aircraft 2
Subsystems Subsystems

Ab5: Airborne Allocation of Conflicts
Unsafe behavior identified

109

Air Traffic Management (ATM) | Resp-1.2

Air Traffic Management (ATM)

|
|
Urgent conflict
vrgent 1 AJC A/C ‘
identified resolvi ng
A/C resolves A/C I resolving conflict
conflict Request A/C resolves | conflict
resolve conflict conflict 1 - -
| Aircraft 1 Controller . . Aircraft 2 Controller
Coordination | {Identifies Coordination (Identifies
Aircraft 1 Controller | (Delayed) | Aircraft2 Controller I urgent conflict) urgent conflict)
(Identifies ——— (Identifies Resp-1.2
1. Resp-1.2
urgent conflict) urgent conflict) :
Resp-1.1 Resp-1.1 I Resp-1.1 Resp-1.1
Control Inputs Control Inputs : Control Control
(Delayed) (Delayed) : Inputs Inputs
Aircraft 1 Aircraft 2 1 Aircraft 1 Aircraft 2
Subsystems Subsystems 1 Subsystems Subsystems
Ad4: Centralized Allocation of Conflicts A5: Airborne Allocation of Conflicts
Unsafe behavior identified No unsafe behavior

Figure 43: Behavior of A4 (left) and A5 (right) in scenario 2 in Table 41

In both scenarios, either ATM or the aircraft identifies and then resolves an urgent conflict.
The difference between the two scenarios is which of them identifies the conflict and how quickly
they can resolve it. In scenario 1 (Figure 42), ATM identifies the conflict and wants to resolve it.
For this scenario, no unsafe behavior is observed for option As because Resp-1.2 is assigned to
ATM. Thus, ATM can immediately begin resolving the conflict as soon as they identify it. By
contrast, in option As, Resp-1.2 is assigned to the aircraft and therefore ATM cannot resolve the
conflict as soon as it identifies it. This is because, as designed in the conceptual architecture, a
decision must be made about who should resolve the conflict before any controller can start
resolving a conflict. Thus, ATM must first indicate the conflict to the aircraft and then wait for the
aircraft to allocate the conflict to ATM. Only once the aircraft provide feedback requesting ATM
to resolve the conflict can ATM start resolving it. This results in a delay in ATM selecting trajectory
modifications and therefore a delay before the aircraft can execute those trajectory
modifications. Depending on the urgency of the conflict, that delay could be large enough that
the conflict is not resolved before a collision occurs.

Comparing the behavior of architecture options As and As in this first scenario shows that the
main behavioral difference between them is the responsiveness (i.e., timeliness) with which ATM
can resolve a conflict. Specifically, architecture option As enables more responsive trajectory
modification decisions by ATM than As. This therefore leads to the formulation of the evaluation
criterion for scenario 1 as shown in Table 41.

The opposite behavior is seen when comparing the behavior of both architecture options in
scenario 2 (Figure 43). In this scenario, the aircraft identify and want to resolve an urgent conflict.
However, in option A4, because Resp-1.2 is assigned to ATM, the aircraft must first provide
feedback to ATM about the conflict and then wait for ATM to assign the conflict to them to
resolve. This results in a delay before the aircraft can coordinate to select trajectory modifications
and therefore a delay before they can maneuver to resolve the conflict. As in scenario 1,
depending on the urgency of the conflict, that delay could be large enough that the aircraft
cannot resolve the conflict in time before a collision occurs. By contrast, in option As, because

110

Resp-1.2 is assigned to the aircraft, the aircraft can resolve a conflict as soon as they identify it.
Thus, no unsafe behavior occurs for option As.

Comparing the behavior of architecture options As and As in this second scenario, the main
behavioral difference between them is the responsiveness with which the aircraft (instead of
ATM) can resolve a conflict. Specifically, architecture option As enables more responsive
trajectory modification decisions by the aircraft than As. This therefore leads to the formulation
of the evaluation criterion for scenario 2 as shown in Table 41.

These differences in behavior therefore show that the benefit of option Asis that ATM is more
responsive (i.e., timely) in resolving an urgent conflict whereas the benefit of As is that the aircraft
are more responsive in resolving an urgent conflict. These findings also highlight an important
relationship between Resp-1.1 and Resp-1.2: more responsive resolution of a conflict is achieved
when the same controller can identify a conflict (Resp-1.1) and decide who resolves it (Resp-1.2).

By following this process for the remaining scenarios in the comparison, additional benefits
and tradeoffs can be identified. As an example, Table 42 illustrates these and several other
benefits and tradeoffs of architecture options As and As that were identified in this design
iteration. The full set of benefits and tradeoffs can be found in Appendix H.

Table 42: Examples of benefits and tradeoffs of A; and As

ID Evaluation Criteria Benefit (+) or Tradeoff (-)
Aq As

Responsiveness of trajectory modification decisions

EC-2.4
when ATM resolves an urgent conflict

Ease of coordinating centralization and conflict
EC-2.7 | assignment decisions when switching to centralized
decision making

Ability to maintain alignment of Controller Assigned

ONONO,

EC-2.14 to Conflict when deciding who is resolving a conflict
Responsiveness of trajectory modification decisions
EC-2.1 . .
when the aircraft resolve an urgent conflict
Ability to maintain alignment of Controller Assigned
EC-2.12
to Conflict when receiving conflict assighment
EC-2.18 Ability to process identified conflicts inputs when the @
’ workload of the controller processing that input is high

Table 42 shows that there are three main benefits of architecture option As. First, ATM can
make more responsive trajectory modifications when it must resolve an urgent conflict (EC-2.4).
As discussed earlier in this section, this is because, when Resp-1.2 is assigned to ATM (as it is in
As), ATM can immediately begin resolving a conflict if it decides to do so. By contrast, when Resp-
1.2 is assigned to the aircraft, ATM may be delayed in resolving the conflict because it needs to
wait for the aircraft to request its assistance before it can resolve the conflict.

The second benefit of A4 is that it is easier to coordinate decisions about when to implement
centralized decision making (Resp-1.5) and which controller to assign to conflicts (Resp-1.2) (EC-

111

2.7). This coordination is necessary because, as shown in the refined conceptual architecture
(Figure 39), conflict assignment decisions made in Resp-1.2 depend on the decision made in Resp-
1.5 to implement centralized conflict resolution. When centralized decision-making is
implemented, then all conflicts should be assigned to ATM. However, when centralized decision-
making is not implemented, the prevailing air traffic circumstances should inform a decision
about whether ATM or the aircraft should resolve an identified conflict. Thus, coordinating
decisions between Resp-1.2 and Resp-1.5 is easier when they are both assigned to ATM (as they
are in As) because the coordination can occur within ATM. By contrast, when Resp-1.2 is assigned
to the aircraft and Resp-1.5 is assigned to ATM (as they are in As), this coordination is more
difficult because it requires adequate and timely communication between ATM and the aircraft
for adequate coordination to occur.

Finally, the third benefit of option A4 is that it is easier to maintain process model alignment
of which controller is assigned to a conflict when deciding who is resolving a conflict (EC-2.14).
This is because when Resp-1.2 is assigned to ATM (as it is in As), ATM is the sole decision maker
for Resp-1.2. By contrast, when Resp-1.2 is assigned to the aircraft, each aircraft maintains its
own belief about who they are collectively deciding should resolve a conflict. Although the
aircraft are coordinating to make this decision, there are more opportunities in option As for the
beliefs of each aircraft about who they are assigning to resolve a conflict to become misaligned.

On the other hand, Table 42 also shows that there are three benefits for architecture option
As. The first is that the aircraft can make more responsive trajectory modification when they must
resolve an urgent conflict (EC-2.1). As discussed earlier in this section, this is because, when Resp-
1.2 is assigned to the aircraft (as it is in As), the aircraft can immediately begin resolving a conflict
if they decide to do so. By contrast, when Resp-1.2 is assigned to ATM, the aircraft may be
delayed in resolving the conflict because they must wait for ATM to assign the conflict to them
before they can resolve it.

The second benefit of As is that it is easier to maintain process model alignment of which
controller is assigned to a conflict when receiving conflict assignments (EC-2.12). This is because
when Resp-1.2 is assigned to the aircraft (as it is in As), ATM is the only controller that receives
conflict assignments from the aircraft. By contrast, when Resp-1.2 is assigned to ATM, the aircraft
are the ones receiving assignments from ATM. Because the aircraft each maintain their own
process model about what conflicts are assigned to them, there are more opportunities for their
process models to become misaligned with respect to which conflicts they need to resolve.

Finally, the last benefit of As is that the aircraft are better able to process inputs from ATM
about any identified conflicts when their workload is high (EC-2.18). This benefit is observed
because when Resp-1.2 is assigned to the aircraft (as it is in As), even if one aircraft is too busy to
attend to an input from ATM about an identified conflict, other aircraft can attend to that input.
By contrast, when Resp-1.2 is assigned to ATM, ATM is the sole decision maker and must attend
to all feedback from any aircraft about an identified conflict.

5.5 Evaluating Support Provided by Framework for Incremental Refinement

Having now completed two iterations of refinement of the ATM architecture for UAM, the
goal of this section is to evaluate the ability of this framework to support systems engineers in

112

iteratively refining a system architecture. This comparison therefore evaluates the ability of this
framework to address the two other limitations of current approaches for architecture
development that were discussed in Section 2.2. First, this framework needs to provide more
support to systems engineers than current methods to help them reason about the functions and
interactions that need to be included in the system design. Second, this framework also needs to
provide better design guidance to support systems engineers in making more informed design
decisions.

This framework provides two main types of design support to systems engineers. First, it uses
iterative STPA analyses to support incremental learning about how each design decision changes
the behavior of the system architecture. Second, the framework provides structured processes
for using the insights gained from the STPA analyses to refine the system architecture, enabling
more informed downstream design decisions. Figure 44 illustrates how the framework enables
these two types of support.

Iterative STPA Analyses

Provides safety-relevant information about behavior of
conceptual architecture and architecture options

Scenarios
used to derive

! ! !

System Assignment Scenario-Based
Requirements Constraints Comparison
Control Benefits &
Elements Tradeoffs
F l ™ ' l
Architecture ([Preferred
Conceptual h
Architecture Options to Responsibility
I) Evaluate | Assignments |
Development of Required Creation of Evaluation and Comparison
Control Behavior Architecture Options of Architecture Options

Figure 44: Diagram showing how STPA enables informed architectural design decisions

As shown at the top of Figure 44, STPA provides a structured process for identifying causal
scenarios based on the defined losses and hazards for a system. Thus, by using STPA iteratively
in this framework to analyze the conceptual architecture as well as each of the architecture
options, an analyst or systems engineer can obtain safety-relevant information about the
behavior of the conceptual architecture or the architecture options as they design it.

113

The lower half of Figure 44 then illustrates how the framework helps systems engineers to
make more informed design decisions based on what they learn from an STPA analysis. In this
architecture development framework, there are three main types of design decisions that are
made to create a system architecture, and this framework provides support in making each type
of design decision.

The first type of design decisions are the ones that define the required control elements and
the relationships between them that are needed to create the conceptual architecture. As shown
on the left column of Figure 44, the framework helps systems engineers to make these design
decisions by deriving system requirements from the causal scenarios identified by STPA and then
deriving the control elements and relationships between them from those system requirements.
Only once those control elements and relationships are defined is a conceptual architecture
created. This process therefore ensures that every system requirement is informed by a causal
scenario that needs to be prevented or mitigated and every element in the conceptual
architecture is created to satisfy one or more system requirements. It was this process that
informed the creation of a high-level collision avoidance conceptual architecture in Section 4.2
(design iteration 1) and the creation of a refined shared collision avoidance conceptual
architecture in Section 5.3 (design iteration 2).

The second type of design decisions are the ones that define what responsibility assignments
and therefore which architecture options are worth exploring and evaluating. As shown in the
center column of Figure 44, the framework supports the creation of architecture options by
deriving assignment constraints from the causal scenarios identified by STPA and then using
those assignment constraints to generate architecture options. Thus, the decision to explore each
architecture option is informed by the causal scenarios that could be mitigated or prevented by
that architecture option. It was this process that informed the creation of architecture options in
Section 4.3.1 and Section 4.3.2 (design iteration 1) as well as Section 5.4.1 (design iteration 2).

Finally, the third type of design decisions are the ones made about the preferred way to assign
each control responsibility to create a system architecture that best achieves the desired
emergent properties. As shown in the right column of Figure 44, the framework supports the
selection of a preferred architecture by using the causal scenarios identified by STPA for each
architecture option to perform a scenario-based comparison. This comparison helps to identify
evaluation criteria and the control-related benefits and tradeoffs of one architecture option
compared to another. It is these control-related benefits and tradeoffs that inform decisions
about how best to assign the control responsibilities to create the preferred system architecture.
Thus, this process ensures that each decision about how best to assign the control responsibilities
is informed by the different causal scenarios associated with each architecture option. It was this
process that informed the selection of a shared collision avoidance architecture in design
iteration 1 based on the benefits and tradeoffs identified in Section 4.3.3. A similar decision could
be made for design iteration 2 based on the benefits and tradeoffs identified in Section 5.4.2.

Thus, by applying the framework developed in this dissertation over two design iterations,
the results show that this framework can help a systems engineer to start with a very abstract
model of a system and incrementally refine and add detail to it while learning about how the
architecture’s behavior evolves with each design iteration. For the case study used in this

114

research, Figure 45 summarizes how this refinement was done over the two design iterations to
create incrementally more refined versions of an ATM architecture for enabling UAM.

Architecture Option 1:
Centralized 0

Coordination

Federal Regulators (e.g. FAA)

Air Traffic Management (ATM)

Requests
Reports
Track Info

UAM Aircraft & Dperators

Existing Aviation
Aircraft & Operators

Start: Abstract ATM control structure

avo

Y Unpredictable air
traffic density in
UAM environment

Y

A J

Air Traffic Management
Resp-1

Trajectory
Modifications

Aircraft 1
Resp-1

Trajectory
Madifications

Shared collision avoidance

Aircraft 2
Resp-1

Architecture Option 3:

—
—

Important for AT to
resolve urgent conflicts

Important for aircraft to
resolve urgent conflicts

Air Traffic Management

Air Traffic Management

Trajectory
Muodifications

Controller
assigned to conflict

‘Resp-1.1 | Resp-1.2 iR
Trajectory
Modifications Request to
ldentified resolve conflict
Conflict Identified
Conflict
Trajectory

i i Aircraft 1 | Modifications | Ajrcraft 2
Aircraft 1 Trajectory Aircraft 2 ,| Controller assigned | ---
Modifications i " to conflict .R A

Reszp-1.2

Architecture Option 4:

Centralized allocation of conflicts

Architecture Option 5:

Airborne allocation of conflicts

Design Ilteration 1:
Selecting collision
P—avoidance architecture

Design lteration 2:
Refining shared collision
— avoidance architecture

Figure 45: Iterative refinement of the ATM architecture across design iterations

The first design iteration (presented in Chapter 4) started with an abstract ATM control
structure and applied the framework to determine that a shared collision avoidance ATM
architecture would be preferable for UAM. This shared collision avoidance ATM architecture
therefore refined the initial abstract ATM control structure by defining more specific control
responsibilities and more detailed control actions and feedback that will be needed to safely
manage UAM air traffic.

115

Then, the second design iteration (presented in Chapter 5) started with the shared collision
avoidance ATM architecture developed in iteration 1 and further refined it by identifying two
possible options for implementing Resp-1.2 (the responsibility for assigning conflicts to
controllers to resolve). Either of these options is a further refinement of the shared collision
avoidance ATM architecture chosen in iteration 1 because they define a more detailed set of
control responsibilities that are needed to enable shared collision avoidance. In addition, they
define more specific control actions and feedback that need to be exchanged between ATM and
the aircraft as well as between the aircraft to enable adequate coordination between them.

These two design iterations therefore demonstrate that the structured processes provided
by this framework provide support to help systems engineers refine a system architecture and
learn about the system architecture they are developing as they create it.

In addition to being able to refine the system architecture incrementally over time, an
additional capability offered by this framework is the ability to reconsider and revise past
decisions. This capability is achieved because of the incremental way that a system architecture
is refined when applying this framework and the traceability that is maintained during each step.

For example, recall that the purpose of performing design iteration 2 was to confirm the
feasibility of implementing a shared collision avoidance architecture and to learn more about the
potential tradeoffs of a shared collision avoidance architecture. When architecture options 4 and
5 (created in design iteration 2) are analyzed and compared, a systems engineer could make one
of two choices based on those comparison results. One choice they could make is that the
benefits of implementing a shared collision avoidance architecture are worth the tradeoffs that
have been identified and they can continue to refine the ATM architecture as was done in this
research.

However, a systems engineer could also decide that the comparison results show that a
shared collision avoidance architecture introduces too many risks or implementation challenges.
As a result, contrary to what was initially believed, they might decide that the benefits are not
worth the tradeoffs or the effort required to address the risks. If such a decision is made, the
traceability that is maintained when applying this framework would allow a systems engineer to
return to the comparison performed in iteration 1, re-examine the comparison results, and
decide that a different architecture option may be preferable instead. This revision of a past
decision is illustrated in Figure 46.

Architecture Option Al: <~ -
Centralized Collision Avoidance

Start: Abstract ATM
control structure

Figure 46: Revising a past architecture option selection

116

As shown in Figure 46, although an initial decision was made to select architecture option As
in designiteration 1, a systems engineer could return to that decision at any point and re-evaluate
their architecture preferences based on what was learned about the shared collision avoidance
architecture. A revised decision can then be made. For example, architecture option A; might be
considered preferable now in light of what was learned about the challenges and risks involved
in implementing a shared collision avoidance architecture. Thus, the traceability provided by this
framework enables revisions and reconsiderations such as this one.

5.6 Summary

This chapter described the results of the second design iteration performed in this research.
The goal of this second design iteration was to refine the high-level shared collision avoidance
architecture that was selected in design iteration 1 to better define how ATM and the aircraft will
share responsibility for collision avoidance and work together to adequately resolve conflicts.
Although this architecture represents a more collaborative approach to shared collision
avoidance than what exists in today’s ATC system, the Uberlingen mid-air collision in 2002
showed what could go wrong when shared responsibility for collision avoidance is not adequately
controlled in the system architecture.

This second design iteration therefore began with an analysis of the high-level shared collision
avoidance architecture using STPA-Teaming to analyze how ATM and the aircraft might
collectively be unable to adequately resolve conflicts. Based on the results from this analysis,
additional system requirements were generated that described the additional safety constraints
necessary to ensure adequate control over the shared responsibility for collision avoidance.
These additional requirements were then used in conjunction with the requirements identified
during iteration 1 to create a refined conceptual architecture that defined the control behavior
needed to prevent unsafe collective decision making by ATM and the aircraft when resolving
conflicts.

Based on the refined conceptual architecture, two architecture options for implementing
Resp-1.2 were compared. Architecture option As represented a ground-based conflict
assignment architecture where ATM decides whether it or the aircraft should resolve an
identified conflict. Architecture option As represented an airborne conflict assignment
architecture where the aircraft decide whether they want to resolve a conflict themselves or
request the assistance of ATM to resolve it. By comparing these two architecture options, a series
of benefits and tradeoffs of each option were identified.

Finally, the full set of results from both design iterations were used to evaluate whether the
framework provides better support to systems engineers in reasoning about what needs to be
included in their system design and to help them make more informed decisions. The results from
both design iterations showed that the use of iterative STPA analyses and the structured
processes provided by this framework allows systems engineers to incrementally learn about the
architecture they are creating and make more informed design decisions as they refine the
system architecture. In addition, because the rationale for each design decision is maintained at
each step of the framework, it is easier for systems engineers to revisit and revise past design
decisions. These findings therefore provide support for hypothesis 2 of this dissertation and

117

demonstrate that the framework can be used to iteratively develop and refine the architecture
for a system.

Hypothesis 2: A systems-theoretic approach can support making informed design
decisions to iteratively develop and refine the architecture for a system

In both design iterations conducted in this research, there are numerous assumptions that
underlie the design decisions that were made and the comparison results that were generated.
While some of these assumptions were highlighted in this chapter and the previous one, little
was done to account for them and ensure they are not violated as architecture development
progresses. In the next chapter, a supporting framework for identifying and ensuring the validity
of underlying assumptions that was developed in this research will be described and
demonstrated.

118

Chapter 6 Ensuring the Validity of Underlying Assumptions

In the prior chapters of this dissertation, the importance of identifying underlying
assumptions and ensuring they remain valid over time has been emphasized. However, no
guidance was provided as to how to identify assumptions or what to do with the identified
assumptions to ensure they remain valid. To address these challenges, this research developed
a supporting framework for identifying underlying assumptions and accounting for them during
architecture development to help systems engineers avoid flaws arising because of assumptions
becoming invalid.

This chapter develops and demonstrates this supporting assumptions framework and is
organized as follows. Section 6.1 provides an overview of the role of assumptions in architecture
development. Section 6.2 describes the guiding prompts that were developed to provide systems
engineers with guidance for identifying assumptions at each step of architecture development.
Section 6.3 then demonstrates how these guiding prompts can be applied to identify assumptions
underlying the various design decision made to create and refine the ATM architecture for the
UAM case study presented in Chapter 4 and Chapter 5. These examples illustrate the different
types of assumptions that can be identified. Finally, Section 6.4 describes how to ensure that the
identified assumptions are accounted for and monitored over time as architecture development
proceeds.

6.1 The Role of Assumptions in Architecture Development

There are several reasons why we make assumptions during system design. Sometimes,
assumptions record important information that explains the reasoning behind a design decision
[110]. For example, when deciding whether a design decision will be adequate in preventing
unsafe or undesirable behavior, analysts or systems engineers might make assumptions to justify
that decision. Alternatively, assumptions can also be used to capture a designer’s expectation or
prediction about what might happen in the future [111]. This includes assumptions about what
the system’s operating environment might be once the system is fielded or how that
environment might evolve over time. It also includes assumptions about how the system might
interact with or impact its operating environment once it is operational.

Regardless of the reason they are made, assumptions play an important role in design,
especially during the early stages, because they allow a systems engineer to make design
decisions despite the uncertainties they might face during the development process. These
uncertainties might occur because some aspects of the system design have not yet been
determined or the system’s impact on its environment is not yet known with certainty. In
addition, because designing a complex system can be considered to be a “wicked” planning
problem [112, 113], a systems engineer may not know all the factors that will be important to
consider about the design until they start the design process itself.

Although assumptions help to mitigate these sources of uncertainty, it is important to
recognize that the design decisions made using these assumptions become contingent on those
assumptions remaining valid [16]. This is because the design decisions will only have their
intended effect if the assumption remains valid. Once an assumption becomes invalid, any design
decisions made based on it may now be flawed.

119

The NTSB emphasizes this important aspect of assumptions in a safety recommendation
report they published for the 737 MAX accidents in 2019 [114]. In the report, the NTSB found
that Boeing made flawed assumptions about the behavior of the Maneuvering Characteristics
Augmentation System (MCAS) and the ability of the flight crew to respond in the event of
unintended MCAS activation. As a result of the flawed assumptions Boeing made, flight crews
were unable to recover control of the aircraft as Boeing had assumed when unintended MCAS
activations actually occurred [114]. Thus, the 737 MAX accidents illustrate the importance of
being able to make explicit the assumptions underlying the system design and ensure that their
validity can be verified and monitored over time [16, 111].

Despite the importance of these underlying assumptions, current methods for architecture
development provide minimal, if any, guidance on how to identify these underlying assumptions
or how to account for them during architecture development. To address these limitations,
better guidance must first be provided to help systems engineers identify assumptions underlying
their architectural design decisions.

6.2 A Framework for Identifying Underlying Assumptions

To determine how to provide such guidance, a method called Assumptions-Based Planning
(ABP) [34] serves as a useful reference. ABP was created to identify the assumptions underlying
a business or organizational plan and develop a plan for ensuring the validity of those
assumptions over time [111]. In ABP’s taxonomy, assumptions can be classified into two
categories: (1) assumptions about problems and (2) assumptions about solutions [111]. The first
category consists of assumptions an organization makes about the problems it believes it will
encounter and these typically describe the environment in which it expects to be conducting its
business. By contrast, the second category consists of assumptions an organization makes about
how it will address those problems (i.e., the solutions).

These two categories of assumptions can be extended to engineered systems as well. Instead
of making assumptions about “problems” and “solutions”, systems engineers make assumptions
about (1) the environment that the future system will operate in and (2) how the system itself
will solve a problem or meet a set of needs. For example, the creation of UAM to provide
transportation services in urban areas assumes that UAM provides a useful mode of
transportation for an urban community (a system assumption) and that the public will need and
be willing to use UAM services (an environmental assumption). Thus, when identifying
assumptions during architecture development, it can be helpful to consider if either of these
types of assumptions are being made.

Another key aspect of ABP is the methods for identifying assumptions. [111] suggests three
methods: (1) telling actions the long way, (2) strategic assumption surfacing and testing, and (3)
discovery-driven planning. Although these methods use different guidewords and processes, the
fundamental strategy for helping an analyst identify assumptions is the same: rationalize the
action or design decision and determine what needs to be true for the decision to have the
desired effect or outcome.

This research applies this strategy to create a set of guiding prompts to help systems
engineers consider any assumptions they might be making about the system or environment that

120

need to remain valid for the system to behave as intended. These guiding prompts are shown in
Table 43.

Consistent with the strategy used by ABP, the guidance in Table 43 prompts systems
engineers to consider what needs to be true or what needs to exist for the design decision to
have the desired effect. These are the assumptions that, if invalid, might compromise the ability
of the system to adequately enforce the safety constraints or achieve adequate control over the
behavior of the system or its components. Because each step of architecture development
involves different types of design decisions, these guiding prompts are tailored to the various
steps in the architecture development framework described in Chapter 3.

Table 43: Guiding prompts for identifying underlying assumptions

Architecture Guidance for Identifying Assumptions
Development Step | (Either system or environment assumptions)

e What assumptions is the system boundary based on?

Performing STPA e What assumptions is the STPA control structure based on?
Analyses e What assumptions are being made when generating the UCAs and
scenarios?

Identifying System | ¢ What assumptions must be true for the requirements to be
Requirements effective at preventing undesirable behavior?

e What is being assumed about the behavior of a responsibility for it
to meet the system requirements?

e What assumptions must be true for the process model parts to be
maintained and kept updated?

e What is assumed to be available to receive as feedback from the
environment?

e What is being assumed for the defined control actions to be
effective?

Developing the
Conceptual
Architecture

e What must be true for the architecture to implement the system-

Exploring and level behavior?

Comparing e What s being assumed about how the architecture will be
Architecture implemented during detailed system design?

Options e What is being assumed to decide if an architecture will resolve a

given scenario?

6.3 Using the Framework for Identifying Underlying ATM Assumptions

To illustrate how the guidance shown in Table 43 should be used during architecture
development, this section presents examples of assumptions identified at each step of the
architecture development process. Each identified assumption is labeled in square braces as
either an environmental or system assumption. These labels illustrate that throughout the
architecture development process, both types of assumptions can be identified.

121

6.3.1 Assumptions Underlying Initial STPA Analysis

When performing an STPA analysis, underlying assumptions primarily serve to justify the
elements of the control structure as well as rationalize the identification of UCAs and scenarios.
In this section, examples of assumptions made during an STPA analysis are shown for the initial
STPA analysis of the NAS that was described in Chapter 4.

The first place in the initial STPA analysis where assumptions are made is when creating the
abstract NAS control structure (Figure 24). Because this future NAS does not yet exist, these
assumptions represent expectations about how ATM and regulators would interact with both
existing aviation and UAM air traffic and inform the control actions and feedback that are
included in the control structure. Table 44 shows examples of modeling decisions made to create
the NAS control structure shown in Figure 24 and their underlying assumptions.

Table 44: Example assumptions underlying the NAS control structure

Modeling Decision

Underlying Assumption

Control actions and feedback
between existing aviation operations
and ATM and regulators are modeled
to be similar to those today

It is assumed that aviation will follow ATC and FAA
rules that are fundamentally similar to those used
today (e.g., ADS-B equipage requirements)
[Environment assumption]

Sharing of position/ID/speed data
between aircraft

It is assumed that, at a minimum, ADS-B-like data
will need to be shared between aircraft to ensure
that UAM aircraft can safely interact with existing
aviation operations [Environment assumption]

Control actions and feedback
between ATM and UAM operations

It is assumed that UAM air traffic will need to
operate on or near conventional airports. ATM will
therefore need some control over UAM aircraft to
manage their arrival/departure alongside existing
aviation operations [System assumption]

Control actions and feedback
between regulators and UAM
operations

It is assumed that, like commercial air carriers today,
UAM operations and aircraft will be certified by
regulators [System assumption]

Once the control structure was created, assumptions were also made to identify UCAs and
scenarios. Like when creating the control structure, these UCAs and scenarios describe unsafe
behavior that is expected to occur in the NAS that would exist in the future with UAM integrated
into it. Thus, assumptions were made to inform the various contexts and operating conditions
contained in UCAs in which UAM air traffic might be managed. Similarly, assumptions also
informed the different types of interactions that UAM air traffic might have with each other or
with other air traffic. Table 45 shows examples of UCAs and scenarios identified in the initial STPA
analysis and the underlying assumptions used to generate them.

122

Table 45: Example assumptions underlying UCAs and scenarios identified in initial STPA

Unsafe Control Action (UCA) or Causal Scenario
(Cs)

Underlying Assumption

UCA-1.5: Air Traffic Management does not
coordinate the movements of UAM aircraft when
they are about to fly into a section of airspace
where air traffic must be excluded (e.g., for safety
or security reasons)

UAM traffic flow will need to be changed
or restricted at times to meet demands
imposed by the environment. These
include but are not limited to: clearing
path of first responders to emergencies,
and Temporary Flight Restrictions (TFR)
for major public events, VIP protection,
and other circumstances [Environment
assumption]

UCA-1.13: Air Traffic Management does not
coordinate UAM aircraft when inclement weather
is approaching that could interfere with flight
operations

UAM operations will experience the span
of year-round weather conditions,
visibility conditions as well as both day
and night operations [Environment
assumption]

CS-1.8.1-4: Air Traffic Management does not
realize that another NAS user has a time-critical
mission to execute (e.g., emergency medical
flight) and believes that the other NAS user’s
mission can be delayed for the UAM aircraft and
therefore wrongly decides not to provide
coordination to avoid the delay for the other NAS
user

UAM aircraft will operate in urban areas
where public safety and other missions
may also be operating at similar altitudes
as UAM flights [Environment assumption]

CS-1.8.4-1: Air Traffic Management is notified of a
UAM flight shortly before its departure time and
there is not enough time for it to issue adequate
coordination before the departure time. As a
result, a UAM aircraft interferes with the
operations of another airspace user.

Although some UAM air traffic may be
predictable (e.g., regularly scheduled
shuttle flights), many UAM flights will
occur on an on-demand basis with little
regularity [Environment assumption]

6.3.2 Assumptions Underlying System Requirements and Conceptual Architecture

When identifying system requirements, underlying assumptions describe what must be true
for the requirements to have the desired effect of mitigating or preventing the identified UCAs
or scenarios. Sometimes, these assumptions describe certain aspects of a system’s environment
that are needed for a requirement to be implementable. Other times, these assumptions
describe certain aspects of a system’s behavior that are needed for a requirement to be sufficient
at preventing an STPA scenario. Table 46 shows some examples of system requirements
identified in Chapter 4 and their underlying system and environmental assumptions.

123

Table 46: Examples of system requirements and their underlying assumptions

System Requirement

Underlying Assumptions

Reqg-3: ATM system shall
ensure that sufficient
capacity is available to
detect and coordinate all
aircraft that have or will
need access to the airspace

Assumes that surges in demand for flights will occur with
at least <TBD mins> of advance notice for the NAS to
implement plans to mitigate system impacts [Environment
Assumption]

Assumes that this requirement is carried out in
conjunction with the airspace access management
requirement, especially whenever demand nears capacity
limits [System Assumption]

Req-4: ATM system shall
coordinate the movement of
aircraft to resolve any
potential conflicts

Assumes that UAM flights are known within <TBD> time of
desired departure [Environment Assumption]

Assumes coordination decision can be made within <TBD>
time [System Assumption]

Req-8: ATM system shall
only allow as many users to
access the airspace as it is
capable of detecting,
tracking and coordinating

Assumes that this requirement is used in conjunction with
capacity management to ensure that all aircraft can be
adequately coordinated (e.g., during surge times) [System
Assumption]

Req-10: ATM system shall
account for intended
movements of aircraft in
addition to current
trajectories to detect
potential collisions

Assumes that aircraft are willing to share their intended
trajectories for at least <TBD time> into the future (e.g.,
no privacy concerns) [Environment Assumption]

Similarly, when developing the conceptual architecture, underlying assumptions describe
what must be true for the various control responsibilities and their associated control actions and
feedback in the conceptual architecture to meet the system requirements. Figure 47 and Figure
48 show example assumptions identified for two different responsibilities and their associated

control actions and feedback.

124

Responsibility Resp-1: Coordinate the movement of aircraft to prevent undesirable
interactions

Summary of Desired Behavior: A conflict is defined as a situation where two aircraft will pass
within <TBD> distance horizontally or vertically of each other.

If a potential collision is detected, aircraft should be provided with new/updated trajectories
that minimize delays or mission impact while resolving the potential collision/interference.
Coordination should account for aircraft capabilities, mission constraints, delays in executing
coordination as well as the future movements of/coordination provided to other aircraft.

If an aircraft is non-communicative, use its last communicated trajectory to coordinate the
movements of other aircraft to prevent collision

System Assumption: Assumes that an aircraft experiencing an emergency will be
granted highest priority access to the airspace they need to address the emergency

System Assumption: Assumes that access priorities are considered when coordinating
aircraft movements to prevent collisions and when managing airspace access

System Assumption: Assumes that coordination decisions can be made within <TBD>
time

Control Actions: Trajectory modifications

Environmental Assumption: Assumes that UAM will be best served by moving toward
trajectory-based operations (TBO)

Feedback: Basic aircraft telemetry, aircraft type and capabilities, future trajectory

Environmental Assumption: ADS-B-like tracking data will be available on all aircraft in
UAM airspace

Figure 47: Example 1 of assumptions underlying the definition of Resp-1

125

Responsibility Resp-4: Only allow as many users to access the airspace as it is capable of
detecting, tracking and coordinating

Summary of Desired Behavior: Approve/decline requests for access to airspace based on
how many active flights have already been approved and the established airspace access
priorities for different users/missions. Requests should be managed to avoid exceeding the
maximum capacity of the NAS to track and coordinate them as well as ensure that sufficient
space is available for alternative movement options for each aircraft. This includes both
immediate approval/denial of access as well as longer-term access planning

System Assumption: Assumes this responsibility is coordinated with the responsibility
for determining alternative movement options to ensure that access management
considers the space needed for alternative movement options

Environmental Assumption: Assumes at least some flights are known with at least
<TBD> advanced notice so that there is time to negotiate changes to the flight plan

Control Actions: Approve/decline access request, Flight plan modification options

Environmental Assumption: Assumes that UAM flights will have some amount of
operational flexibility to allow ATM to propose flight plan modifications such as
departure time changes or flight route changes that are acceptable

Feedback: Flight plan, mission and operational constraints, possible movement options,
capacity of ATM, Congestion level

Environmental Assumption: Assumes that UAM aircraft will be willing to share flight
plans and mission and operational constraints to enable this feedback

Figure 48: Example 2 of assumptions underlying the definition of Resp-4

6.3.3 Assumptions Underlying Comparison of Architecture Options

Finally, when exploring and comparing architecture options, one of the main steps where
assumptions play a critical role is in the comparison of architecture options. As described in
Chapter 3, comparing architecture options involves deciding whether a given STPA scenario
occurs for each architecture option. However, at this stage in the architecture development
process, some design details needed to inform this decision may not have been made yet. Thus,
assumptions may need to be made about the environment or the behavior of the system to
decide if a scenario is mitigated or prevented by that architecture option.

As aresult, however, the ability of that architecture option to prevent each scenario becomes
contingent on those assumptions remaining valid. Especially if one of these architecture options
is chosen for further development, it is extremely important to ensure that any downstream
design decisions do not violate the assumptions associated with that architecture option. This is
because if an assumption does become violated, then the architecture might have a flaw or
unsafe behavior that was assumed not to exist.

126

In Section 4.3.3, Table 21 showed examples of assumptions made when comparing the
centralized and decentralized collision avoidance architecture options to decide whether a
scenario was resolved by an architecture option. Table 47 replicates the assumptions shown in
Table 21 and labels each assumption as either a system assumption or an environmental
assumption to show that both system and environmental assumptions can be identified.

Table 47: Examples of assumptions underlying comparison decisions

ID Assumption Assumption
Type
It is assumed that ATM will not have to coordinate conflicts as
Al frequently because it has broader situational awareness of the future | System
state of the airspace and can better anticipate and resolve multiple Assumption
conflicts in a more coordinated fashion.
It is assumed that UAM aircraft would have onboard sensing capable .
. .) Environmental
A-2 | of detecting ground hazards with enough range to allow time for the Assumption
aircraft to respond to avoid a collision with the ground hazard
It is assumed that with the aircraft sharing responsibility for
A-3 preventing conflicts with ATM, a component failure (e.g., on ATM or System
on one of the aircraft) should not compromise the ability of other Assumption
aircraft to prevent conflicts
It is assumed that even if an initial set of aircraft are preoccupied with
Ad resolving a set of conflicts, any new aircraft would identify the conflict | System
and coordinate its own set of trajectory modifications to avoid the Assumption
other group of aircraft

6.4 Deriving Requirements from Underlying Assumptions

Having identified the underlying assumptions, a process is now needed to ensure that these
assumptions are not violated at any point during the system’s lifecycle and the methods available
for doing so depend on the type of assumption being made as shown in Figure 49.

Underlying Assumptions

.——""""’#ffffﬂﬁﬁhhhh“ﬁhhhﬁ“-ﬁ

Assumptions about Assumptions about
Environment System
During Operation: During Operation:
Monitor validity using — Monitor validity using
leading indicators leadingindicators

During Development:

Write a system requirement
— {0 ensure subsequent design

decisions do not violate

assumptions

Figure 49: Methods for ensuring the validity of underlying assumptions

127

For both assumptions about the environment and assumptions about the system, they should
be monitored during operations using assumptions-based leading indicators [16]. These
indicators essentially serve as warning signs indicating when an underlying assumption may be
close to or already violated so that decision makers can take corrective action to prevent an
actual accident or loss from occurring.

For assumptions about the system, however, more can be done besides just monitoring them
during operations. Their validity can also be enforced during development because the system’s
design is under the control of the systems engineer. Thus, a requirement can be derived from
each underlying system assumption that describes a constraint that will prevent the assumption
from being violated. Table 48 shows examples of system assumptions and the system
requirements derived from them.

These additional derived requirements can then be used in two ways to ensure they remain
valid as system development progresses. First, the architecture development framework can be
applied to these derived requirements so that the conceptual architecture and system
architecture are modified to account for them. Figure 50 illustrates how additional control
elements are derived from the derived requirements.

Second, during verification and validation (V&V) of the system after design is complete, these
additional derived requirements can be verified to check the validity of the underlying
assumptions. If the additional derived requirements are all verified successfully, that would imply
the underlying assumptions have not been violated.

Table 48: Examples of system assumptions and derived requirements

System Assumption Derived Requirement

Assumes that access priorities are considered
when coordinating aircraft movements to
prevent collisions and mitigate congestion as
well as when managing airspace access

Req-20: ATM system shall consider access
priorities when selecting trajectory
modifications or managing access to the
airspace

Assumes that trajectory modification
decisions can be made within <TBD> time

Req-49: ATM system shall be able to make
trajectory modification decisions within
<TBD> time

Assumes that if selected trajectory
modifications are found to not be adequate,
those trajectory modifications are evaluated
again to ensure that collision risks are
adequately mitigated

Req-50: ATM system shall ensure that if
selected trajectory modifications are found
to not be adequate, those trajectory
modifications are evaluated again to ensure
that collision risks are adequately mitigated

Assumes there is enough space available to
keep other aircraft away from a non-
communicative aircraft

Req-69: ATM system shall ensure that there
is enough spare airspace available to keep
other aircraft away from a non-
communicative aircraft

Assumes that if trajectory modifications are
not acknowledged within <TBD> time, the

Req-93: ATM system shall re-evaluate
trajectory modification(s) associated with a

128

conflict associated with that modification will | conflict if the trajectory modification(s) are

be flagged for re-evaluation not acknowledged within <TBD> time
New responsibility Informs Additional required
| constraints associated creafion of | control actions or
with existing control "| feedback added to
responsibility existing responsibility
- - Informs
Underlying Derived generation of
system » system
assumptions requirement

New control
responsibility to be
added to the system

h 4

Figure 50: Accounting for underlying assumptions during development

As shown in Figure 50, once system requirements have been derived from the underlying
system assumptions, they can then be used to generate either (1) new responsibility constraints
associated with an existing control responsibility or (2) new control responsibilities. New control
actions and feedback or new responsibilities can then be added to the conceptual architecture
to account for these new responsibilities or responsibility constraints.

To illustrate how this is done, consider the derived requirement Reg-50 in Table 48. This
requirement was generated in design iteration 1 and was derived from an assumption that if
trajectory modifications are found to be inadequate for preventing a conflict, those trajectory
modifications will be re-evaluated to identify revised trajectory modifications for preventing that
conflict. It is therefore important that this requirement is met by the conceptual architecture to
ensure its associated underlying assumption remains valid as architecture development
proceeds.

Although Reg-50 was generated in design iteration 1, it was used to inform the inclusion of
some control elements in the refined conceptual architecture in design iteration 2. Figure 51
illustrates part of the conceptual architecture created in design iteration 2 (originally shown in
Figure 39) and highlights the control elements that were included to meet Reg-50.

129

Resp-1.2: Decide which controller is resolving a conflict

F 3

Persistent unresolved
conflicts

Resp-1.4: Ensure conflict is resolved

Constraints:

RC-27: Ensure that if coordination was not effective, coordination is
evaluated again to ensure that risks are adequately mitigated [Reg-50]

Unresolved collision risk

v

Resp-1.1: Identify & Resolve Conflicts

Figure 51: Accounting for Reg-50 in design iteration 2 conceptual architecture

Req-50 describes what needs to happen if a conflict is found to have not been adequately
resolved. Thus, Reqg-50 is categorized as a constraint requirement (not a control requirement)
and the responsibility constraint RC-27 is generated and associated with Resp-1.4 (the
responsibility for ensuring that conflicts are adequately resolved).

Then, to ensure that Resp-1.4 meets the constraint RC-27, two control elements were added:
(1) a control action called Unresolved collision risk was added between Resp-1.4 and Resp-1.1
and (2) a piece of feedback called Persistent unresolved conflicts is added between Resp-1.4 and
Resp-1.2. Together, these two control elements allow Resp-1.4 to notify or prompt the relevant
responsibilities to reconsider their control decisions to ensure that some action is taken to
adequately resolve the conflict. The control action Unresolved collision risk ensures that the
controller assigned to resolve that conflict (i.e., either ATM or the aircraft) are notified to revise
their selected trajectory modifications if the one they chose originally did not adequately resolve
the conflict. Similarly, the feedback Persistent unresolved conflicts ensures that if a conflict
remains unresolved after several attempts to select revised trajectory modifications, Resp-1.2
can be prompted to re-evaluate the controller that it assigned to the conflict to determine if an
alternative controller would be better equipped to resolve the conflict.

Although the example shown in Figure 51 is relatively simple, it illustrates how underlying
system assumptions made in an earlier iteration of design can be accounted for in the conceptual

130

architecture and appropriate control elements added in later iterations to ensure those
assumptions remain valid as the system architecture is refined.

6.5 Summary

This chapter developed and demonstrated a supporting framework to help systems engineers
more easily identify the assumptions they are making and account for them during the
architecture development process. Recognizing that identifying assumptions is a challenging
task, this supporting framework provides specific guidance for identifying assumptions that is
tailored to the different steps in the safety-driven architecture development framework
developed in this research. By using this framework, assumptions about both the system and
environment can be identified when performing STPA analyses, identifying system requirements,
developing the conceptual architecture, and exploring and comparing architecture options.

Once assumptions are identified, one way to ensure their validity over time is to generate
assumptions-based leading indicators to monitor them during system operation. Assumptions
about the system can also be accounted for during architecture development by deriving
additional system requirements from these underlying system assumptions. These additional
derived requirements can then be used to inform the addition of control elements to the
conceptual and system architecture. In addition, the validity of these assumptions can be more
easily checked during system verification and validation when the derived requirements are
verified.

131

Chapter 7 Conclusions & Future Work

Developing complex systems today is becoming more challenging than ever before. Not only
is greater functionality and productivity being demanded from these systems, but there is also
an increasing desire to use automation and software to enhance their capabilities. As a result,
systems have gotten more complex, interconnected, and reliant on software while being
increasingly expected to exhibit emergent properties such as safety and security. Unfortunately,
designing these systems to exhibit these properties is challenging because existing methods do
not provide the necessary design support to help systems engineers design these properties into
their system architectures.

The objective of this dissertation was to address this problem by creating an architecture
development framework that provides structured and systematic processes for creating and
assessing system architectures. Unlike current methods, this architecture development
framework was developed based on Systems Theory and provides appropriate types of support
to help systems engineers incrementally develop and refine a system architecture for their
system.

The key idea underlying this new framework is that a system should be designed to prevent
unsafe or undesirable behavior. Thus, the first part of the framework involves performing an
initial STPA that identifies preliminary scenarios describing how unsafe behavior could occur.
Then, the behavioral design process provides a structured way to use these STPA scenarios to
derive system requirements and a conceptual architecture that describes the control behavior
needed to prevent unsafe behavior from occurring. Finally, the structural design process provides
a systematic method for exploring and comparing possible architecture options to implement
the conceptual architecture. By comparing these architecture options, control-related benefits
and tradeoffs between the architecture options are identified. Ultimately, these benefits and
tradeoffs can be used by systems engineers to inform their decisions about how to architect the
system to best achieve the desired emergent properties such as safety. When this framework is
applied iteratively, the system architecture can be incrementally refined in a top-down manner
and safety can be designed into it from the beginning.

This architecture development framework was applied over two design iterations to develop
an ATM architecture for the NAS that can manage UAM air traffic alongside existing air traffic.
The first design iteration focused on developing a high-level collision avoidance architecture for
UAM and two opposing architecture options were compared: a centralized collision avoidance
architecture and a decentralized collision avoidance architecture. The benefits and tradeoffs that
were identified demonstrated that this architecture development framework enables a
comparison of architecture options that is more focused on control-related benefits and
tradeoffs.

Based on these benefits and tradeoffs, a preferred collision avoidance architecture was
chosen for UAM. Because UAM flights are expected to be on demand, traffic circumstances are
expected to be more unpredictable. Thus, a shared collision avoidance architecture was
proposed for UAM because it provides the necessary flexibility to enable the ATM system to
adapt its behavior to the prevailing air traffic circumstances as they change.

132

The second design iteration then focused on refining this high-level shared collision
avoidance architecture developed in iteration 1 to obtain a more detailed definition of that
architecture. Thus, the architecture development framework was applied again to refine both
the conceptual architecture and the system architecture for implementing shared collision
avoidance. The results from both iterations demonstrated that this architecture development
framework can be applied iteratively to incrementally refine an ATM architecture for UAM. This
is achieved through the iterative use of STPA analyses and the structured processes provided by
the framework that enables systems engineers to make more informed early architectural design
decisions driven by safety considerations.

Finally, this research also developed a supporting framework for identifying the assumptions
underlying design decisions made during architecture development and ensuring that they
remain valid over time. This supporting framework included guiding prompts to help systems
engineers consider any assumptions they might be making at each step of architecture
development. These assumptions can then be used to generate either system requirements or
assumptions-based leading indicators to account for these assumptions in downstream design
decisions and monitor their validity over time. This supporting framework was demonstrated for
the UAM case study to show how different types of assumptions about the ATM system or the
airspace environment can be identified at each step of architecture development

The remainder of this chapter summarizes each of the three research contributions, discusses
their limitations, and describes potential avenues for future work.

7.1 Contribution 1: Safety-Relevant Criteria for Comparing Architecture Options

The first contribution of this research is that this architecture development framework
supports the identification of safety-relevant evaluation criteria for comparing architecture
options and this was demonstrated in Chapter 4. Two main parts of the framework enable this.
First, the framework provides a process for performing an STPA scenario-based comparison of
the architecture options. By analyzing each architecture option using STPA and then comparing
the identified scenarios across the different options, analysts or systems engineers can more
easily determine the control-related behavioral differences between the architecture options
and the architectural elements (e.g., control actions, feedback) that give rise to those differences.

Second, once these behavioral differences have been identified, this architecture
development framework then provides a structure for generating evaluation criterion — a short
phrase that describes a control-related difference in behavior between the architecture options.
Thus, the evaluation criteria are qualitative and highlight the aspects of an architecture option’s
behavior that contribute to better or worse control behavior.

The structure of an evaluation criterion consists of four main parts, each of which provides
control-relevant information to support the comparison of architecture options:

1. Characteristic: An attribute (e.g., responsiveness, timeliness) of the control behavior
being described

2. Control Aspect: The aspect of control being described — Decision making, Process models,
Feedback and control inputs, or Control path

3. Hazard: The hazard that the control behavior being described is intended to control

4. Scenario Context: The context under which the control behavior being described occurs

133

This structure not only helps guide an analyst or systems engineer in generating an evaluation
criterion, but it also ensures better consistency and uniformity across the various evaluation
criteria, especially when different criteria are generated by different people. Based on these
evaluation criteria, benefits and tradeoffs can be more easily identified for each architecture
option. These benefits and tradeoffs can then be used to inform decisions about what
architecture would best achieve the desired emergent properties.

To evaluate if the evaluation criteria generated by this framework are relevant for comparing
architecture options in terms of emergent properties like safety, two opposing ATM architecture
options were compared in design iteration 1 of the case study: (1) a centralized collision
avoidance architecture and (2) a decentralized collision avoidance architecture. The benefits and
tradeoffs identified using this framework were then compared to those found by similar studies
conducted in the existing literature. This comparison found that the evaluation criteria identified
by this framework can identify more control-related benefits and tradeoffs that cover more areas
of control. This gives an analyst or systems engineer a broader understanding of how the various
control-related aspects of an architecture option contribute to better or worse control behavior.
The benefits and tradeoffs are also more focused on the control-related differences between
architecture options, and it is easier to identify the architectural elements that give rise to those
differences. In addition, the benefits and tradeoffs are derived from a broader consideration of
different air traffic contexts. These findings therefore provide support for Hypothesis 1: A
systems-theoretic approach can identify relevant criteria for comparing architecture options and
evaluating their ability to achieve emergent properties.

There are several limitations that must be acknowledged for this part of the work. First, the
comparison of benefits and tradeoffs against existing literature is subject to some author bias. As
discussed at the beginning of Section 4.4, most of the benefits and tradeoffs of centralized and
decentralized architectures that were identified by the existing literature were quantitative
whereas those identified by this framework are qualitative. Thus, the author had to apply
engineering judgement to interpret the quantitative results in the existing literature and
determine the implied qualitative benefit or tradeoff. However, every effort was made to ensure
that any qualitative benefit or tradeoff that could reasonably have been identified based on the
guantitative results were included in the comparison.

Another limitation of this part of the work is that comparing STPA scenarios across
architecture options to generate the evaluation criteria depends heavily on the analyst being
familiar with the behavior of each architecture option. This is because the analyst needs to be
able to determine how each architecture might behave under a given scenario. Although the
control structure model for each architecture option is available, the comparison process does
not describe how to use it to more carefully consider the behavioral differences between
architecture options. Future work could therefore consider developing a more systematic
process for deriving or generating the evaluation criterion that makes better use of the control
structures for each architecture option to better support identifying the control-related
behavioral differences between architecture options.

The third limitation of this part of the work is that the formulation of evaluation criteria can
still vary significantly depending on the analyst who is generating it. While the structure for
formulating evaluation criteria helps to reduce some of that variability, it does not eliminate it.

134

In addition, the example characteristics provided in this dissertation were not intended to be
exhaustive. Future work could therefore consider performing a more thorough characterization
of the different types of control attributes that are commonly seen in systems. Such a
characterization would provide a more comprehensive set of attributes to help systems
engineers generate a more consistent set of evaluation criterion.

Finally, the work in this dissertation focused on generating the evaluation criteria but did not
consider prioritization of those criteria. Especially when numerous evaluation criteria are
identified, being able to prioritize the evaluation criteria would help analysts and systems
engineers to focus on the most important benefits and tradeoffs when comparing architecture
options and deciding what the preferred system architecture should be. Future work could
therefore consider how to prioritize the evaluation criteria. For example, this prioritization could
be informed by the priority order of the associated hazards (or losses).

One other possible direction of future work is to consider different ways in which the
evaluation criteria can be grouped and analyzed to identify architectural patterns — assignments
of responsibilities that consistently give rise to favorable system behavior. In this dissertation,
evaluation criteria were grouped and analyzed by control aspect, but other groupings are
possible that could generate other types of insights. For example, the evaluation criteria could
be grouped by hazard or by context to identify differences in behavior associated with a particular
hazard or differences in behavior in a certain context.

7.2 Contribution 2: Structured Processes for Developing the System Architecture

The second contribution of this research is that this architecture development framework
provides appropriate types of support for developing and refining both the behavior of a system
and its system architecture. This was demonstrated in Chapter 5 and two main aspects of the
framework enable this. First, the framework makes use of iterative STPA analyses to provide
safety-relevant information about the behavior of the conceptual architecture (in the behavioral
design process) or the architecture options (in the structural design process) as they are created.
This iterative analysis of the system using STPA allows analysts or systems engineers to
incrementally learn about how the behavior of the system evolves as they make design decisions.

Second, the framework provides structured processes for using the STPA analysis results to
support making informed design decisions. In this architecture development framework, there
are three main types of design decisions that a systems engineer makes:

1. Decisions to identify the control elements needed to create the conceptual
architecture

2. Decisions to create architecture options based on the responsibility assignments that
can mitigate or prevent unsafe behavior

3. Decisions to develop the preferred system architecture based on the control-related
benefits and tradeoffs identified for the various architecture options

Thus, using the structured processes provided by this framework, each of these design
decisions are informed by what is needed to prevent unsafe or undesirable behavior that are
identified using STPA.

To evaluate if these processes provide the necessary support to systems engineers to enable
them to iteratively refine a system architecture, the results from the two design iterations
135

performed for the UAM case study were reviewed. This review demonstrated that these
structured processes provided by this framework do enable incremental refinement of the ATM
architecture for UAM. The first design iteration started with an abstract control structure of the
ATM system and developed a shared collision avoidance architecture as the preferred
architecture for UAM. Then, the second design iteration refined this shared collision avoidance
architecture to define more specific control responsibilities for safely managing shared collision
avoidance. Architecture options were then considered for how to implement one of these more
specific control responsibilities in the ATM system architecture. Thus, these results show that the
structured processes discussed earlier in this section enable systems engineers to make more
informed early design decisions driven by safety considerations.

In addition, traceability is maintained between the various design artifacts created using this
architecture development framework. This traceability not only enables forward refinement of
the system architecture to incrementally add detail to it, but it also allows systems engineers to
reconsider and revise past design decisions when needed. These findings therefore provide
support for Hypothesis 2: A systems-theoretic approach can support making informed design
decisions to iteratively develop and refine the architecture for a system.

There are several limitations that must be acknowledged for this part of the work. First,
although the goal of the structural design process is to incrementally improve the system
architecture by exploring different architecture options, incremental improvements do not
necessarily always lead to identifying the best system architecture. This is because the
responsibilities defined in the conceptual architecture do not behave independently of one
another. As a result, the relationship between responsibility assignments and the resulting
system behavior is not monotonic. Even if earlier design iterations identify incrementally better
architecture options, it is possible that later iterations identify and evaluate architecture options
that were thought to be better but ultimately show significantly worse behavior than those
evaluated in prior iterations.

Another related limitation is that the comparison of architecture options performed using
this framework does not allow an analyst or systems engineer to create an absolute rank ordering
of the architecture options (e.g., from best to worst). This is because the comparisons performed
using this framework only generate relative differences between architecture options, not
absolute differences. Although these comparisons might allow an analyst or systems engineer to
rank architecture options compared in the same iteration, architecture options from different
iterations cannot be ordered the same way without performing additional analyses and
comparing those additional results.

The third limitation of this part of the work is that although this dissertation has
demonstrated that the framework enables architecture refinement, there is no guarantee that
this refinement can continue all the way to detailed system design and allow systems engineers
to generate a physical architecture. This is because this work was primarily focused on early-stage
architecture development where the system architecture is primarily functional. Physical
components are essentially only represented in terms of groups of assigned functions or
responsibilities. Thus, one avenue for future work is to perform further design refinement using
this framework to determine the extent to which the architecture of a system can be
incrementally refined.

136

Finally, one other limitation of this part of the work is that it can be challenging to keep track
of the STPA results between iterations and maintain traceability between abstract UCAs and
scenarios and the more detailed UCAs and scenarios. This can be especially difficult when large
numbers of UCAs and scenarios are generated for multiple losses and hazards. In addition, when
design decisions are revised, it can be difficult to determine which STPA results are affected by
the revision. Thus, another avenue for future work could investigate how to organize and keep
track of the results obtained from different iterations of STPA analyses and make it easier to
determine how revising a design decision impacts the STPA analyses that have already been
conducted.

The refinement that is enabled by this architecture development framework provides one
other interesting direction for future work. By refining a system architecture using this
framework, a systems engineer can design the refined version of an architecture to meet the
goals of the more abstract version. For example, in the case study described in this dissertation,
the refined ATM architecture developed in design iteration 2 was designed to meet the goal of
implementing the shared collision avoidance architecture developed in design iteration 1.

This suggests that this type of refinement could be applied to create an architecture-based
certification process. For example, a regulator could be responsible for developing the system
architecture up to a certain level of abstraction to establish the requirements and goals for that
system. Then, individual companies (e.g., vehicle manufacturers) could continue refining the
architecture to create their own implementation of the higher-level architecture created by the
regulator. Certification of those individual implementations would then involve regulators
verifying that each lower-level refined architecture is consistent with the abstract architecture
and meets all its requirements.

7.3 Contribution 3: Identifying and Accounting for Underlying Assumptions

The last contribution of this research is the development of a supporting framework for
identifying and accounting for underlying assumptions during architecture development. This
supporting framework was developed because it is important to ensure that any assumptions
underlying design decisions made during architecture development remain valid both during
system development and once the system is placed into operation. This is because assumptions
that are invalidated could lead to flaws in the system design. Thus, the goal of this supporting
framework is to help systems engineers identify any assumptions they are making as they
develop a system architecture and account for them as architecture development proceeds.

This supporting framework was developed in Chapter 6 and consisted of two main parts. First,
guiding prompts that are tailored to each step of the architecture development framework help
systems engineers consider what must be true about the system or the environment for the
system to behave as intended. Second, once the underlying assumptions have been identified,
they can be monitored and accounted for in the system design. For both assumptions about the
environment or the system, assumptions-based leading indicators can be generated to monitor
their validity over time, especially during operations. In addition, assumptions about the system
can be used to derive additional system requirements that the system will have to meet. This
ensures that downstream design decisions do not violate assumptions made earlier in the design
process. Furthermore, the validity of these system assumptions can be verified at the end of

137

development using the verification and validation process for a system because a verified derived
requirement implies a validated assumption.

Although no evaluation was performed for this part of the work, this supporting framework
was demonstrated for the UAM case study. The case study results showed how underlying
assumptions about both the environment and system could be identified throughout the
development process including during each of the STPA analyses, the generation of
requirements, the development of the conceptual architecture and the comparison of
architecture options.

There are several limitations that should be acknowledged for this part of the work. First, only
a demonstration of this supporting framework was performed, and no evaluation of this
supporting framework was done. However, such an evaluation could be done in the future using
data about assumptions identified using an alternate process to compare to the assumptions
identified by this supporting framework.

Another limitation is that the identification of underlying assumptions is done only using
guiding questions as prompts instead of being supported by an analysis of the system or the
design decision being made. Thus, future work could investigate a more rigorous method of
analysis to more systematically capture underlying assumptions instead of only relying on guiding
prompts. Especially for assumptions about the system, this analysis method could help analysts
or systems engineers identify assumptions that are more closely linked to specific elements or
behavioral aspects of an architecture or control structure.

Finally, a third limitation of this part of the work is that the guiding prompts were not
intended to be a complete or exhaustive list of things to consider when identifying underlying
assumptions. In addition, these guiding prompts were developed based only on the case study in
this dissertation. As a result, the broader applicability of the guiding prompts to other types of
systems has not been evaluated and is likely limited. Thus, future work could perform a more
rigorous characterization of the types of assumptions made when developing different types of
systems. This characterization could then be used to develop more general guidance on the types
of assumptions to look for at each step of architecture development.

138

Abbreviations and Acronyms
ABP: Assumptions-Based Planning
ATM: Air Traffic Management

ATC: Air Traffic Control

ConOps: Concept of Operations

DSM: Design Structure Matrix

FAA: Federal Aviation Administration
IFR: Instrument Flight Rules

IMLEO: Initial Mass to Low Earth Orbit

INCOSE: International Council on Systems
Engineering

MBSE: Model-Based Systems Engineering

MCAS: Maneuvering Characteristics
Augmentation System

MVC: Model/View/Controller Framework
NAS: National Airspace System

NASA: National Aeronautics and Space
Administration

Glossary

OOSEM: Object-Oriented Systems
Engineering Methodology

PBSE: Pattern-Based Systems Engineering
RA: Resolution Advisory

SDADF: Safety-Driven Architecture
Development Framework

STECA: Systems-Theoretic Early Concept
Analysis

STAMP: Systems Theoretic Accident Model
and Processes

STPA: Systems Theoretic Process Analysis
SysML: Systems Modeling Language

TA: Traffic Advisory

TCAS: Traffic Collision Avoidance System
TFR: Temporary Flight Restriction

UAM: Urban Air Mobility

UCA: Unsafe Control Action

UCCA: Unsafe Collaborative Control Action

Term Definition

One possible way to assign the responsibilities (and their

Architecture Option

associated control actions and feedback) to either existing or

new controllers in the system.

Architecture Tradespace

Assignment Constraints

Causal/Loss Scenario

The set of all possible assignments of responsibilities defined
in the conceptual architecture to controllers in the system.

A preferred responsibility assignment that could mitigate or
eliminate a causal scenario that was identified using STPA.

A description of the causal factors that can lead to the unsafe

control actions and to the hazards [89, p. 42].

A functional control structure that models the desired

Conceptual Architecture

control behavior of a system in terms of the required

responsibilities, control actions, and feedback.

139

Term

Definition

Conflict
(e.g., between aircraft)

Constraint Requirement

Control Requirement

Evaluation Criteria

Hazard

Loss

Process Model Parts

Responsibility

Responsibility Constraint

Safety Constraint

(also referred to as a system-
level constraint in [89])

System Architecture

Unsafe Control Action (UCA)

A situation where there is a risk for collision between aircraft
and/or vehicles [115].

A system requirement that describes restrictions on
acceptable ways that a control decision should be made or
the expected response of the controlled process (used to
derive responsibility constraints).

A system requirement that describes a control decision or
control function that needs to be performed (used to derive
responsibilities)

A short phrase describing a control-related difference in
behavior between the architecture options being compared.

A system state or set of conditions that, together with a
particular set of worst-case environmental conditions, will
lead to a loss [89, p. 17].

Something of value to stakeholders [89, p. 16].

Information needed by a controller to make appropriate
decisions when carrying out a responsibility.

A control function to be performed or a control decision that
needs to be made to enforce a safety constraint.

A restriction on how the associated responsibility should be
performed.

A specification of system conditions or behaviors that need
to be satisfied to prevent hazards (and ultimately prevent
losses) [89, p. 20].

An abstract description of the entities of a system and the
relationships between them [9, p. 2].

A control action that, in a particular context and worst-case
environment, will lead to a hazard [89, p. 35].

140

Bibliography

[1] S. Friedenthal et al., “Systems Engineering Vision 2035: Engineering Solutions for a Better
World,” International Council on Systems Engineering (INCOSE), 2021.

[2] N. Leveson, Engineering a safer world: systems thinking applied to safety. in Engineering
systems. Cambridge, Mass: MIT Press, 2011.

[3] Aptiv et al, “Safety First for Automated Driving,” 2019. [Online]. Available:
https://group.mercedes-benz.com/documents/innovation/other/safety-first-for-
automated-driving.pdf

[4] Garmin, “Garmin Autonomi® | Autonomous Flight Solutions.” Accessed: Sep. 21, 2024.
[Online]. Available: https://discover.garmin.com/en-US/autonomi/

[5] Wisk Aero, “Concept of Operations: Autonomous UAM Aircraft Operations and Vertiport
Integration,” Apr. 2022.

[6] NASA, “Terrain Relative Navigation: Landing Between the Hazards.” Accessed: Sep. 21, 2024.
[Online]. Available: https://science.nasa.gov/science-research/science-enabling-

technology/technology-highlights/terrain-relative-navigation-landing-between-the-
hazards/

[7] United Nations Committee on the Peaceful Uses of Outer Space, “Guidelines for the Long-
Term Sustainability of Outer Space Activities,” AC.105/2018/CRP.20, Jun. 2018. Accessed:
Jan. 10, 2023. [Online]. Available:
https://www.unoosa.org/res/oosadoc/data/documents/2018/aac_1052018crp/aac_1052
018crp_20 _0_html/AC105 2018 CRP20E.pdf

[8] P. Checkland, Systems thinking, systems practice. Chichester [Sussex] ; New York: J. Wiley,
1999.

[9] E. Crawley et al., “The influence of architecture in engineering systems,” MIT Engineering
Systems Monograph, 2004.

[10] E. F. Crawley, B. Cameron, and D. Selva, System architecture: strategy and product
development for complex systems. Boston: Pearson, 2016.

[11] S. Friedenthal, H. Lykins, and A. Meilich, “Adapting UML for an Object Oriented Systems
Engineering Method (OOSEM),” in Proceedings of the INCOSE 2000 International
Symposium, Minneapolis, MN, Jul. 2000.

[12] H.-P. Hoffmann, “SysML-based systems engineering using a model-driven development
approach,” White Paper, Telelogic, 2008.

[13] P.Y. Papalambros and D. J. Wilde, Principles of optimal design modeling and computation,
3rd editon. Cambridge, United Kingdom ; New York, NY 10006, USA: Cambridge University
Press, 2017.

[14] N. Leveson, “An Improved Design Process for Complex Control-Based Systems Using STPA
and a Conceptual Architecture,” MIT, White Paper, 2019.

[15] J. Poh, “A Top-Down, Safety-Driven Approach to Architecture Development for Complex
Systems,” Masters, MIT, 2022.

141

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

N. Leveson, “A systems approach to risk management through leading safety indicators,”
Reliability Engineering & System Safety, vol. 136, pp. 17-34, Apr. 2015, doi:
10.1016/j.ress.2014.10.008.

B. Hill et al., “UAM Vision Concept of Operations (ConOps) UAM Maturity Level (UML) 4,”
NASA, Dec. 2020. [Online]. Available: https://ntrs.nasa.gov/citations/20205011091

D. P. Thipphavong et al.,, “Urban air mobility airspace integration concepts and
considerations,” presented at the Aviation Technology, Integration, and Operations
Conference, 2018.

E. R. Mueller, P. H. Kopardekar, and K. H. Goodrich, “Enabling airspace integration for high-
density on-demand mobility operations,” presented at the 17th AIAA Aviation Technology,
Integration, and Operations Conference, 2017.

P. D. Vascik, R. J. Hansman, and N. S. Dunn, “Analysis of Urban Air Mobility Operational
Constraints,” Journal of Air Transportation, vol. 26, no. 4, pp. 133-146, Oct. 2018, doi:
10.2514/1.D0120.

“Fast Forwarding to a Future of On-Demand Urban Air Transportation,” Uber Elevate, Oct.
2016. Accessed: Jul. 02, 2022. [Online]. Available:
https://evtol.news/ _media/PDFs/UberElevateWhitePaperOct2016.pdf

B. Lascara, A. Lacher, M. DeGarmo, D. Maroney, R. Niles, and L. Vempati, “Urban Air Mobility
Airspace Integration Concepts,” The MITRE Corporation, Jun. 2019.

P. D. Vascik, H. Balakrishnan, and R. J. Hansman, “Assessment of air traffic control for urban
air mobility and unmanned systems,” presented at the 8th International Conference for
Research in Air Transportation, 2018.

M. S. Nolan, Fundamentals of air traffic control, 5th ed. Clifton Park, N.Y: Delmar Cengage
Learning, 2011.

“Systems Engineering for Intelligent Transportation Systems: An Introduction for
Transportation Professionals.” Department of Transportation, Office of Operations, Jan.
2007.

D. D. Walden, G. J. Roedler, K. Forsberg, R. D. Hamelin, T. M. Shortell, and International
Council on Systems Engineering, Eds., Systems engineering handbook: a guide for system
life cycle processes and activities, 4th edition. Hoboken, New Jersey: Wiley, 2015.

U.S. Department of Defense, “The DOD Architecture Framework Version 2.02.” Accessed:
Jan. 06, 2023. [Online]. Available: https://dodcio.defense.gov/library/dod-architecture-
framework/

D. Hornford, N. Hornford, M. Lambert, and K. Street, “An Introduction to the TOGAF
Standard, 10th Edition,” Apr. 2022. Accessed: Jan. 06, 2023. [Online]. Available:
https://pubs.opengroup.org/architecture/w212/? ga=2.243256962.1008969126.1673023
210-829819966.1673023210

L. Delligatti, SysML distilled: a brief guide to the systems modeling language. Upper Saddle
River, NJ: Addison-Wesley, 2014.

D. Garlan and M. Shaw, “An Introduction to Software Architecture.” Jan. 1994.

142

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]
[39]

G. D. Bergland, “A guided tour of program design methodologies,” Computer, vol. 14, no.
10, pp. 13-37, 1981.

K. T. Ulrich, S. D. Eppinger, and M. C. Yang, Product design and development, Seventh
edition. New York, NY: McGraw-Hill Education, 2020.

“ISO 26262:2018 Road Vehicles - Functional Safety.” International Standards Organization
(1SO), Dec. 2018.

“ISO 21448:2022 Road Vehicles - Safety of the Intended Functionality.” International
Standards Organization (I1SO), Jun. 2022.

D. L. Parnas, “On the criteria to be used in decomposing systems into modules,” in Pioneers
and their contributions to software engineering, Springer, 1972, pp. 479-498.

D. L. Parnas, “Designing software for ease of extension and contraction,” IEEE transactions
on software engineering, no. 2, pp. 128-138, 1979.

N. Wirth, Systematic programming: an introduction. in Prentice-Hall series in automatic
computation. Englewood Cliffs, N.J: Prentice-Hall, 1973.

“ISO/IEC/IEEE 15288 Systems and software engineering - System Lifecycle Processes,” IEEE.

NASA, NASA Systems Engineering Handbook, rev2 ed. Place of publication not identified:
12TH MEDIA SERVICES, 2017.

[40] J. A. Estefan, “Survey of model-based systems engineering (MBSE) methodologies,” Incose

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

MBSE Focus Group, vol. 25, no. 8, pp. 1-12, 2007.

D. Dori, Object-process methodology: a holistic systems paradigm, Softcover repr. of the
hardcover 1. ed. 2002. Berlin: Springer, 2013.

“The Rational Unified Process for Systems Engineering: A Rational Software White Paper.”
Rational Software Corporation, 2001.

L. Baker Jrand J. E. Long, “Role of System Engineering Across The System Life Cycle,” Vitech
white paper, Vitech Corporation, Vienna, VA, 2000.

M. D. Ingham, R. D. Rasmussen, M. B. Bennett, and A. C. Moncada, “Generating
requirements for complex embedded systems using State Analysis,” Acta Astronautica, vol.
58, no. 12, pp. 648—661, Jun. 2006, doi: 10.1016/j.actaastro.2006.01.005.

C. H. Fleming and N. G. Leveson, “Improving hazard analysis and certification of integrated
modular avionics,” Journal of Aerospace Information Systems, vol. 11, no. 6, pp. 397-411,
2014.

S. D. Eppinger and T. R. Browning, Design structure matrix methods and applications. in
Engineering systems. Cambridge, Mass. London: MIT Press, 2012.

H.-P. Hoffmann, “Systems Engineering Best Practices with the Rational Solution for Systems
and Software Engineering: Deskbook Release 4.1,” IBM Corporation, 2011. Accessed: Jul.
07, 2022. [Online]. Available: https://jazz.net/library-content/wp-
content/uploads/2020/11/ibm_rational_harmony_deskbook_rel_4.1.pdf

E. Rechtin, Systems architecting: creating and building complex systems. Englewood Cliffs,
N.J: Prentice Hall, 1991.

143

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design patterns: elements of reusable
object-oriented software. in Addison-Wesley professional computing series. Reading, Mass:
Addison-Wesley, 1995.

B. Schindel, “INCOSE/OMG MBSE Patterns Working Group,” OMG Standards Development
Organization MBSE Wiki. Accessed: Jan. 19, 2023. [Online]. Available:
https://www.omgwiki.org/MBSE/doku.php?id=mbse:patterns:patterns

R. E.Johnson, “Components, frameworks, patterns,” SIGSOFT Softw. Eng. Notes, vol. 22, no.
3, pp. 10-17, May 1997, doi: 10.1145/258368.258378.

R. E. Johnson, “Frameworks = (components + patterns),” Commun. ACM, vol. 40, no. 10, pp.
39-42, Oct. 1997, doi: 10.1145/262793.262799.

W. D. Schindel and T. Peterson, “An Overview of Pattern-Based Systems Engineering (PBSE):
Leveraging MBSE Techniques,” presented at the INCOSE Enchantment Chapter Webinar,
May 14, 2014.

B. G. Cameron and E. F. Crawley, “Crafting platform strategy based on anticipated benefits
and costs,” in Advances in product family and product platform design, Springer, 2014, pp.
49-70.

C. Zhang and D. Budgen, “What do we know about the effectiveness of software design
patterns?,” IEEE Transactions on Software Engineering, vol. 38, no. 5, pp. 1213-1231, 2011.

N. G. Leveson and K. A. Weiss, “Making embedded software reuse practical and safe,” in
Proceedings of the 12th acm sigsoft twelfth international symposium on foundations of
software engineering, 2004, pp. 171-178.

D. Selva and E. F. Crawley, “VASSAR: Value assessment of system architectures using rules,”
in 2013 IEEE Aerospace Conference, |EEE, 2013, pp. 1-21.

B. H. Y. Koo, “A Meta-language for Systems Architecting,” Massachusetts Institute of
Technology, Cambridge, MA, 2005.

W. L. Simmons, “A framework for decision support in systems architecting,” PhD Thesis,
Massachusetts Institute of Technology, 2008.

N. P. Suh, Axiomatic design: advances and applications. in The MIT-Pappalardo series in
mechanical engineering. New York: Oxford University Press, 2001.

[61] J. Agte, O. de Weck, J. Sobieszczanski-Sobieski, P. Arendsen, A. Morris, and M. Spieck, “MDO:

assessment and direction for advancement—an opinion of one international group,” Struct
Multidisc Optim, vol. 40, no. 1-6, pp. 17-33, Jan. 2010, doi: 10.1007/s00158-009-0381-5.

[62] J. R. R. A. Martins and S. A. Ning, Engineering design optimization. Cambridge ; New York,

[63]
[64]

NY: Cambridge University Press, 2021.
R. Dechter, Constraint Processing. San Francisco: Morgan Kaufmann Publishers, 2003.

B. Williams, “Constraint Programming: Problem and Propagation,” presented at the 16.410
Lecture, Fall 2022, Oct. 31, 2022.

[65] A. R. Odoni and R. W. Simpson, “Review and Evaluation of National Airspace System

Models,” U.S. Department of Transportation, Federal Aviation Administration, FAA-EM-79-
12, Oct. 1979.

144

[66]

[67]

[68]

[69]

[70]

[71]

[72]

[73]

[74]

[75]

[76]

[77]

[78]

[79]

[80]

G. Pappas, C. Tomlin, J. Lygeros, D. Godbole, and S. Sastry, “A next generation architecture
for air traffic management systems,” in Proceedings of the 36th IEEE Conference on Decision
and Control, |IEEE, 1997.

M. A. Kammoun, N. Rezg, and Z. Achour, “New approach for air traffic management based
on control theory,” International Journal of Production Research, 2014.

P. K. Menon, G. D. Sweriduk, and K. D. Bilimoria, “New approach for modeling, analysis, and
control of air traffic flow,” Journal of guidance, control, and dynamics, 2004.

K. M. Corker, “Human performance simulation in the analysis of advanced air traffic
management,” in Proceedings of the 1999 Winter Simulation Conference, 1999.

B. F. Gore, B. L. Hooey, and D. C. Foyle, “NASA’s Use of Human Performance Models for
NextGen Concept Development and Evaluations,” in Proceedings of the 20th Behavior
Representation in Modeling & Simulation (BRIMS) Conference, 2011.

B. F. Gore, B. L. Hooey, E. Mahlstedt, and D. C. Foyle, “Evaluating NextGen Closely Spaced
Parallel Operations concepts with validated human performance models: Scenario
development and results,” NASA Technical Report NASA/TM-2013-216503, 2013.

K. D. Bilimoria, B. Sridhar, S. R. Grabbe, G. B. Chatterji, and K. S. Sheth, “FACET: Future ATM
concepts evaluation tool,” Air Traffic Control Quarterly, 2001.

M. Peters, M. Ballin, and J. Sakosky, “A multi-operator simulation for investigation of
distributed air traffic management concepts,” in AIAA Modeling and Simulation
Technologies Conference and Exhibit, 2002.

S. George et al., “Build 8 of the airspace concept evaluation system,” in AIAA Modeling and
Simulation Technologies Conference, 2011.

J. E. I. Robinson, A. Lee, and C. F. Lai, “Development of a High-Fidelity Simulation
Environment for Shadow-Mode Assessments of Air Traffic Concepts,” presented at the
Royal Aeronautical Society: Modeling and Simulation in Air Traffic Management
Conference, London, UK, Nov. 2017.

A. R. Pritchett et al., “Examining air transportation safety issues through agent-based
simulation incorporating human performance models,” in Proceedings of The 21st Digital
Avionics Systems Conference, Oct. 2002. doi: 10.1109/DASC.2002.1052917.

S. Lee, A. Pritchett, and D. Goldsman, “Hybrid agent-based simulation for analyzing the
national airspace system,” in Proceeding of the 2001 Winter Simulation Conference, |EEE,
2001.

M. W. Maier and E. Rechtin, The art of systems architecting, 3rd ed. Boca Raton: CRC Press,
2009.

F. DeRemer and H. H. Kron, “Programming-in-the-Large Versus Programming-in-the-Small,”
IIEEE Trans. Software Eng., vol. SE-2, no. 2, pp. 80-86, Jun. 1976, doi:
10.1109/TSE.1976.233534.

T. Ishimatsu, O. De Weck, J. Hoffman, Y. Ohkami, and R. Shishko, “A generalized multi-
commodity network flow model for space exploration logistics,” in AIAA SPACE 2013
Conference and Exposition, 2013, p. 5414.

145

[81]

[82]

[83]

[84]

[85]

[86]

[87]

O. De Weck, “Our Future on Earth and in Space: Engineering Systems as dynamic
Generalized Multi-Commodity Network Flow Systems,” presented at the Course 16.89
Guest Lecture, Apr. 06, 2022.

E. Yourdon and L. L. Constantine, Structured design: fundamentals of a discipline of
computer program and systems design. Englewood Cliffs, N.J: Prentice Hall, 1979.

L. von Bertalanffy, General System Theory: Foundations, Development, Applications. New
York: George Braziller Inc, 1968.

G. M. Weinberg, An introduction to general systems thinking: Gerald M. Weinberg, Silver
anniversary ed. New York: Dorset House, 2001.

K. Whitney, J. M. Bradley, D. E. Baugh, and C. W. C. Jr, “Systems theory as a foundation for
governance of complex systems,” International Journal of System of Systems Engineering,
vol. 6, no. 1-2, pp. 15-32, 2015.

P. M. Senge, The fifth discipline: the art and practice of the learning organization, Rev. and
Updated. New York: Doubleday/Currency, 2006.

K. M. Adams, P. T. Hester, J. M. Bradley, T. J. Meyers, and C. B. Keating, “Systems theory as
the foundation for understanding systems,” Systems Engineering, vol. 17, no. 1, pp. 112—
123, 2014.

[88] J. Sterman, Business dynamics: systems thinking and modeling for a complex world. Boston:

[89]

[90]

[91]

[92]

[93]

[94]

[95]

Irwin/McGraw-Hill, 2000.

N. Leveson and J. P. Thomas, “STPA Handbook.” Mar. 2018. [Online]. Available:
psas.scripts.mit.edu/home/get_file.php?name=STPA_handbook.pdf

H. M. Slominski, “Using STPA and CAST to Design for Serviceability and Diagnostics,”
Masters, Massachusetts Institute of Technology, Cambridge, MA, 2020.

A. Kharsansky, “A systemic approach toward scalable, reliable and safe satellite
constellations,” MIT System Design and Management Program, Masters Thesis, Sep. 2020.
M. E. France, “Engineering for Humans: A New Extension to STPA,” MIT Department of
Aeronautics and Astronautics, Masters Thesis, Jun. 2017.

D. Horney, “Systems-Theoretic Process Analysis and Safety-Guided Design of Military
Systems,” Masters, MIT, 2017.

C. H. Fleming, “Safety-Driven Early Concept Analysis and Development,” MIT Department of
Aeronautics and Astronautics, PhD Dissertation, Feb. 2015.

A. N. Kopeikin, N. G. Leveson, and N. A. Neogi, “Defining Collaborative Control Interactions
Using Systems Theory,” INCOSE International Symp, vol. 33, no. 1, pp. 895-909, Jul. 2023.

[96] J. Krozel, M. Peters, K. D. Bilimoria, C. Lee, and J. S. B. Mitchell, “System Performance

Characteristics of Centralized and Decentralized Air Traffic Separation Strategies,” Air Traffic
Control Quarterly, vol. 9, no. 4, pp. 311-332, Oct. 2001, doi: 10.2514/atcq.9.4.311.

[97] J. Hoekstra, R. Van Gent, and R. Ruigrok, “Conceptual design of free flight with airborne

separation assurance,” in Guidance, Navigation, and Control Conference and Exhibit,
Boston,MA,U.S.A.: American Institute of Aeronautics and Astronautics, Aug. 1998. doi:
10.2514/6.1998-4239.

146

[98] M. Ballin, J. Hoekstra, D. Wing, and G. Lohr, “NASA Langley and NLR research of distributed
air/ground traffic management,” in AIAA’s Aircraft Technology, Integration, and Operations
(ATIO) 2002 Technical Forum, 2002, p. 5826.

[99] C.Tomlin, G.J. Pappas, and S. Sastry, “Conflict resolution for air traffic management: A study
in multiagent hybrid systems,” IEEE Transactions on automatic control, vol. 43, no. 4, pp.
509-521, 1998.

[100] Federal Aviation Administration, “Urban Air Mobility Concept of Operations v2.0,” Apr.
2023.

[101] J. M. Hoekstra, R. N. H. W. van Gent, and R. C. J. Ruigrok, “Designing for safety: the ‘free
flight’ air traffic management concept,” Reliability Engineering & System Safety, vol. 75, no.
2, pp. 215-232, Feb. 2002, doi: 10.1016/50951-8320(01)00096-5.

[102] P. H. Abreu, E. Oliveira, A. Camara, and D. Silva, “Comparing a centralized and
decentralized multi-agent approaches to air traffic control,” in Proceedings of the 28th
European Simulation and Modelling Conference, Porto, Portugal, 2014, pp. 189-193.

[103] M. Xue, “Urban Air Mobility Conflict Resolution: Centralized or Decentralized?,”
presented at the AIAA Aviation 2020, 2020.

[104] H. A. Blom, G. J. Bakker, B. Klein Obbink, and M. B. Klompstra, “Free flight safety risk
modelling and simulation,” 2006, Accessed: Jun. 28, 2024. [Online]. Available:
https://reports.nir.nl/bitstream/10921/340/1/TP-2006-290.pdf

[105] D. Wing et al., “Comparison of ground-based and airborne function allocation concepts
for NextGen using human-in-the-loop simulations,” in 10th AIAA Aviation Technology,
Integration, and Operations (ATIO) Conference, 2010, p. 9293.

[106] H.A.P.Blom and G. J. Bakker, “Safety Evaluation of Advanced Self-Separation Under Very
High En Route Traffic Demand,” Journal of Aerospace Information Systems, vol. 12, no. 6,
pp. 413-427, Jun. 2015, doi: 10.2514/1.1010243.

[107] Federal Aviation Administration, “Introduction to TCAS Il, Version 7.1.” Federal Aviation
Administration, Feb. 28, 2011.

[108] German Federal Bureau of Aircraft Accidents Investigation, “Investigation Report,”
German Federal Bureau of Aircraft Accidents Investigation, May 2004.

[109] B. Wong, “A STAMP model of the Uberlingen aircraft collision accident,” Thesis,
Massachusetts Institute of Technology, 2004. Accessed: Sep. 05, 2024. [Online]. Available:
https://dspace.mit.edu/handle/1721.1/28861

[110] N. G. Leveson, “Intent specifications: an approach to building human-centered
specifications,” IEEE Transactions on Software Engineering, vol. 26, no. 1, pp. 15-35, Jan.
2000.

[111] J. A. Dewar, Assumption-based planning: a tool for reducing avoidable surprises. in RAND
studies in policy analysis. Cambridge ; New York: Cambridge University Press, 2002.

[112] H. W. Rittel and M. M. Webber, “Dilemmas in a general theory of planning,” Policy
sciences, vol. 4, no. 2, pp. 155-169, 1973.

[113] R. O. Mason and I. I. Mitroff, Challenging strategic planning assumptions: theory, cases,
and techniques. New York: Wiley, 1981.

147

[114] National Transportation Safety Board, “Assumptions Used in the Safety Assessment
Process and the Effects of Multiple Alerts and Indications on Pilot Performance,” Safety
Recommendation Report ASR-19-01, Sep. 2019.

[115] “Conflict Solving,” Skybrary. [Online]. Available: https://skybrary.aero/articles/conflict-
solving#:~:text=A%20situation%20where%20there%20is,Source%3A%20ICAO

148

Appendix A

Design Iteration 1 — Initial STPA Analysis of NAS

This appendix contains the STPA results for the initial analysis of the NAS that was performed
at the beginning of design iteration 1 (shown in Section 4.1). For this STPA analysis, the losses,
hazards, and control structure were already presented in Table 7, Table 8, and Figure 24
respectively. This appendix presents the full set of UCAs and scenarios that were generated for
the abstract Coordination control action in that control structure. In Table A-1 and Table A-2,
UCAs for which causal scenarios were generated are highlighted in blue.

A.1 Unsafe Control Actions (UCAs) for Coordination Control Action
Table A-1: Providing and not providing UCAs for Coordination Control Action

Not Providing

Providing

UCA-1.1: Air Traffic Management does not
coordinate the interaction between two UAM
aircraft or a UAM aircraft and another airspace
user when a collision between them is imminent
[H-1, H-3]

UCA-1.15: Air Traffic Management coordinates air
traffic to allow UAM aircraft to access the airspace
when the NAS does not have sufficient capacity
[H-1, H-3, H-4]

UCA-1.2: Air Traffic Management does not
coordinate air traffic in the airspace to assist
UAM aircraft in an emergency [H-1, H-2, H-3]

UCA-1.16: Air Traffic Management coordinates the
movement of UAM aircraft when UAM aircraft
need to access an airport and that coordination
interferes with approach/arrival traffic for a
nearby airport [H-1, H-3, H-6]

UCA-1.3: Air Traffic Management does not
coordinate the movement of UAM aircraft when
UAM aircraft are interfering with
approach/arrival traffic for a nearby airport [H-1,
H-3]

UCA-1.17: Air Traffic Management coordinates air
traffic to give UAM aircraft access to the airspace
when UAM aircraft do not meet the necessary
criteria for access to an airspace [H-1, H-2, H-3, H-
6]

UCA-1.4: Air Traffic Management does not
coordinate air traffic to allow UAM aircraft to
access the airspace when UAM aircraft need to
execute a mission and meet the criteria for
access to that airspace [H-3]

UCA-1.18: Air Traffic Management coordinates
UAM aircraft when their flight paths will result in
excessive environmental effect [H-4]

UCA-1.5: Air Traffic Management does not
coordinate the movements of UAM aircraft
when they are about to fly into a section of
airspace where air traffic must be excluded (e.g.,
for safety or security reasons) [H-5]

UCA-1.19: Air Traffic Management coordinates
UAM aircraft such that they interfere with the
operations of other NAS users [H-3, H-6]

UCA-1.6: Air Traffic Management does not
coordinate UAM air traffic to reduce the number
of aircraft using the airspace when it exceeds
the capacity of Air Traffic Management to
coordinate them [H-1, H-3, H-4, H-5]

UCA-1.20: Air Traffic Management provides
coordination that UAM aircraft are not fully
capable of executing [H-1, H-2, H-3, H-6]

149

Not Providing

Providing

UCA-1.7: Air Traffic Management does not
coordinate UAM air traffic when demand for a
particular part of the airspace exceeds
acceptable levels of use [H-4]

UCA-1.21: Air Traffic Management provides
coordination that causes a collision with an
obstacle or terrain [H-1, H-2, H-3, H-5]

UCA-1.8: Air Traffic Management does not
coordinate the movements of UAM aircraft
when they interfere with the operations of other
NAS users [H-1, H-3]

UCA-1.22: Air Traffic Management provides
coordination that causes a collision with another
aircraft [H-1, H-2, H-3]

UCA-1.9: Air Traffic Management does not
coordinate UAM aircraft when their operation
has an excessive environmental effect [H-4]

UCA-1.23: Air Traffic provides coordination when
two UAM aircraft are departing or arriving at the
same location at the same time [H-1, H-3, H-5, H-
6]

UCA-1.10: Air Traffic Management does not
coordinate UAM aircraft when they need to
access a conventional airport [H-3]

UCA-1.24: Air Traffic Management provides
coordination that causes unnecessary or
unacceptable operational impacts (e.g., delays) to
the flight [H-3, H-6]

UCA-1.11: Air Traffic Management does not
coordinate UAM aircraft when two aircraft want
access to the same location at the same time [H-
3]

UCA-1.25: Air Traffic Management provides
coordination when that coordination leads the
aircraft toward inclement weather that could
interfere with flight operations [H-1, H-2, H-3, H-5]

UCA-1.12: Air Traffic Management does not
coordinate UAM aircraft when they are close to
an obstacle or terrain [H-1]

UCA-1.26: Air Traffic Management provides
coordination to restrict UAM flights when the
restrictions cause travel time using UAM to
increase beyond acceptable levels [H-3]

UCA-1.13: Air Traffic Management does not
coordinate UAM aircraft when inclement
weather is approaching that could interfere with
flight operations [H-1, H-2, H-3]

UCA-1.27: Air Traffic Management provides
coordination to UAM traffic that forces them to
use airspace where the ride is unpleasant or
unsafe for passengers [H-2, H-6]

UCA-1.14: Air Traffic Management does not
coordinate UAM aircraft when congestion has
increased beyond acceptable levels [H-1, H-3, H-
4]

UCA-1.28: Air Traffic Management provides
coordination to UAM aircraft that does not satisfy
priority needs (e.g., an aircraft running out of fuel
needs access to an airport sooner than one that
has plenty of fuel) [H-1, H-2, H-3]

150

Table A-2: Too early/late and applied too long/stopped too soon UCAs for Coordination Control Action

Too Early / Too Late

Applied Too Long / Stopped Too Soon

UCA-1.29: Air Traffic Management coordinates
the interaction between two UAM aircraft or a
UAM aircraft and another airspace user too late
to prevent violation of minimum separation
between them [H-1, H-2, H-3]

UCA-1.35: Air Traffic Management provides
coordination to UAM aircraft in the airspace too
long when conditions have changed such that the
coordination provided is no longer valid [H-1, H-2,
H-3, H-4, H-6]

UCA-1.30: Air Traffic Management coordinates
UAM aircraft too late to assist them in an
emergency [H-1, H-2, H-3]

UCA-1.36: Air Traffic Management stops
coordinating air traffic in the airspace too soon
before the emergency experienced by UAM aircraft
is resolved [H-1, H-2, H-3]

UCA-1.31: Air Traffic Management coordinates
air traffic to allow UAM aircraft access to the
airspace too late after the time window in
which UAM aircraft need that access [H-3]

UCA-1.37: Air Traffic Management stops
coordinating UAM aircraft too soon to prevent
UAM aircraft from entering a restricted section of
airspace when air traffic still needs to be excluded
from that section of airspace [H-2, H-4, H-6]

UCA-1.32: Air Traffic Management coordinates
UAM aircraft too late after environmental
effects of UAM operations have exceeded
acceptable levels [H-4]

UCA-1.38: Air Traffic Management stops
coordinating UAM aircraft too soon before
environmental effects of system operation have
returned to acceptable levels [H-4]

UCA-1.33: Air Traffic Management provides
coordination too late after congestion has
exceeded acceptable levels [H-1, H-3, H-4, H-6]

UCA-1.39: Air Traffic Management restricts air
traffic for too long after environmental effects of
system operation have returned to acceptable
levels [H-3]

UCA-1.34: Air Traffic Management provides
coordination too late after UAM aircraft
interfere with the operations of another
airspace user [H-3, H-6]

UCA-1.40: Air Traffic Management provides
coordination to restrict UAM flights for too long
after congestion is within acceptable levels but
travel time remains unacceptable or service
consistency remains unacceptable [H-3]

UCA-1.41: Air Traffic Management stops providing
coordination too soon when there is pressure to
allow more flights to take place but UAM cannot be
safely operated with a higher traffic density [H-1, H-
3, H-4, H-6]

151

A.2 Causal Scenarios for Selected UCAs

This section shows the causal scenarios that were identified for select UCAs highlighted in
blue in Table A-1 and Table A-2. Note that each scenario is also traced to the system requirement
generated to mitigate or prevent it using the requirement links in square braces included at the
end of each requirement.

Scenarios for UCA-1.1: Air Traffic Management does not coordinate the interaction between two
UAM aircraft or a UAM aircraft and another airspace user when a collision between them is
imminent [H-1, H-3]

CSs-1.1.1. Air Traffic Management does not provide coordination when a collision is
imminent. Air Traffic Management has received feedback of the potential conflict, but does
not issue coordination because:
CS-1.1.1-1. The Air Traffic Management believes at least one of the aircraft is a false positive
and therefore ignores the feedback and wrongly believes that a collision is not actually
imminent [~L Reg-1, Req-2]
CS-1.1.1-2. Alternatively, Air Traffic Management is pre-occupied (either in the human or
automated sense) with other tasks and does not have the capacity to recognize or handle the
potential collision and provide coordination to prevent it [Reg-3, Reg-4]
CS-1.1.1-3. The Air Traffic Management wrongly believes that the aircraft involved have
already been provided coordination and therefore wrongly believes that it does not need to
provide further coordination to prevent the collision [Reg-5]
CS-1.1.1-4. The Air Traffic Management believes at least one of the aircraft will recognize the
potential collision and change its path to avoid the collision and therefore the Air Traffic
Management wrongly believes that it does not need to provide coordination to prevent the
collision [{ Req-5]
CS-1.1.1-5. The Air Traffic Management is unable to select an acceptable coordination
solution because the environment is constrained and there are no options available to the
Air Traffic Management to coordinate the aircraft that does not cause another violation of
minimum separation [{ Reg-6]
Cs-1.1.2. Air Traffic Management does not receive feedback of the potential conflict
because:
CS-1.1.2-1.Equipment used to detect and identify aircraft in the airspace has failed or is
delayed and either only partial information about an aircraft is received by Air Traffic
Management or no information at all is received by Air Traffic Management [Reqg-4, Req-7]
CS-1.1.2-2.There are more aircraft in the airspace than Air Traffic Management is capable of
detecting and tracking simultaneously. As a result, it receives incomplete feedback about the
aircraft present in the airspace. [V Req-8]
CS-1.1.2-3.Equipment used by the Air Traffic Management to detect and track aircraft is
insufficiently performant (e.g., insufficient resolution or update rate). As a result, information

152

regarding the position, speed or intent of the aircraft are inaccurate or incomplete.
Alternatively, certain parts of that information might be missing. In either case, the Air Traffic
Management therefore does not receive all the information needed to recognize potential
conflict. [{ Reg-4]
CS-1.1.2-4.Traffic data is manipulated such that at least one of the aircraft is removed and
therefore the Air Traffic Management is unaware of the presence of that aircraft and
therefore does not recognize the potential conflict [Reg-9]
CS-1.1.2-5.The Air Traffic Management is not aware of future intended movements of the
aircraft (e.g., about to turn left into the path of another aircraft) and wrongly assumes that
the aircraft will continue on their current trajectories. Air Traffic Management therefore
wrongly believes that a collision is not imminent. [Reg-10, Reg-11]
CS-1.1.2-6.The Air Traffic Management has wrong or out-of-date information about the
future intended movements from either or both aircraft and wrongly believes based on that
intent information that a collision is not imminent [~L Reg-11]
CS-1.1.3. Air Traffic Management provides coordination when a collision is imminent.
However, that control is not received by the aircraft because:
CS-1.1.3-1.The method for communicating that coordination to the aircraft has failed, is
unavailable or is degraded by environmental conditions [Reg-12, Reg-13]
CS-1.1.3-2.The coordination channel is over capacity and Air Traffic Management is unable
to transmit its coordination to the aircraft [i Reg-3, Req-5, Reg-12, Reqg-13]
CS-1.1.3-3.The communication channel used by Air Traffic Management to transmit its
coordination does not match the channel that the aircraft is listening on to receive that
coordination [Req-13]
CS-1.1.3-4.Air Traffic Management transmits coordination to the wrong aircraft and
therefore the intended aircraft does not receive that coordination [{ Req-14]
CS-1.1.3-5.Air Traffic Management transmits coordination to the correct aircraft but a
different aircraft wrongly believes the coordination is for them and executes the coordination
[V Reg-13]
CS-1.1.4. Air Traffic Management provides coordination when a collision is imminent. The
coordination is received by the aircraft but it is not effective in preventing violation of minimum
separation because:
CS-1.1.4-1.The aircraft is unable to execute the coordination provided by Air Traffic
Management to avoid violation of minimum separation. This might occur if:

CS-1.1.4-1.1. The coordination provided by Air Traffic Management exceeds the
capabilities of the aircraft & Reqg-15]

CS-1.1.4-1.2. The aircraft is preoccupied with another task and does not attempt to
execute the coordination before the aircraft violates minimum separation. It may
also occur if the provided coordination is incorrect or insufficient for resolving the
conflict. [¥ Reqg-5, Reqg-12]

153

CS-1.1.4-1.3. The aircraft might believe that coordination provided by the Air Traffic
Management would result in another violation of minimum separation and
therefore choose to ignore the Air Traffic Management’s coordination and make an
independent decision which results in a violation of minimum separation anyway [
Req-6, Req-17]

CS-1.1.4-1.4. The coordination provided by Air Traffic Management resolves the original
imminent collision but causes another violation of minimum separation [Reg-6,
Req-17]

CS-1.1.4-2.There is insufficient time after the Air Traffic Management provides coordination
for the aircraft to execute the coordination to avoid violation of minimum separation [Reg-
18]

CS-1.1.4-3.The aircraft believes that it has executed the coordination even though it has not
actually done so. [Reg-5]

CS-1.1.4-4.The aircraft receives the coordination but deliberately chooses to ignore it (e.g.,
hijacking or other malicious activity) [Reg-80]

Scenarios for UCA-1.8: Air Traffic Management does not coordinate the movements of UAM
aircraft when they interfere with the ability of other NAS users to achieve their missions [H-4]

CS-1.8.1. Air Traffic Management has received feedback that UAM aircraft are interfering
with the operations of other NAS users but does not issue coordination because:
CS-1.8.1-1. Air Traffic Management is preoccupied addressing higher priority tasks (e.g.,

assisting an aircraft experiencing an emergency) and does not have the capacity to
provide coordination to reduce the impact of UAM aircraft on other NAS users [Reg-3,
Req-4]

CS-1.8.1-2. Air Traffic Management wrongly believes that UAM aircraft’s impact on other NAS
users is negligible or tolerable by the other NAS users and therefore there is no need to
issue coordination to reduce the impact & Req-20, Reqg-21]

CS-1.8.1-3. Air Traffic Management does not recognize that the operation of UAM aircraft is
negatively affecting a mission to fulfill a public benefit (e.g., search & rescue, medevac,
public safety operations) and instead believes that the mission only fulfills
commercial/private interests and therefore wrongly decides to allow the UAM aircraft
to interfere with the operation of the other NAS users without providing coordination [
Reg-20, Req-21]

CS-1.8.1-4. Air Traffic Management does not realize that another NAS user has a time-critical
mission to execute (e.g., cargo that needs to be delivered to the destination by a certain
time) or a time-critical need (e.g., running out of fuel and cannot maintain a hold) and
believes that the other NAS user’s mission can be delayed for the UAM aircraft and
therefore wrongly decides not to provide coordination to avoid the delay for the other
NAS user [\ Reg-20, Reg-21]

154

CS-1.8.1-5.Air Traffic Management is unable to find a coordination solution that avoids
interference with the operations of other NAS users because there is insufficient capacity
in the system to prevent NAS users affecting each other’s operations [Reg-3, Req-66]

CS-1.8.1-6.Air Traffic Management is told by federal regulators to prioritize the UAM aircraft
over other NAS users and the Air Traffic Management therefore chooses to ignore the
feedback and does not issue coordination to avoid interference with the other NAS users
[V Reg-20, Reg-21, Reg-22, Reg-39]

CS-1.8.1-7.Air Traffic Management has incorrect information about the flight plans and
acceptable interference limits of other airspace users and therefore do not realize that a
UAM flight will interfere with it [~l« Reg-11, Reqg-21]

CS-1.8.2. Air Traffic Management has not received feedback that UAM aircraft are
interfering with the operations of other NAS users because:

CS-1.8.2-1. Air Traffic Management does not have sufficient information about the mission or
intentions of other NAS users or the UAM aircraft to know that UAM aircraft are
interfering with their operations. [Reg-11]

CS-1.8.2-2.Air Traffic Management does not have sufficiently performant detection or
reporting mechanisms to identify instances when UAM aircraft are interfering with the
operations of other NAS users & Reg-22]

CS-1.8.2-3.Detection or reporting mechanisms available to Air Traffic Management only
report interferences with a delay large enough that by the time Air Traffic Management
receives feedback that UAM aircraft are interfering with the operations of other NAS
users, the interference is no longer occurring & Reg-4, Req-22]

CS-1.8.2-4.The impact to operations of other NAS users occurs slowly/gradually or there is a
small impact to a large number of NAS users and Air Traffic Management does not
receive feedback about the overall extent of the impact to the operations of other NAS
users [Req-22]

CS-1.8.2-5. Air Traffic Management does not receive direct feedback about interference and
only uses UAM congestion level as their measure of whether the flight operations of
other airspace users might be impacted by UAM flights. Thus, when other airspace users
are impacted while UAM congestion is below threshold, Air Traffic Management wrongly
believes there is no need to issue coordination [sL Req-22]

CS-1.8.3. Air Traffic Management provides coordination when UAM aircraft interfere with
the operations of other NAS users. Scenarios are similar to those for CS-1.1.3.
CS-1.8.4. Air Traffic Management provides coordination to prevent a UAM aircraft from

interfering with the operations of other NAS users. The coordination is received by UAM

aircraft but is not effective in preventing interference because:

CS-1.8.4-1.The Air Traffic Management identifies or is alerted to the impending interference
at the last minute and does not provide the coordination with enough time for UAM
aircraft to respond before they interfere with the operation of other NAS users N Reg-
18, Req-22, Reg-23]

155

CS-1.8.4-2.Air Traffic Management changes its coordination to avoid an interference and
provides that coordination at the last minute. & Req-18, Req-23]

Scenarios for UCA-1.14: Air Traffic Management does not coordinate UAM aircraft when
congestion has increased beyond acceptable levels [H-1, H-3, H-4]

CS-1.14.1. Air Traffic Management receives feedback that congestion has increased beyond
acceptable levels but does not coordinate UAM aircraft because:

CS-1.14.1-1. Air traffic management believes that although congestion has increased
beyond acceptable levels, the accident risk has not increased because UAM aircraft are
also improving their collision avoidance capabilities. As a result, they believe that they
do not need to coordinate UAM aircraft to prevent a collision. [Reg-36, Req-37]

CS-1.14.1-2. Although congestion has exceeded threshold levels along certain routes,
Air Traffic Management wrongly believe and assume that UAM operators will gradually
reroute aircraft along other routes to reduce congestion. As a result, they do not issue
coordination themselves [J« Req-30, Reg-39]

Scenarios for UCA-1.32: Air Traffic Management coordinates UAM aircraft too late after
environmental effects of UAM operations have exceeded acceptable levels [H-4]

CS-1.32.1. Air Traffic Management received feedback on time indicating that
environmental effects have exceeded acceptable levels but provide coordination too late
because:

CS-1.32.1-1. They have the wrong mental model of the acceptable level of
environmental effect and wrongly believe that the environmental effect is still
acceptable. As a result, they do not issue coordination to limit further increase in
environmental effects [{ Req-25]

CS-1.32.1-2. Although they recognize that the environmental effect has been exceeded,
they wrongly believe that UAM operators will curb further increase in environmental
effects themselves and therefore do not take any action themselves \ Req-30, Reqg-31]

CS-1.32.1-3. Air Traffic Management wrongly believes that UAM traffic will reduce soon
(e.g., peak period will end, surge will subside) and therefore believes that a momentary
exceedance of acceptable environmental effects can be tolerated & Req-27]

CS-1.32.1-4. Congestion is not at unsafe limits and ridership is high. As such, Air Traffic
Management attempts to continue to allow flights to depart, hoping to meet as much of
the demand for flights as possible. As a result, they do not start to restrict flights to curb
environmental effects until they have exceeded acceptable levels W Req-27]

CS-1.32.2. Air Traffic Management does not receive feedback that the environmental effect
of UAM operations have exceeded acceptable levels because

156

CS-1.32.2-1. There is a delay reporting these environmental effects to Air Traffic
Management (e.g., reports must be manually made by community members). As a result,
by the time Air Traffic Management is aware of these reports, acceptable levels have
already been exceeded [Reg-25]

CS-1.32.2-2. Air Traffic Management only receives feedback when levels have been
exceeded and therefore is unable to take action before levels have been exceeded [{
Req-26]

CS-1.32.2-3. Air Traffic Management has erroneous data about the current state of the

airspace and the future intent of aircraft and therefore have the wrong mental model of
what the anticipated environmental effect of UAM will be in the future. As a result, they
do not issue coordination to limit the environmental impact of UAM operations until the
tolerable threshold has already been exceeded [Reqg-7]

Scenarios for UCA-1.33: Air Traffic Management provides coordination too late after congestion
has exceeded acceptable levels [H-1, H-3, H-4, H-6]

CS-1.33.1. Air Traffic Management has received feedback that congestion has exceeded
acceptable levels but provides coordination too late after congestion has exceeded
acceptable levels because:

CS-1.33.1-1. There is pressure from UAM operators not to restrict flights to avoid
increasing the level of ride sharing amongst passengers. As a result, Air Traffic
Management chooses to wait to impose restrictions on flights [Req-28, Req-29]

CS-1.33.1-2. Air Traffic Management believes that the demand surge (e.g., caused by
rush hour, a major sporting event) will shortly subside and therefore believes traffic
volume will reduce without requiring additional intervention [Req-30, Reg-31]

CS-1.33.1-3. Air Traffic Management has the wrong mental model of the threshold
congestion at which coordination is needed and therefore wrongly believes that
congestion needs to worsen further before they need to provide coordination [\ Reg-
26, Reg-31, Reqg-32]

CS-1.33.1-4. Air Traffic Management is busy coordinating non-UAM aircraft and does
not process the feedback showing UAM congestion has increased beyond acceptable
levels until the congestion level has exceeded acceptable levels [Req-4]

CS-1.33.2. Air Traffic Management does not receive feedback indicating that congestion
has exceeded acceptable levels on time because:
CS-1.33.2-1. Data indicating the level of UAM congestion is reported to Air Traffic

Management with a delay. As a result, Air Traffic Management does not recognize that
coordination is needed to reduce the level of congestion until congestion has exceeded
acceptable levels [V Reqg-1]

Scenarios for UCA-1.34: Air Traffic Management provides coordination too late after UAM
aircraft interfere with the operations of another airspace user [H-3, H-6]

157

CS-1.34.1. Air Traffic Management receives feedback that indicated that UAM aircraft
are/will interfere with the operations of other airspace users on time. However, they
provide coordination too late because:

CS-1.34.1-1. The other airspace user (e.g., a public safety flight, private jet flight) is also
conducting a short-notice/on-demand operation and Air Traffic Management does not
have sufficient time to provide adequate coordination to prevent the impact of UAM
aircraft on their operation before it occurs [Reg-41, Req-42]

CS-1.34.1-2. The other airspace user changes their flight plan at the last minute such
that Air Traffic Management does not have sufficient time to provide adequate
coordination to prevent the impact of UAM aircraft on their operation before it occurs
[Reg-41, Reqg-42]

CS-1.34.1-3. Air Traffic Management receives feedback of the interference with very
short notice to when the interference will occur (e.g., because the UAM flight was being
performed on-demand). As a result, there is insufficient time to make a coordination
decision before the flight is performed and the interference occurs & Reg-23]

Scenarios for UCA-1.41: Air Traffic Management stops providing coordination too soon when
there is pressure to allow more flights to take place but UAM cannot be safely operated with a
higher traffic density [H-1, H-3, H-4, H-6]

CS-1.41.1. Air Traffic Management received feedback on time that UAM cannot be safely
operated with a higher traffic density but still decide to stop coordinating aircraft because:
CS-1.41.1-1. Air Traffic Management believes that UAM traffic density will soon

decrease significantly (e.g., as rush hour ends) and therefore believes that allowing a
temporary rise in UAM flights to reduce delays is permissible [Reg-30]

CS-1.41.1-2. Air Traffic Management assumes that unexpected incidents or
emergencies will not arise and believes they can handle a higher density of UAM aircraft.
However, when an emergency arises, they are unable to safely coordinate all of the
aircraft while addressing the emergency [Req-34]

CS-1.41.2. Air Traffic Management does not receive feedback that indicates that UAM
cannot be safely operated with a higher traffic density because:

CS-1.41.2-1. Under pressure to improve profitability and serve more passengers, UAM
operators provide feedback to Air Traffic Management that indicates that the capabilities
of their aircraft are sufficient for operating at a higher traffic density even though they
are not. Without verifying this feedback, Air Traffic Management uses it to and update
its process model of the level of UAM traffic that UAM operators can handle safely make
its decisions [»L Reg-35]

158

Appendix B Design Iteration 1 — Requirements and Control
Elements

In this appendix, the system requirements and control elements that were identified to create
the iteration 1 conceptual architecture (shown in Figure 28) are presented. In addition, any
underlying assumptions associated with the requirements or control elements are included. Note
that this appendix shows just the final set of requirements and control elements that were
identified after several iterations and does not show how the requirements and control elements
evolved between iterations.

B.1 NAS System-Level Collision Avoidance Requirements

Reg-1. ATM system shall be able to track all aircraft in the airspace to ensure sufficient separation [RC-
1]

System Assumption: Assumes it is possible to achieve tracking performance of <relevant minimum
tracking performance specifications>

Reg-2. ATM system shall verify erroneous detections within <TBD time> before choosing to ignore them
[\ RC-74]

Environment Assumption: Assumes that flights are known within <TBD> time of desired departure

System Assumption: There will always be at least 1 alternative option for tracking aircraft in the
airspace that can be used to verify a suspected erroneous detection [Req-46]

Reg-3. ATM system shall ensure that sufficient capacity is available to detect and coordinate all aircraft
that have or will need access to the airspace [Resp-2]

Environment Assumption: Assumes that surges in demand for flights will occur with at least <TBD
mins> of advance notice for the NAS to implement plans to mitigate system impacts

System Assumption: Assumes that Req-8 is also carried out at the same time whenever demand
nears capacity limits [Req-61]

Reqg-4. ATM system shall coordinate the movement of aircraft to resolve any potential conflicts either
between two aircraft or a conflict of an aircraft trajectory with terrain [{ Resp-1 (iteration 1), Resp-
1.1 (iteration 2)]

Environment Assumption: Assumes that flights are known within <TBD> time of desired departure

System Assumption: Assumes coordination decisions can be made within <TBD time> [Req-49]

System Assumption: Assumes that there is coordination with Req-3 to ensure sufficient capacity is
available to manage the current or anticipated future level of traffic [Req-48]

Reqg-5. ATM system shall ensure that aircraft that need coordination have received coordination, are
executing it correctly and that the risk of collision or interference is no longer present [{ RC-6
(iteration 1), Resp-1.4 (iteration 2)]

System Assumption: Assumes that there is coordination between this requirement and Req-4, and
Req-27 to ensure that coordination is effective [Req-31, Req-50]

Reqg-6. ATM system shall ensure that acceptable coordination options are always available for aircraft to
avoid violation of minimum separation [{ Resp-3]

159

System Assumption: Assumes that there is sufficient airspace available (low enough density) to
allow alternative movement options to be established [Req-51]

System Assumption: Assumes that there is coordination with Req-8 to manage airspace usage to
ensure sufficient airspace is available for this [Req-52]

Req-7. ATM system shall detect when information needed to identify and track aircraft is missing,
delayed, erroneous or not available and take action to restore that information [{ RC-75]

System Assumption: Alternative options are available for obtaining tracking information or
checking the status of tracking equipment [Req-46]

System Assumption: Assumes there is coordination with Req-4 to account for information being
out-of-date when making coordination decisions [Req-53]

Reg-8. ATM system shall only allow as many users to access the airspace as it is capable of detecting,
tracking and coordinating [{ Resp-4]

System Assumption: Assumes Reg-3 is also performed to manage capacity (e.g., during surge
times) [Req-47]
Reg-9. ATM system shall prevent the manipulation or tampering of data used for detecting and tracking
aircraft [i« RC-19]
System Assumption: Assumes Req-3 is also performed to manage capacity (e.g., during surge
times) [Req-47]
Reg-10.ATM system shall account for intended movements of aircraft in addition to current trajectories
to detect potential collisions [i RC-2]

Environment Assumption: Assumes that aircraft are willing to share their intended trajectories for
at least <TBD time> into the future (e.g., no privacy concerns)

Req-11.ATM system shall ensure that information about the intent, mission, acceptable operational
impacts and future intended movements of aircraft is available, does not contain errors and is kept

updated [»L RC-32]

Environment Assumption: Assumes users are willing to share mission and intent information

System Assumption: Assumes there is coordination with Req-4 to account for intent information
being out-of-date when making coordination decisions [Req-56]

Reg-12.ATM system shall coordinate the movements of other aircraft to prevent violation of minimum
separation with an aircraft that is unable to communicate or not responding [{ RC-15]

System Assumption: Assumes coordination with Req-6 where the availability of alternative
movement options is already being assured [Req-57]
System Assumption: Assumes that when it is discovered that an aircraft is unable to communicate,
new coordination decisions can be made within <TBD> time to resolve any imminent collisions
[Req-58]
Req-13.ATM system shall ensure that aircraft have received the coordination being communicated [{ RC-
26]

Req-14.ATM system shall ensure that coordination is communicated to the correct aircraft [\ RC-117]

Reqg-15.ATM system shall ensure that coordination provided to the aircraft is within the capabilities of the
aircraft [i« RC-3]

Req-17.ATM system shall ensure that coordination provided to the aircraft does not cause another
violation of minimum separation [l« RC-4]

160

Reg-18.ATM system shall provide coordination that allows for and accounts for delays due to response
time of <TBD> to enact the coordination [RC-5]

Req-20.ATM system shall consider access priorities when issuing coordination or managing access to the
airspace [~L RC-118]

Reg-21.ATM system shall account for any users’ constraints on mission execution in addition to access
priorities to determine which impacts to operations are acceptable when coordinating aircraft [{ RC-
7]

Req-22.ATM system shall notify users if their operations will be impacted beyond acceptable [{ RC-43]

Reg-23.ATM system shall be able to detect any unexpected operational impacts experienced by an
airspace user within <TBD> time of the interference occurring [{ RC-24]

Req-24.ATM system shall respond to impending interference and issue coordination instructions within
TBD period of time [i« RC-8]

Environment Assumption: Assumes that flights are known within <TBD> time of desired departure

System Assumption: Assumes that flight operations can respond to last-minute coordination
within <TBD> time [Req-18]

Reqg-25.ATM system shall establish and maintain acceptable levels of noise and visual pollution levels as
well as emissions levels

Reqg-26.ATM system shall be able to monitor environmental effects with acceptable levels of performance
to enable high levels of environmental effects to be detected before the exceedance occurs [RC-
17]

Req-27.ATM system shall be able to make preemptive coordination decisions based on trends in
environmental effects and congestion to help prevent acceptable thresholds from being exceeded

System Assumption: It is assumed that this requirement is performed in coordination with Req-4
(coordination for collision avoidance) [Req-55]

System Assumption: It is assumed that thresholds defined in Req-25 and Req-32 are used in this
requirement [Req-33]

Req-28.ATM system shall prioritize flight safety over UAM passenger safety if both cannot be assured [{
RC-9]
Environment Assumption: This assumes that UAM operators will be able to work with other NAS
stakeholders to manage passenger safety even if flights need to be restricted to maintain airspace
safety

Req-29.ATM system shall ensure that ride sharing does not exceed levels necessary to ensure safety of
UAM riders

Req-30. If anticipated conditions are used to make coordination decisions, ATM system shall confirm that
the anticipated conditions do occur

System Assumption: Assumes that if anticipated conditions do not occur within <TBD time>,
coordination decisions are re-evaluated via Req-4 and Req-27 [Req-31]

Reqg-31.If anticipated conditions do not occur within <TBD> time, ATM system shall re-evaluate its
coordination decisions [i« RC-37]

Reg-32.ATM system shall establish and maintain clear and measurable specifications for the threshold
congestion that is acceptable

Req-33.ATM system shall make use of threshold congestion and environmental effects when making
preemptive coordination decisions [{ RC-16]

161

Req-34.Air Traffic Management must always have some amount of reserve capacity set aside to provide
additional coordination during unexpected emergencies or incidents [{ RC-21]

Req-35.ATM system shall consider the capabilities of the UAM aircraft and operators (e.g., pilot training,
aircraft equipage etc) when establishing or re-evaluating threshold congestion levels [{ RC-39]
Req-36.ATM system shall ensure that all aircraft have the capabilities required for new threshold

congestion levels when new congestion thresholds are introduced [{ SR-21]

System Assumption: Assumes there is coordination with changes to congestion level thresholds to
ensure they are rolled out synchronously [Req-62]

Reg-37.ATM system shall ensure that current congestion threshold levels are enforced even if some
aircraft are capable of operations at higher congestion levels [{ RC-38]

Reg-38.ATM system shall ensure that any event that will result in significant operational impacts to
airspace users is communicated to users with <TBD> advanced notice so that airspace users can
adjust their plans [{ RC-35]

Req-39.If assuming that another aircraft or controller will take an action when deciding on coordination,
ATM system shall confirm with the aircraft or controller that the action will be taken prior to
implementing coordination [RC-36]

Req-40.ATM system shall manage both demand for flights in addition to the ability of flights to access the
airspace when mitigating congestion and vehicle sharing

System Assumption: Assumes that this requirement is coordinated with Req-8 so that demand or
airspace access is managed both by managing how many flights are needed and how many flights
can be accepted [Req-63]

Req-41.ATM system shall ensure that UAM aircraft abide by the TFR associated with the public safety
events to ensure that UAM aircraft do not interfere with public safety flights

Environment Assumption: Assumes that public safety events will continue to be accompanied by
a TFR that will ensure that aircraft stay away and therefore avoid interference

System Assumption: This is coordinated with Req-4 (for collisions) and Req-27 (for avoiding
negative environmental or congestion effects) [Req-64]

Req-42.ATM system shall establish a minimum notification window within which avoidance of operational
impact cannot be guaranteed [RC-42]

Req-43.ATM system shall ensure that routes of flight used by UAM aircraft minimize time spent over
residential neighborhoods and other community spaces, especially during periods when occupancy
is high [{ RC-18]

Environment Assumption: Assumes that the concerns that the public would have against UAM
(e.g., noise, visual pollution, public safety) would stem from UAM operating around neighborhoods
when occupancy is high

Req-44.At key choke/convergence points (e.g., airports, vertiports), ATM system shall ensure that the
UAM aircraft do not interfere with conventional air traffic flights

Environment Assumption: Assumes that regular UAM passenger flights will be required to work
around scheduled commercial aircraft since they have fixed schedules known well in advance and
serve larger quantities of passengers with each flight

Environment Assumption: Assumes that the main areas in which interference between UAM and
conventional air traffic might occur is at/around airports and vertiports

Req-45.ATM system shall ensure that capacity determinations account for both traffic density and
coverage area [i« RC-22]

162

Req-46.ATM system shall have at least 2 options for tracking aircraft (current position, speed, heading,
ID) in the airspace to verify erroneous detections [{ RC-20]

Req-47.ATM system shall ensure that aircraft trajectories do not consume more airspace than is
reasonable to allocate for that aircraft

Req-48.ATM system shall coordinate between capacity management and traffic management to ensure
that sufficient capacity exists to manage the current or anticipated future level of traffic [{ RC-12]

Req-49.ATM system shall be able to make coordination decisions within <TBD> time [{ RC-10]

Req-50.ATM system shall ensure that if coordination was not effective, coordination is evaluated again
to ensure that collision risks are adequately mitigated [RC-27]

Req-51.ATM system shall ensure that there is sufficient airspace available (or low enough density)
available to allow alternative movement options to be established [{ RC-25]

Reg-52.ATM system shall ensure that access to the airspace is managed in accordance with what is
needed to ensure that acceptable coordination options are always available [{ RC-28]

Reg-53.ATM system shall ensure that coordination decisions account for whether information is
missing/out-of-date [{ RC-29]

Reg-55.ATM system shall ensure that coordination issued to aircraft consider both potential future
environmental impact as well as more immediate conflict avoidance [i RC-11]

Reg-56.ATM system shall ensure that coordination decisions account for whether intent information is
missing/out-of-date [{ RC-30]

Reg-57.ATM system shall ensure that alternative movement options can be used to coordinate aircraft
[V RC-31]

Reg-58.ATM system shall ensure that coordination decisions can be made within <TBD> time after an
aircraft is discovered to be unable to communicate to resolve any imminent collisions [i RC-13]
Reg-59.ATM system shall ensure that there are at least two methods for communicating coordination

with aircraft [»L RC-14]

Req-61.ATM system shall modify how aircraft trajectories are modified, alternative trajectories are
selected and airspace access is managed based on an initiated traffic management program [{ RC-
54]

Req-62.ATM system shall ensure that new congestion thresholds are coordinated with ensuring that
aircraft have the capabilities needed for those new congestion thresholds to ensure that they are
rolled out synchronously [{ RC-40]

Req-63.ATM system shall coordinate between management of flight demand and management or
airspace access [i RC-41]

Req-64.ATM system shall ensure that UAM aircraft abide by public safety event TFRs while also avoiding
collisions and negative environmental effects or congestion [{ RC-42]

Req-65.ATM system shall require regular UAM passenger flights to work around scheduled commercial
aircraft [J« RC-34]

Req-66.ATM system shall ensure that unexpected operational impacts are detected and mitigated where
necessary to prevent them from occurring again

Req-68. ATM system shall grant an aircraft experiencing an emergency the highest priority access to the
airspace they need to address the emergency [l« RC-44]

163

Req-69. ATM system shall ensure that there is enough spare airspace available to keep other aircraft away
from a non-communicative aircraft [i« RC-45]

Reqg-70. When making preemptive coordination decisions to prevent environmental or congestion
exceedances, ATM system shall manage capacity and airspace access in addition to issuing modified
trajectories [i« RC-46]

Reqg-71. ATM system shall ensure that erroneous detections are made known to Resp-1 so that conflict
resolution accounts for errors in detections [\ RC-47]

Reqg-72. ATM system shall use an alternative location source for tracking aircraft that does not suffer from
the same inaccuracy limitations as the primary source [i RC-48]

Reg-73. ATM system shall manage generate alternate trajectories and manage air traffic in accordance
with ATM capacity using a consolidated view of the airspace [{ RC-23]

Req-74. ATM system shall recompute alternative movement options within <TBD> time so that re-
evaluations can happen continuously [RC-50]

Req-75. ATM system shall monitor the movements of aircraft that are unable to communicate to ensure
they are behaving as expected [RC-51]

Reqg-76. ATM system shall ensure that any new capacity expansion or airspace access management plans
are implemented [~L RC-52]

Req-77. ATM system shall coordinate ride demand management with congestion and environmental
effects management [»L RC-53]

Req-78. ATM system shall ensure that the overall operational impact incurred by an aircraft is considered
and minimized when making coordination decisions [i RC-59]

Req-79. ATM system shall inform airspace users if they will be significantly affected by a TFR [{ RC-55]

Req-80. ATM system shall be able to prevent an aircraft that is not communicating and/or disobeying
coordination instructions from causing damage or harm to people or property on the ground

Reg-81. ATM system shall coordinate between ensuring behavior of aircraft matches issued coordination
and addressing aircraft behaving erratically [{ RC-56]

Req-82. ATM system shall coordinate between ride demand and flight dispatch to ensure ride demand is
coordinated with flight dispatch [{ RC-57]

Req-83. ATM system shall ensure that any proposed coordination has new alternative trajectories
available before issuing the proposed coordination [{ RC-58]

Req-84. If a trajectory modification is not effective at resolving the collision, the reason for the
modification not being effective must be determined so that an updated trajectory modification can
account for it [i RC-60]

Req-85. ATM system shall account for reasons that a trajectory modification was ineffective when
selecting new trajectory modifications [{ RC-61]

Req-86. ATM system shall check in with affected aircraft on preferred trajectory modification if unable to
meet all operational constraints

Req-87. ATM system shall ensure that tracking and trajectory information is available for all aircraft within
<TBD distance> of the UAM operating environment [RC-62]

Req-88. ATM system shall ensure that tracking and trajectory information is available for all aircraft before
the aircraft has entered the UAM operating environment [{ RC-63]

164

Req-89. ATM system shall ensure that a conflict-free trajectory is available for an aircraft (either from the
ground or in the air) prior to allowing it to enter UAM airspace [i RC-64]

Req-90. ATM system shall monitor and confirm that an aircraft is following its planned trajectory to the
accuracy specified with that trajectory [{ RC-65]

Req-91. ATM system shall re-evaluate an aircraft’s trajectory and issue trajectory modifications if needed
if an aircraft deviates from its planned trajectory by more than <TBD> [{ RC-66]

Req-92. ATM system shall ensure that all trajectory modifications are transmitted and acknowledged
within <TBD> time [{ RC-67]

System Assumption: Assumes that if trajectory modifications are not acknowledged within <TBD>
time, the conflict associated with that modification will be flagged for re-evaluation [Req-93]

Req-93. ATM system shall re-evaluate trajectory modification(s) associated with a conflict if the trajectory
modification(s) are not acknowledged within <TBD> time [RC-68]

Reg-94. ATM system shall provide accompanying navigation accuracy and expected response time
parameters when deciding trajectory modifications to ensure navigation accuracy and response time
expectations are made explicit [{ RC-69]

Reg-95. ATM system shall ensure that any changes to relevant operational constraints are accounted for
when issuing trajectory modifications [{ RC-70]

Req-96. ATM system shall ensure that any tall obstacles of at least <TBD> in height that could interfere
with flight operations have their presence and duration (if temporary) reported and disseminated to
aircraft and operators

Req-97. ATM system shall discuss other flight plan options (e.g., earlier departure, different
arrival/departure aerodrome) with aircraft if an excessive operational constraint will be incurred [
RC-72]

Req-98. ATM system shall account for anticipated weather and potential future air traffic needs in
addition to already filed flights when making trajectory modifications [\ RC-49]

Reg-99. ATM system shall ensure that operational impacts incurred for collision avoidance and congestion
management are considered in total and not separately [RC-73]

Reg-100. ATM system shall maintain a consolidated state of the airspace to ensure synchronized traffic
management decision-making [{ Resp-5]

B.2 Defining Control Elements to Meet System Requirements

The figures in this section show how the requirements defined in the previous section were
used to generate the five control responsibilities and their associated control actions and
feedback identified in design iteration 1. Each of these responsibilities and a simplified version of
their corresponding control actions and feedback were shown on the revised conceptual
architecture shown in Figure 28 in Section 4.2.4. Each control element is traced to the constraint
or requirement used to generate it using the links in square braces.

165

Resp-1: Coordinate the movement of aircraft to prevent conflicts [Req-4]

RC-2: Account for planned trajectory when
identifying conflicts [Req-10]

RC-3: Ensure that coordination provided to the
aircraft is within the capabilities of the aircraft

[Req-15]

RC-4: Ensure coordination decisions do not cause

secondary conflicts [Reqg-17]
RC-6: Ensure that aircraft have received

coordination, are executing it correctly and that
the risk of collision is no longer present [Reg-5]

RC-7: Account for any users’ constraints on

mission execution in addition to access priorities

when coordinating aircraft [Req-21]
RC-8: Respond to impending interference and

issue coordination instructions within <TBD> time

[Reqg-24]

RC-15: Continue resolving conflicts even if one
or more aircraft are unable to communicate or

are not responding [Req-12]

RC-26: Ensure that aircraft have received the
coordination being communicated [Req-13]

RC-27: If coordination was not effective,
coordination is evaluated again to ensure
that risks are adequately mitigated [Reg-50]

RC-31: Ensure that alternative movement
option are considered when coordinating
aircraft [Req-57]

RC-54: Ensure that initiated traffic
management plans are used to influence
trajectory modifications, alternative
trajectory selection, and airspace access
management [Req-61]

RC-58: Confirm alternative trajectories are
available for any proposed coordination
[Req-83]

RC-61: Account for reasons that a trajectory
modification was ineffective when selecting
new trajectory modifications [Req-85]

RC-71: Check in with affected aircraft on
preferred trajectory modification if unable
to meet all operational constraints [Req-86]

Process Model Parts & Required Feedback/Inputs
Feedback from the aircraft:

e Acknowledgement of trajectory modifications
[RC-26]

e Reason for trajectory deviation [RC-61]

o Preferred trajectory modification [RC-71]

Input from Resp-2: Active traffic management

program [RC-54]

Input from Resp-3:

e Confirm trajectory modifications [RC-58]
e Alternate trajectories [RC-31, RC-58]

Input from Resp-5:

e Aijrcraft not communicating [RC-15]

e Consolidated airspace state [RC-2, RC-3,
RC-4, RC-7, RC-27]

Input from Regulators: Airspace access

priorities [RC-7]

Internal process model variables: Unresolved

conflicts [RC-6]

Required Control Actions/Outputs
Control actions to the aircraft:

e Trajectory modifications [Resp-1]

e Request acknowledgement of trajectory
modifications [RC-26]

e Trajectory modification options [RC-71]

Output to Resp-5: Trajectory modifications
[Resp-1]

Output to Resp-3: Proposed trajectory
modifications [RC-58]

Figure B-1: Defined control elements for Resp-1

166

Resp-2: Ensure that sufficient capacity is available to detect and coordinate all aircraft that
have or will need access to the airspace [Reg-3]
RC-21: Have reserve capacity set aside to provide additional coordination during unexpected
emergencies or incidents [Req-34]
RC-22: Ensure that capacity determinations account for both traffic density and coverage area
[Req-45]
RC-23: A consolidated view of the airspace should be used to manage air traffic in accordance
with ATM capacity (Resp-2) and generate alternate trajectories (Resp-3) [Req-73]
RC-54: Ensure that initiated traffic management plans are used to influence trajectory
modifications (Resp-2), alternative trajectory selection (Resp-3), and airspace access
management (Resp-4) decisions [Req-61]

Process Model Parts & Required Feedback/Inputs
Feedback from Resp-1: Current workload (of controllers resolving conflicts) [RC-21]
Feedback from Resp-5: Consolidated airspace state [RC-23]

Internal Process Model Variables: Current & historical congestion level [Resp-, RC-21]

Required Control Actions/Outputs
Control action to Resp-2, Resp-3, Resp-4: Initiate traffic management program [Resp-2, RC-54]

Figure B-2: Defined control elements for Resp-2

Resp-3: Ensure that acceptable coordination options are always available for aircraft to avoid
violation of minimum separation [Reg-6]
RC-23: A consolidated view of the airspace should be used to manage air traffic in accordance
with ATM capacity (Resp-2) and generate alternate trajectories (Resp-3) [Req-73]
RC-25: Ensure that there is sufficient airspace available (or low enough density) available (Resp-
4) to allow alternative trajectories to be established [Req-51]
RC-28: Ensure that access to the airspace is managed (Resp-4) in accordance with what is needed
to ensure that acceptable coordination options are always available (Resp-3) [Req-52]
RC-50: Recompute alternative movement options within <TBD> time so that re-evaluations can
happen continuously [Req-74]
RC-54: Ensure that initiated traffic management plans are used to influence trajectory

modifications (Resp-2), alternative trajectory selection (Resp-3), and airspace access
management (Resp-4) decisions [Req-61]

Process Model Parts & Required Feedback/Inputs
Feedback from Resp-1: Proposed trajectory modifications [Resp-3]

Input from Resp-2: Initiate traffic management program [RC-54]

Feedback from Resp-5: Consolidated airspace state [RC-23]

Required Control Actions/Outputs
Control actions to Resp-1:

e Alternate trajectories [Resp-3]
e Confirm trajectory modifications [Resp-3]

Control action to Resp-4: Alternate trajectories [RC-25]

Figure B-3: Defined control elements for Resp-3

167

Resp-4: Only allow as many users to access the airspace as it is capable of detecting, tracking
and coordinating [Reg-8]
RC-28: Ensure that access to the airspace is RC-63: Ensure that tracking and trajectory
managed (Resp-4) in accordance with what is information is available for all aircraft before
needed to ensure that acceptable coordination the aircraft is allowed to enter the UAM
options are always available (Resp-3) [Req-52] operating environment [Req-88]

RC-54: Ensure that initiated traffic RC-64: Ensure that a conflict-free trajectory is
management plans are used to influence available (Resp-1) for an aircraft before
trajectory modifications (Resp-2), alternative allowing it to enter UAM airspace [Req-89]
trajectory selection (Resp-3), and airspace RC-72: Propose other flight plan options (e.g.,
access management (Resp-4) decisions [Reg- earlier departure, different arrival/departure
61] aerodrome) if an excessive operational

constraint will be incurred [Req-97]

Process Model Parts & Required Feedback/Inputs

Feedback from the aircraft: Input from Resp-2: Initiate traffic management

e Flight plans [Resp-4] program [RC-54]

o Preferred flight plan modifications [RC-72] Input from Resp-3: Alternate trajectories [RC-28]
Inputs from Resp-1: Input from Resp-5:

e Confirm trajectory is conflict free [RC-64] e Consolidated airspace state [Resp-4]

e Trajectory modifications [RC-64] e Aijrcraft info available [RC-63]

Required Control Actions/Outputs

Control actions to aircraft: Output to Resp-1: Incoming aircraft [RC-64]

e Flight plan modifications [Resp-4] Output to Resp-5: Incoming aircraft [RC-63]

e Approve/reject access [Resp-4]
e Flight plan modification options [RC-72]

Figure B-4: Defining control elements for Resp-4

168

Resp-5: Maintain a consolidated state of the airspace for use in traffic management decision-

making [Req-100]
RC-1: Track all aircraft in the airspace within
<TBD> performance requirements to keep them
separated [Req-1]
RC-19: Prevent the manipulation or tampering of
data used for detecting and tracking aircraft [Reg-
9]
RC-29: Ensure that coordination decisions (Resp-
1) account for whether tracking information is
missing/out-of-date (Resp-5) [Req-5]
RC-32: Ensure that information about the intent,
mission, acceptable operational impacts and
future intended movements of aircraft is
available, does not contain errors and is kept up
to date [Reqg-11]

RC-62: Ensure that track and trajectory
information is available for all aircraft within
<TBD distance> of the UAM operating
environment [Req-87]

RC-74: Verify erroneous detections within
<TBD time> before choosing to ignore them
[Req-2]

RC-75: Detect when information needed to
identify and track aircraft is missing,
delayed, erroneous or not available and take
action to restore that information [Req-7]

Process Model Parts & Required Feedback/Inputs

Feedback from the aircraft: Feedback from Resp-4: Incoming aircraft to UAM
e Aircraft Track [Resp-5, RC-1, RC-62] airspace [RC-62]
e Planned trajectory [Resp-5, RC-62] Internal Process Model Variable: Aircraft

e Mission & operational constraints [Resp-5, RC- authenticity [RC-19]

32]
e Aircraft navigational capabilities [Resp-5, RC-
32]

Required Control Actions/Outputs

Control actions to the aircraft: Control actions to Resp-1:

e Request aircraft track [RC-75] .
e Request planned trajectory [RC-75] °
e Reject aircraft track/trajectory [RC-19, RC-74]

Consolidated airspace state [Resp-5]
Aircraft not communicating [RC-29]

Figure B-5: Defining control elements for Resp-5

169

Appendix C Design Iteration 1 — STPA Analysis of Initial
Conceptual Architecture

As described in Section 4.2.3, the initial conceptual architecture that was created in design
iteration 1 (Figure 26) was analyzed by updating the initial STPA analysis shown in Section 4.1 and
Appendix A. Since the focus of this research is on the collision avoidance aspect of ATM, this
updated STPA analysis focused on analyzing the Trajectory Modifications control action. This
section shows the results of this updated SPTA analysis.

C.1 Unsafe Control Actions (UCAs) for Coordination Control Action

Since this is an update of the initial STPA analysis, the system-level losses and hazards are the
same as those shown in Table 7 and Table 8. Table C-1 and Table C-2 shows the refined UCAs
associated with the Trajectory Modifications control action. For each refined UCA, a link to the
corresponding abstract version of the UCA shown in Table A-1 is included in square braces along
with the links to the system hazards. Any UCAs in Table A-1 that do not have refined UCAs
associated with the Trajectory Modifications control action are not shown in Table C-1 and Table
C-2.
Table C-1: Refined UCAs for Trajectory Modifications Control Action

Not Providing Providing

UCA-1.16.1: Trajectory modifications are provided
when those modified trajectories interfere with
approach/arrival course/trajectory for a nearby
airport [H-1, H-3, H-6] [UCA-1.16]

UCA-1.1.1: Trajectory modifications are not
provided when the trajectories of two aircraft
are in conflict [H-1, H-3] [UCA-1.1]

UCA-1.2.1: Trajectory modifications are not
provided when the trajectory needed by an
aircraft experiencing an emergency conflicts
with other aircraft [H-1, H-2, H-3] [UCA-1.2]

UCA-1.3.1: Trajectory modifications are not

UCA-1.18.1: Trajectory modifications are provided
that will result in excessive environmental effect
[H-4] [UCA-1.18]

provided when the arrival trajectory of a UAM
aircraft at a conventional airport will conflict
with the approach course used by conventional
aviation aircraft [H-1, H-3] [UCA-1.3]

UCA-1.19.1: Trajectory modifications are provided
that interfere with the operations of other NAS
users [H-3, H-6] [UCA-1.19]

UCA-1.5.1: Trajectory modifications are not
provided when UAM aircraft are about to fly
into a section of airspace where air traffic must
be excluded (e.g., for safety or security reasons)
[H-5] [UCA-1.5]

UCA-1.20.1: Trajectory modifications are provided
that UAM aircraft are not fully capable of
executing [H-1, H-2, H-3, H-6] [UCA-1.20]

UCA-1.8.1: Trajectory modifications are not
provided when UAM aircraft interfere with the
flight of an emergency response aircraft [H-1, H-
3] [UCA-1.8]

UCA-1.21.1: Trajectory modifications are provided
that causes a collision with an obstacle or terrain
[H-1, H-2, H-3, H-5] [UAC-1.21]

170

Not Providing

Providing

UCA-1.8.2: Trajectory modifications are not
provided when a higher priority flight incurs an
unacceptable operational impact (e.g., delay)
due to UAM flights that are occurring [H-1, H-3]
[UCA-1.8]

UCA-1.22.1: Trajectory modifications are provided
that causes a collision with another aircraft [H-1,
H-2, H-3] [UCA-1.22]

UCA-1.9.1: Trajectory modifications are not
provided when UAM aircraft operations have
excessive noise, privacy or emissions impacts [H-
4] [UCA-1.9]

UCA-1.24.1: Trajectory modifications are provided
when those trajectories allocate more airspace
than necessary to prevent collisions [H-3, H-6]
[UCA-1.24]

UCA-1.10.1: Trajectory modifications are not
provided when UAM aircraft need to be
sequenced for arrival to a conventional airport
[H-3] [UCA-1.10]

UCA-1.24.2: Trajectory modifications are provided
that exceed the operational constraints for the
aircraft needed to execute the trajectory [H-3, H-
6] [UCA-1.24]

UCA-1.11.1: Trajectory modifications are not
provided when UAM aircraft have overlapping
arrival or departure trajectories [H-3] [UCA-1.11]

UCA-1.24.3: Trajectory modifications are provided
when the trajectory of an aircraft is already valid
and optimal [H-3, H-6] [UCA-1.24]

UCA-1.12.1: Trajectory modifications are not
provided when the trajectory of an aircraft
conflicts with an obstacle or terrain [H-1] [UCA-
1.12]

UCA-1.25.1: Trajectory modifications are provided
that causes the aircraft to traverse adverse
weather that it is not equipped to handle [H-1, H-
2, H-3, H-5] [UCA-1.25]

UCA-1.13.1: Trajectory modifications are not
provided when the trajectory of a UAM aircraft
will take it toward inclement weather that
exceeds the capabilities of the aircraft [H-1, H-2,
H-3] [UCA-1.13]

UCA-1.27.1: Trajectory modifications are provided
that forces a UAM aircraft to use airspace where
the ride is unpleasant or unsafe for passengers [H-
2, H-6] [UCA-1.27]

UCA-1.28.1: Trajectory modifications are provided
when they do not satisfy the priority needs of the
aircraft [H-1, H-2, H-3] [UCA-1.28]

171

Table C-2: Too early/late and applied too long/stopped too soon UCAs for Trajectory Modifications Control Action

Too Early / Too Late

Applied Too Long / Stopped Too Soon

UCA-1.29.1: Trajectory modifications are
provided too late after the trajectories of two
aircraft are in conflict [H-1, H-2, H-3] [UCA-
1.29]

UCA-1.35.1: Trajectory modifications are provided
for too long when conditions have changed such
that the original trajectory modifications are no
longer valid [H-1, H-2, H-3, H-4, H-6] [UCA-1.35]

UCA-1.30.1: Trajectory modifications are
provided too late after an aircraft requires an
immediate change in trajectory (e.g., to
address an emergency) [H-1, H-2, H-3] [UCA-
1.30]

UCA-1.36.1: Trajectory modifications stop being
provided too soon before the emergency
experienced by UAM aircraft is resolved [H-1, H-2,
H-3] [UCA-1.36]

UCA-1.32.1: Trajectory modifications are
provided too late after environmental effects of
UAM operations have exceeded acceptable
levels [H-4] [UCA-1.32]

UCA-1.37.1: Trajectory modifications stop being
provided too soon to prevent UAM aircraft from
entering a restricted section of airspace when air
traffic still needs to be excluded from that section
of airspace [H-2, H-4, H-6] [UCA-1.37]

UCA-1.33.1: Trajectory modifications are
provided too late after an aircraft enters a
volume of airspace where congestion has
already exceeded acceptable levels [H-1, H-3,
H-4, H-6] [UCA-1.33]

UCA-1.38.1: Trajectory modifications stop being
provided too soon before environmental effects of
system operation have returned to acceptable
levels [H-4] [UCA-1.38]

UCA-1.34.1: Trajectory modifications are
provided too late after UAM aircraft have
already interfered with the operations of
another airspace user [H-3, H-6] [UCA-1.34]

UCA-1.39.1: Trajectory modifications are provided
for too long after environmental effects of system

operation have returned to acceptable levels [H-3]
[UCA-1.39]

172

C.2 Causal Scenarios for Selected UCAs

This section shows the causal scenarios that were identified for select UCAs highlighted in
blue in Table C-1 and Table C-2. Two types of links are included at the end of each requirement.
First, if additional system requirements were generated to mitigate or prevent that scenario, the
requirement is linked in square braces. These requirements are ultimately used to make
modifications to the conceptual architecture.

Second, if the scenario was used in the structural design process to generate an assignment
constraint, that assignment constraint is indicated in curly braces and blue font.

Scenarios for UCA-1.1.1: Trajectory modifications are not provided when the trajectories of two
aircraft are in conflict [H-1, H-3]

CS-1.1.1-1. Feedback of the potential conflict is received but trajectory modifications are

not provided because:
CS-1.1.1-1.1. Resp-3 does not confirm that the trajectory modifications still have
alternate trajectory options. As a result, Resp-1 is unable to issue trajectory modifications to
resolve the collision {Resp-1 = Resp-3}
CS-1.1.1-1.2. Resp-1 is pre-occupied with resolving one set of conflicts and therefore
does not attend to the feedback about another imminent collision. As a result, Resp-1 does
not issue trajectory modifications to resolve the imminent collision {(Resp-1=Aircraft) V
(Resp-1=Aircraft NATM)}
CS-1.1.1-1.3. Resp-1 is unable to determine possible movement options due to a
component failure that prevents trajectory modifications from being computed. As a result,
no trajectory modifications are issued {(Resp-1=Aircraft) vV (Resp-1=Aircraft A ATM)}
CS-1.1.1-1.4. It takes so long to identify a conflict-free solution that no trajectory
modification is issued before the collision occurs. This could occur if, for example, the airspace
is so densely utilized that resolving a limited initial conflict requires changes to a large number
of aircraft trajectories to accommodate the initial trajectory modifications required. {(Resp-
1=Aircraft) V (Resp-1=Aircraft N ATM)}
CS-1.1.1-1.5. Resp-1is unable to select possible movement options because there is no
combination of alternative trajectories that will prevent all conflicts. For example, the
emergency trajectory of one aircraft is such that there is no set of suitable trajectories for all
other aircraft that can be selected that are conflict free
CS-1.1.1-1.6. Resp-5 wrongly believes the feedback it receives about the track of an
aircraft is erroneous and omits it from the set of verified tracks. As a result, Resp-1 does not
recognize the collision because the aircraft track needed to recognize it was omitted
CS-1.1.1-1.7. Resp-1is unable to provide trajectory modifications to the aircraft because
Resp-3 rejects its proposed trajectory modifications. This could occur if Resp-1 and Resp-3 do
not synchronously process inputs from Resp-5 to remove an aircraft track and thus have
inconsistent process models of the state of the airspace. As a result, they cannot agree on a
set of trajectory modifications that have alternate trajectories available [Req-100]

173

CS-1.1.1-2. Feedback is not received of the potential conflict because:
Cs-1.1.1-2.1. At least one of the two aircraft enters the UAM environment without its
tracking and trajectory information having been fully received. This could occur for several
reasons: (1) The aircraft is inadequately equipped and cannot be tracked using normal means,
(2) the aircraft is non-cooperative (e.g., malicious aircraft) or (3) the aircraft enters the UAM
environment before tracking and trajectory information can be fully collected. As a result,
Resp-1 either does not know the aircraft is there or has the wrong belief about the trajectory
of that aircraft and therefore wrongly believes that no collision is imminent [Reg-87, Req-88]
{Resp-1 = ATM}
CS-1.1.1-2.2. Resp-1 receives either inaccurate feedback about the
equippage/technical specifications of an aircraft or out-of-date feedback about the level of
precision with which the aircraft can execute a trajectory (e.g., GPS
outage/blockage/degradation). As a result, it wrongly believes they are capable of more
precise navigation than they actually are and therefore does not believe two aircraft are on
collision trajectories even though they are {(Resp-1=Aircraft) V (Resp-1=Aircraft A ATM)}
CS-1.1.1-2.3. This could occur if it does not receive timely feedback on the presence of
new ground hazards (e.g., a new construction crane). As a result, it does not believe a collision
is imminent and does not try to modify aircraft trajectories to avoid the collision {(Resp-
1=Aircraft) V (Resp-1=Aircraft A ATM)}
CS-1.1.1-2.4. When Resp-1 checked the trajectories of all aircraft, their trajectories
were not in conflict. However, while resolving another conflict, the trajectories of these
aircraft do become in conflict and this is not noticed/resolved until after the previous set of
conflicts are resolved. If it takes long enough for the prior set of conflicts to be resolved, the
system may not be able to identify and adequately resolve the conflict before a collision
occurs {(Resp-1=Aircraft) V (Resp-1=Aircraft ANATM)}

CS-1.1.1-3. Trajectory modifications are provided to resolve the conflict, but they are not

received by the aircraft because:
CS-1.1.1-3.1. An equipment failure or malicious interference prevents the trajectory
modification from being issued to the aircraft. As a result, the aircraft continues on the old
trajectory, not realizing that a trajectory modification has been provided {(Resp-1=Aircraft) v
(Resp-1=Aircraft N ATM)}

CS-1.1.1-4. Trajectory modifications are provided to resolve the conflict and they are

received by the aircraft. However, the conflict is not resolved and a collision occurs. This could

occur because:
CS-1.1.1-4.1. One of the aircraft receives the trajectory modification but does not
execute the trajectory modification because they wrongly believe that the provided
trajectory modification would result in another violation of minimum separation. This might
occur because aircraft are only provided with their trajectory modification and have no
awareness of trajectory modifications provided to other aircraft. As a result, they wrongly
believe that they are on a collision course with another aircraft even though they are not
because that aircraft is also about to change trajectories. They therefore ignore the provided

174

trajectory modification and make an independent decision which ultimately violates
minimum separation {(Resp-1=Aircraft) V (Resp-1=Aircraft A ATM)}

CS-1.1.1-4.2. Trajectory modifications are provided and received by the aircraft but the
conflict is not resolved. This could occur if the aircraft does not execute the trajectory to the
level of precision expected by Resp-1 when it generated the trajectory modifications. This
could occur either because the aircraft lacks the required equippage, the required equipment
has failed or the equipment is momentarily degraded by environmental conditions (e.g.,
temporary GPS outage, wind gusts, poor weather etc). As a result, the provided trajectories
do not adequately resolve the conflict [Reg-85, Req-90, Req-91]

Scenarios for UCA-1.8.1: Trajectory modifications are not provided when UAM aircraft interfere
with the flight of an emergency response aircraft [H-1, H-3]

CS-1.8.1-1. Feedback indicating that a UAM aircraft will interfere with the flight of an

emergency response aircraft is received. However, trajectory modifications are not provided

because:
CS-1.8.1-1.1. If the airspace is densely occupied, Resp-1 may not be able to find a
solution to clear a path for the emergency response aircraft. Alternatively, it might take so
long to resolve all the conflicts such that trajectory modifications are not issued before the
emergency response aircraft needs to depart. {(Resp-1=Aircraft) V (Resp-1=Aircraft A ATM)}
CS-1.8.1-1.2. That feedback is only received at the last minute due to the emergency
response aircraft modifying their trajectories quickly in response to an evolving emergency
event (e.g., a bad accident, a wild fire). If Resp-1 is unable to respond and modify the
trajectories of UAM aircraft in response, they can end up interfering with the emergency
response flight. {(Resp-1=Aircraft) vV (Resp-1=Aircraft A ATM)}

CS-1.8.1-2. Feedback indicating that a UAM aircraft will interfere with the flight of an

emergency response aircraft is not received because:
CS-1.8.1-2.1. Interference is only being monitored with respect to trajectory and not
track. Thus, if either aircraft is not following its planned trajectory precisely (e.g., either
slightly delayed or slightly ahead), the UAM aircraft could interfere with the emergency
response flight even though that interference is not reflected in their planned trajectories.
[Req-90, Req-91]

CS-1.8.1-4. Feedback indicating that a UAM aircraft will interfere with the flight of an

emergency response aircraft is received and appropriate trajectory modifications are provided.

However, that interference still occurs because:
CS-1.8.1-4.1. The trajectory modification does not include an expectation of immediate
action and therefore the UAM aircraft may not execute the modified trajectory as quickly as
necessary. [Req-94]

Scenarios for UCA-1.12.1: Trajectory modifications are not provided when the trajectory of an
aircraft conflicts with an obstacle or terrain [H-1]

175

CS-1.12.1-1. Feedback indicating that the trajectory of an aircraft conflicts with an obstacle
or terrain is received but trajectory modifications are not provided. This could occur if:
CS-1.12.1-1.1. The capabilities of the aircraft are compromised (e.g., stronger winds than
the aircraft can handle, partial system failure) and there are no suitable options available that
will sufficiently avoid the obstacle and be within the compromised capabilities of the aircraft.
CS-1.12.1-2. Feedback indicating that the trajectory of an aircraft conflicts with an obstacle
or terrain is not received because:
CS-1.12.1-2.1. If the obstacle is new and/or temporary (e.g., a tall crane or a temporary
structure near a UAM aerodrome) and the presence of this obstacle has not been
disseminated to ATM. Furthermore, such an obstacle may not be easily detected by the
aircraft themselves if obscurants are present [Req-96] {(Resp-1=Aircraft) V (Resp-1=Aircraft A
ATM)}

Scenarios for UCA-1.22.1: Trajectory modifications are provided that causes a collision with
another aircraft [H-1, H-2, H-3]

CS-1.22.1-1. Feedback indicating that the trajectories of two aircraft are in conflict was

received. However, those trajectory modifications are provided anyway because:
CS-1.22.1-1.1. An emergency or last-minute airspace restriction occurs, requiring large
numbers of aircraft to modify their trajectories. As a result, the system is forced to quickly
modify trajectories for numerous aircraft before it can adequately consider the collision
implications of the new trajectories. The system therefore selects the trajectory
modifications that result in the fewest collisions and issues those even though some
trajectories have collisions. [Req-101, Req-102] {Resp-1 = ATM}
CS-1.22.1-1.2. Resp-1 believes that it can issue further trajectory modifications later to
prevent collision. This could occur if, for example, the system is attempting to prevent a more
urgent collision (e.g., an emergency) and believes it can make a faster decision by issuing a
trajectory modification that prevents the urgent collision even if it subsequently causes a
later collision. However, Resp-1 does not return to correct that collision (e.g., because it
becomes preoccupied resolving other collisions) and thus the collision occurs [Req-101, Reg-
102] {(Resp-1=Aircraft) vV (Resp-1=Aircraft A ATM)}
CS-1.22.1-1.3. Aircraft trajectories change while the system is resolving a set of conflicts.
During the conflict resolution process, Resp-1 does not update its process model of the
trajectories of aircraft even though those might change. As a result, while the trajectory
modifications are being generated, Resp-1 selects trajectory modifications that were not in
conflict during the selection process but are in conflict based on the most current set of
aircraft trajectories. {(Resp-1=Aircraft) V (Resp-1=Aircraft A ATM)}

CS-1.22.1-2. Feedback did not indicate that the provided trajectory modifications will cause

a collision with another aircraft because:

176

CS-1.22.1-2.1. Resp-1 does not receive timely feedback of ground hazards (e.g., a new
construction crane being erected) and believes that the trajectory modification it is providing
will not cause a conflict with that ground hazard. As a result, it issues that trajectory
modification, unaware that it will cause a collision {(Resp-1=Aircraft) V (Resp-1=Aircraft A
ATM)}
CS-1.22.1-2.2. Resp-1 does not receive timely information about the aircraft capabilities
or aircraft type. For example, it could wrongly believe the aircraft is capable of more precise
navigation than it actually is. As a result, the system approves trajectory modifications that it
wrongly believes do not contain collisions but a collision does actually occur. {(Resp-
1=Aircraft) V (Resp-1=Aircraft N ATM)}

CS-1.22.1-3. Feedback indicating that the trajectories of two aircraft are in conflict was

received and trajectory modifications are provided that do not result in a collision. However,

the aircraft still receive trajectory modifications that result in a collision because:
CS-1.22.1-3.1. During transmission of appropriate trajectory modifications to the aircraft,
part of the trajectory modification is dropped (e.g., due to a partial/temporary
communications failure). As a result, the aircraft only receives part of the trajectory
modifications and the part that is received by the aircraft is in collision with another aircraft
trajectory {(Resp-1=Aircraft) V (Resp-1=Aircraft AATM)}
CS-1.22.1-3.2. The trajectory modifications are transmitted without accompanying
navigation accuracy parameters (e.g., lateral or vertical tolerances). As a result, the trajectory
modifications are not effective in preventing a collision because they contain insufficient
information for the aircraft to carry them out as intended. [Req-94]

CS-1.22.1-4. Feedback indicating that the trajectories of two aircraft are in conflict was

received and trajectory modifications that do not result in a collision are provided and received

by the aircraft. However, a collision still occurs because:
CS-1.22.1-4.1. The aircraft does not carry them out as intended (e.g., not within
navigational tolerances) such that a collision does actually occur. [Req-85, Req-90, Req-91]

Scenarios for UCA-1.24.1: Trajectory modifications are provided when those trajectories allocate
more airspace than necessary to prevent collisions [H-3, H-6]

CS-1.24.1-1. Feedback indicates that trajectory modifications will allocate more airspace

than necessary to prevent collisions is received. However, those trajectory modifications are

still provided because:
CS-1.24.1-1.1. As part of its decision-making to issue trajectory modifications, Resp-1
considers whether a collision remains unresolved. If Resp-1 wrongly believes that a collision
remains unresolved because the aircraft is not adequately following the trajectory, it may
responds by issuing further trajectory modifications that unnecessarily expands the amount
of airspace reserved for that trajectory. As a result, more airspace is used to serve that flight
than is necessary. [Req-84]

177

CS-1.24.1-1.2. Resp-1 believes that a weather or other event will occur soon will
compromise the ability of aircraft to follow more precise trajectory or the ability to track them
precisely. As a result, the system issues these expanded trajectory modifications anyway to
protect airspace safety even though they consume more airspace than necessary at the
current time. In addition, if the anticipated event does not ultimately occur, these expanded
trajectory modifications will not have been necessary at all.
CS-1.24.1-1.3. Resp-1 wrongly believes that there is no better option that allocates less
airspace. This could occur if Resp-3 does not remove a track for a non-existent aircraft, but
Resp-1 does. As a result, Resp-3 generates alternate trajectories for the non-existent aircraft
and passes those alternate trajectories to Resp-1. Thus, Resp-1 wrongly believes it needs to
avoid routing aircraft through the airspace allocated for the alternate trajectory of the non-
existent aircraft even though doing so is unnecessary. [Req-100]
CS-1.24.1-1.4. Resp-1 receives feedback that the aircraft is not following its trajectory
exactly as expected but does not receive enough feedback to know exactly how much extra
space buffer to provide. For example, this could occur if the aircraft is having trouble tracking
its trajectory accurately due to wind but Resp-1 does not receive feedback about the extent
to which the aircraft can hold trajectory. As a result, Resp-1 provides trajectory modifications
to allow extra room even though they might be unnecessary {(Resp-1=Aircraft) V (Resp-
1=Aircraft NATM)}

CS-1.24.1-2. Feedback indicating trajectory modifications allocate more airspace than

necessary to prevent a collision is not received because:
CS-1.24.1-2.1. Resp-1 either does not receive feedback about the demand for flights or
receives that feedback with a delay. As a result, the system wrongly believes that demand for
flights is lower than it really is and it therefore generates trajectories that provide more
spacing between flights, wrongly believing that the unused airspace can be used to increase
separation between flights and thus increase airspace safety. {Resp-1 = ATM}
CS-1.24.1-2.2. Resp-3 generates an initial set of alternate trajectories based on the
current trajectories of the aircraft. However, those trajectories change such that more
efficient alternate trajectories become available but Resp-3 does not re-evaluate its selected
alternate trajectories. As a result, Resp-1 selects trajectory modifications based on that
inefficient set of alternate trajectories selected by Resp-3. {Resp-1 = Resp-3}
CS-1.24.1-2.3. The aircraft try to reserve more airspace than necessary for themselves as
a safety margin and therefore indicate to Resp-1 that they are capable of less precise
navigation than they actually are. As a result, Resp-1 bases its selection of trajectory
modifications based on that feedback, not realizing that those trajectories consume more
airspace than necessary. {Resp-1 = ATM}

Scenarios for UCA-1.24.2: Trajectory modifications are provided that exceed the operational
constraints for the aircraft needed to execute the trajectory [H-3, H-6]

178

CS-1.24.2-1. Feedback indicates that trajectory modifications will exceed the operational
constraints of an aircraft is received. However, those trajectory modifications are still provided
because:
CS-1.24.2-1.1. Although the system recognizes that operational constraints would be
exceeded (e.g., a significant extension of the flight path), it believes that it would be optimal
to minimize the operational impacts to other aircraft (that might have fly at higher speeds or
be carrying more people) and as a result saddles a single aircraft with numerous operational
impacts (e.g., multiple flight path extensions or delays) {Resp-1 = ATM}
CS-1.24.2-1.2. Although Resp-1 recognizes that operational constraints would be
exceeded, it is unable to meet all operational constraints and airspace constraints. This is
especially likely to occur if one or more aircraft experience an emergency requiring
unexpected and immediate route changes. In such a condition, Resp-1 chooses to meet the
airspace constraints (e.g., to give an aircraft experiencing an emergency priority) and violate
the operational constraints, thus issuing trajectory modifications that violate operational
constraints for an aircraft
CS-1.24.2-1.3. Air traffic circumstances are such that there were no available options that
would meet all operational constraints. Although Resp-1 begins the process of negotiating
with aircraft on their preferred trajectory modifications, it decides it needs to take action
before the negotiation process is complete (e.g., collision is imminent). As a result, the system
issues trajectory modifications that are not aligned with the aircraft's constraint priorities.
[Req-86]
CS-1.24.2-2. Feedback indicating that trajectory modifications will exceed the operational
constraints of an aircraft is not received because:
CS-1.24.2-2.1. Some operational constraints change over time (e.g., diversion options
become more restricted due to fuel remaining as a flight progresses). If the system does not
receive timely feedback indicating a change to the operational constraints when it selects
alternative trajectories, it could select trajectory modifications based on out-of-date or
incomplete operational constraints, not realizing that the constraints have changed or new
ones now exist.
CS-1.24.2-3. Feedback indicates that trajectory modifications will exceed the operational
constraints of an aircraft is received and appropriate trajectory modifications are selected and
received by the aircraft. However, the modified trajectories still exceed operational
constraints. This could occur if:
CS-1.24.2-4. The trajectory modifications did not exceed operational constraints when
they were issued or initially carried out but it is later realized that they do. For example,
an aircraft may believe that they have enough fuel to accept a trajectory modification but
later realize they do not. Another example might be a medical flight that initially believes
it can accept a flight delay only for the patient's condition to worsen or be poor enough
that the delay was actually or becomes unacceptable. {(Resp-1=Aircraft) vV (Resp-
1=Aircraft NATM)} [Req-95]

179

Scenarios for UCA-1.24.3: Trajectory modifications are provided when the trajectory of an
aircraft is already valid and optimal [H-3, H-6]

CS-1.24.3-1. Feedback indicates that the trajectory of an aircraft is already valid and optimal

but trajectory modifications are still provided because:
CS-1.24.3-1.1. Resp-1 is told to modify trajectories as part of a traffic management
program being activated to expand capacity. As such, although the trajectory is already valid
and optimal for that aircraft, the system modifies the trajectory in a way that is less optimal
(but still collision free) to implement the traffic management program
CS-1.24.3-1.2. Resp-1 knows that the trajectory of an aircraft is already valid and optimal,
it is forced to make a trajectory modification for higher-priority traffic (e.g., an emergency
responder flight or an aircraft experiencing an emergency). As a result, it makes a trajectory
modification that is no longer optimal and that results in a delay or even the aircraft being
unable to complete its mission entirely
CS-1.24.3-1.3. Resp-2 believes that a traffic surge event is about to occur (e.g., UAM
operators initiate a series of flights in response to ride requests after a sporting event) and
initiates a traffic management program to manage capacity in anticipation of the surge. As
part of implementing that traffic management program, the trajectory of aircraft are
modified to comply with the traffic management program. However, if that surge event never
occurs (e.g., those ride requests never get fulfilled because riders give up or cancel rides),
those trajectory modifications will have been unnecessary [Req-30, Req-31]

CS-1.24.3-2. Feedback does not indicate that the trajectory of an aircraft is already valid and

optimal. This could occur if:
CS-1.24.3-2.1. Resp-1 receives erroneous track data for a flight due to degradation or a
flaw in how aircraft track information is generated (e.g., bad weather). As a result, the system
modifies the trajectories of other flights unnecessarily to avoid a collision with this aircraft
CS-1.24.3-2.2. Resp-1 does not receive feedback about the trajectory of an aircraft (e.g.,
an inadequately equipped aircraft that did not communicate intentions beforehand) and
attempts to infer the trajectory of the aircraft from its track. As a result, it has an incorrect
belief of the trajectory of the aircraft and wrongly believes that a collision is imminent. As a
result, the trajectories of aircraft are unnecessarily altered to resolve a conflict that was not
present [Req-87, Req-88]

CS-1.24.3-4. Feedback indicates that the trajectory of an aircraft is already valid and optimal

and no trajectory modifications are provided. However, the aircraft’s trajectory is modified

anyway. This could occur if:
CS-1.24.3-4.1. The aircraft deviates from a valid and optimal trajectory due to either
deliberate actions or unintended consequences. Deliberate actions include modifying
trajectory to avoid a temporary obstacle or hazard that was not previously known (e.g., a
crane temporarily placed on a building). Unintended consequences could be sudden wind

180

gusts or cloud buildup that the aircraft is unable to counteract or needs to maneuver around.
[Req-85, Req-90, Req-91]

Scenarios for UCA-1.29.1: Trajectory modifications are provided too late after the trajectories of
two aircraft are in conflict [H-1, H-2, H-3]

CS-1.29.1-1. Feedback indicating that the trajectories of two aircraft are in conflict was
received on time. However, trajectory modifications are provided too late. This could occur
because:
CS-1.29.1-1.1. It takes Resp-1 too long to identify a solution that resolves all conflicts. As
aresult, trajectory modifications are issued too late to adequately resolve the collision {(Resp-
1=Aircraft) V (Resp-1=Aircraft N ATM)}
CS-1.29.1-1.2. The process of generating a resolution repeatedly gets interrupted by new
requests/conflicts due to the density of air traffic. As such, before the trajectory modifications
can be issued, they need to be recalculated and thus the trajectory of aircraft is not modified
until it is too late to enact the new trajectories to avoid a collision {Resp-1=ATM}
CS-1.29.1-1.3. The process of generating possible trajectory modifications and relaying
them to Resp-3 is cumbersome enough (especially when traffic density is high) that by the
time the trajectory modifications have been confirmed, they are issued too late to adequately
prevent the collision {Resp-1=Resp-3}
CS-1.29.1-2. Feedback that the trajectories of two aircraft are in conflict is not received on
time because:
CS-1.29.1-2.1. A degradation in the aircraft's ability to continue its mission and trajectory
occurs (e.g., degraded GPS accuracy, compromised flight controls). If the aircraft does not
report this degradation in a timely manner or the degradation is temporary, by the time the
degradation is reported or the degradation is resolved, it is so close to the imminent collision
that trajectory modifications cannot be issued sufficiently quickly to resolve the conflict
{(Resp-1=Aircraft) V (Resp-1=Aircraft A ATM)}
CS-1.29.1-2.2. An aircraft is entering the UAM environment while airborne but outside it.
As such, by the time tracking and trajectory information is received and the aircraft is allowed
to enter the UAM environment, there is insufficient time to resolve the conflict before a
collision occurs [Req-89]
CS-1.29.1-3. Feedback indicating that the trajectories of two aircraft are in conflict was
received on time and trajectory modifications were provided on time. However, those
trajectory modifications are received by the aircraft too late because:
CS-1.29.1-3.1. There is a delay in transmitting them to the aircraft. This could occur if
trajectory modifications are transmitted in sets to aircraft instead of all at once. Alternatively,
one of the aircraft receiving trajectory modifications is using a different communications
method that is slower or not typically used (e.g., voice-based comms instead of digital text-

181

based comms). As a result, at least one of the aircraft receive their trajectory modification
too late for it to be effective at preventing the collision [Req-92]

CS-1.29.1-4. Feedback indicating that the trajectories of two aircraft are in conflict was

received on time and trajectory modifications were provided and are received by the aircraft

on time. However, the aircraft execute those trajectory modifications too late because:
CS-1.29.1-4.1. The aircraft were not expecting to receive trajectory modifications (e.g., in
a critical phase of flight) and therefore is delayed more than expected in executing the new
trajectory. As a result of this delay, there is not enough time to modify the trajectory of the
aircraft sufficiently to prevent the collision {(Resp-1=Aircraft) V (Resp-1=Aircraft A ATM)}

182

Appendix D Design Iteration 1 — Analysis and Comparison of
Architecture Options

This appendix shows the results from the comparison of the centralized (A1) and
decentralized (A;) collision avoidance architecture options performed in design iteration 1. Table
D-1 shows the full set of evaluation criteria that were identified and the comparison results (i.e.,
benefit or tradeoff) for each architecture option. To make it easier to read, the evaluation criteria
in this table are sorted by type (e.g., decision making, control path). For each evaluation criterion,
links are also provided in square braces to the scenario(s) in Table D-2 used to generate them.

Table D-2 then presents the full architecture comparison table that was used to generate the
comparison results shown in Table D-1. Table D-2 contains (1) the scenarios used to compare the
two architecture options, (2) the decisions about whether each scenario occurs for each
architecture option, (3) any assumptions used to decide that a scenario does not occur for an
architecture option, and (4) the evaluation criterion generated from that scenario. Note that
Table D-2 only includes scenarios where behavioral differences were observed are included and
scenarios where unsafe behavior was observed for both architecture options are omitted.

Table D-1: Full set of evaluation criteria for comparison of architecture options A; and A;

Benefit (+) or
ID Evaluation Criteria Tradeoff (-)
Al A2

Decision Making Evaluation Criteria

Frequency and complexity of trajectory modifications decisions to prevent

EC-1 loss of separation when resolving a(n) (urgent) conflict [Scenarios 2, 14]

Responsiveness of trajectory modifications decisions to prevent inability to
EC-2 complete missions when a high-priority flight either changes its planned
trajectory or is no longer being performed [Scenario 22, 30]

Responsiveness of trajectory modifications decisions to prevent inability to
EC-3 complete missions when providing more spacing between aircraft due to
degraded navigational capabilities [Scenario 19]

Ability to make appropriate trajectory modifications to prevent loss of

EC-4 .) .)
separation when multiple conflicts occur [Scenario 5]

OO0 00

Responsiveness of trajectory modification decisions to prevent loss of
EC-5 separation when resolving a multi-aircraft conflict in densely populated
airspace [Scenario 4]

Responsiveness of trajectory modifications decisions to prevent loss of
EC-6 separation when the state of the airspace changes rapidly or a conflict
involves restrictive operational constraints [Scenarios 9, 29]

Responsiveness of trajectory modifications decisions to enable aircraft to
complete missions when reducing spacing between aircraft to
accommodate additional air traffic or preventing unnecessary increases in
spacing for additional safety margin [Scenarios 20, 21]

EC-7

©O 00

183

Evaluation Criteria

Benefit (+) or
Tradeoff (-)

Al

A2

EC-8

Responsiveness of trajectory modification decisions to prevent inability to
complete missions when a high-priority flight needs to be given precedence

for mission completion [Scenarios 25, 26]

©

Process Model Evaluation Criteria

EC-9

Situational awareness of trajectory modifications rationale to prevent loss
of separation when receiving trajectory modifications to execute [Scenario
8]

©

EC-10

Level of situational awareness of airspace state available to prevent loss of
separation when trajectory modifications must be identified under
challenging or extremely limiting trajectory constraints [Scenario 13]

EC-11

Level of situational awareness of operational impacts occurred by each
flight to prevent inability to complete missions when distributing
operational impacts over numerous flights [Scenario 23]

©
©

Feedback / External Inputs Evaluation Criteria

EC-12

Timeliness of ground hazards feedback to prevent loss of separation when
resolving a conflict [Scenarios 6, 15, 27]

EC-13

Timeliness of operational constraints feedback to prevent loss of
separation when operational constraints are changing frequently [Scenario
24]

EC-14

Timeliness of aircraft capabilities, flight conditions and operational
constraints feedback to prevent loss of separation when resolving a conflict
[Scenarios 11, 16, 18]

O 00

EC-15

Use of “confirmation of trajectory modifications” input to prevent loss of
separation when resolving a conflict [Scenarios 1, 10]

EC-16

Use of “mutual agreement” input to prevent loss of separation when
resolving a conflict involving numerous aircraft and/or densely populated
airspace [Scenario 28]

0[O,

Control Path Evaluation Criteria

EC-17

Vulnerability of providing trajectory modifications to prevent loss of
separation when a component failure compromises decision making
[Scenario 3]

EC-18

Vulnerability of providing trajectory modifications to prevent loss of
separation when errors with the communications path occurs [Scenario 17]

EC-19

Responsiveness of execution of trajectory modifications to prevent loss of
separation when trajectory modifications have been issued [Scenarios 7,
12]

0)(0JO,

184

Table D-2: Comparison results for the centralized (A1) and decentralized (A;) collision avoidance architecture options

component failure that prevents
trajectory modifications from being
computed. As a result, no trajectory
modifications are issued

conflicts, a component failure on one

of the aircraft should not compromise

the ability of other aircraft to prevent
conflicts

D |s] Scenario Occurs? Evaluation
cenario cenario Occurs: Criteria
The imminent collision is recognized
and <controller(s) performing Resp- A EC-15: Use of
1> attempt to resolve the conflict. _) . “confirmation of
. Assumption: Since ATM is performing .

However, ATM does not confirm that | , ., Resp-1 and Resp-3, it is easier to traJe.c'Fory. i

1 the trajectory modifications still have coordinate these two responsibilities modlflcatlons
alternate trajectory options. As a because they are being performed by | INPutto prevent
result, <controller(s) performing the same controller loss of separation
Resp-1> are unable to issue when resolving a
trajectory modifications to resolve A;: Yes conflict
the collision
Although feedback about the
imminent collision is re;ceived, A:: Yes EC-1: Frequency
<contro||e'r(s) pferformmg Resp-1> are and complexity of
pre-occ9p|ed with resolving one set A>: trajectory
of conflicts and therefore do not Assumption: Even if some aircraft are | modifications

2 | attend t? the.feedback. ?bOUt preoccupied with resolving a conflict, | decisions to
another imminent collision. As a the. new aircraflt can i.dentify the prevent loss of
result, <c0ntro||er'(s) perfo.rmlng confllFt and coorc./lﬁate.’ its own se.t of separation when
Resp-1> does not issue trajectory trajectory modifications if traffic . .

Sl " . . resolving a conflict
modifications to resolve the conditions are sufficiently light
imminent collision
EC-17:

Althgugh fee<:!b.ack.about.the A:: Yes Vulnerability of
imminent collision is received, .

- providing
<controller(s) performlngiResp—1> are Az trajectory
unable to determine possible Assumption: With multiple aircraft | modifications to

3 | movement options due to a sharing responsibility for preventing

prevent loss of
separation when a
component failure
compromises
decision making

185

Evaluation

hazards (e.g., a new construction
crane). As a result, it does not believe
a collision is imminent and does not
try to modify aircraft trajectories to
avoid the collision

preoccupied with resolving a conflict,
the new aircraft can identify the
conflict and coordinate its own set of
trajectory modifications if traffic
conditions are sufficiently light

ID | Scenario Scenario Occurs? Criteria
Although feedback about the EC-5:
imminent collision is received, it Responsiveness of
takes so long for <controller(s) A;: trajectory
performing Resp-1> to identify a Assumption: Although not fully modification
conflict-free solution that no resolved, it is assumed that ATM decisions to

4 | trajectory modification is issued would be most likely to have the prevent loss of
before the collision occurs. This could resources to resolve a conflict in separation when
occur if, the airspace is so densely densely populated airspace resolving a multi-
populated that resolving a limited A: Yes aircraft conflict in
initial conflict requires changes to densely populated
many aircraft trajectories airspace
<Controller(s) performing Resp-1> do
not receive feedback of the imminent A:: Yes EC-4: Ability to
collision because at the time that it make appropriate
checked the trajectories of all A>: trajectory
aircraft, their trajectories were notin | assumption: Even if some aircraft are modification

5 | conflict. However, while resolving preoccupied with resolving a conflict, | 9ecisions to
another conflict, the trajectories of the new aircraft can identify the prevent loss of
these aircraft do become in conflict conflict and coordinate its own set of | separation when
and this is not noticed/resolved until trajectory modifications if traffic multiple conflicts
after the previous set of conflicts are conditions are sufficiently light occur
resolved.
<Controller(s) performing Resp-1>
f:loes. not recei.v.e feedback .Of th.e A1: Yes EC-12: Timeliness
|mrT_1|.nen.t collision but.the |mm|nent. of ground hazards
FoII|S|on is pres?nt. Thls could occur if Az: feedback to
it does not receive timely feedback Assumption: Even if some aircraft are | prevent loss of

6 | onthe presence of new ground

separation when
resolving a conflict
involving terrain or
ground obstacles

186

Evaluation

constantly needs to modify its
solution. As a result, a final solution is
not selected until it is too late to
prevent a collision

Assumption 2: Operators will notify
ATM of flights with more advance
notice, allowing ATM to pre-
coordinate those flights

A,: Yes

ID | Scenario Scenario Occurs? Criteria
Trajectory modifications are provided
by J<at Ie;/st one of the contrc?ller(s) A Yes FC-1: .

! : Responsiveness of

performing Resp-1> and received by A execution of
the aircraft but the conflict is not Assumption: since the aircraft are trajectory
r?solvec'i. This C°U|q occur if the coordinating to select trajectory modifications to

7 al'rcraft is preoccupied with other modifications, they know those prevent loss of
flight decl.< tasks and q?es I"lot .attend modifications are .coming a.nd will be separation when
to jche trajectory modification issued more responsive in executing them traiector
to it an'd therefore. does not once they are selected. —I—Ym odifications have
recognize that trajectory been issued
modifications have been received
Trajectory modifications are provided
by <one of the controller(s)
performing Resp-1> and received by
the aircraft k?ut the coanic'F is not EC-9: Situational
resolved. This could occur if one of . awareness of
the aircraft receives the trajectory A1: Yes traiector
modifi;ation but d(?(?s nf)t execute A,: monifica}clions
the trajectory modification because a o) rationale to

8 | they wrongly believe that the ssumptmn. Itis assumed thqt since

. . e L. the aircraft are selecting their own prevent loss of
provided trajfactory modlflcatl.on trajectory modifications, they are separation when
would result in another violation of therefore already aware of how those | receiving trajectory
minimum separation. They therefore | 1/gjectory modifications were chosen | modifications to
ignore the provided trajectory execute
modification and make an -
independent decision which
ultimately violates minimum
separation
A1:
Assumption 1: ATM will not have to EC-6:

Although the imminent collision is coordinate conflicts as frequently Responsiveness of
recognized, <controller(s) performing because it has broader situational trajectory
Resp-1> gets repeatedly interrupted awareness of the airspace and can modifications
by changing flight conditions and it resolve conflicts in a more decisions to

9 coordinated fashion.

prevent loss of
separation when
the state of the
airspace changes

rapidly

187

Scenario

Scenario Occurs?

Evaluation
Criteria

10

Although <controller(s) performing
Resp-1> recognize the imminent
collision, the process of having
possible trajectory modifications
confirmed by ATM is cumbersome
enough that by the time the
trajectory modifications have been

A;:

Assumption: Since Resp-3 and Resp-1
are both performed by ATM, this
coordination between responsibilities
can happen much faster than it would
between aircraft

EC-15: Use of
“confirmation of
trajectory
modifications”
input to prevent
loss of separation

when resolving a

11

confirmed, they are issued too late to A: Yes conflict
adequately prevent the collision -
<Controller(s) performing Resp-1> do EC-14: Timeliness
not receive feedback on time that Ai: Yes of aircraft
indicates a collision is imminent A,: capabilities, flight

because of a degradation in the
aircraft's navigational capabilities. If
the aircraft does not report this
degradation in a timely manner,
there may not be enough time to
select appropriate trajectory
modifications to resolve the conflict

Assumption 1: The aircraft will be
directly aware of their own flight
conditions

Assumption 2: Coordinating between
aircraft on navigational capabilities is
faster than coordinating with ATM

conditions and
operational
constraints
feedback to
prevent loss of
separation when
resolving a conflict

12

Trajectory modifications are received
by the aircraft on time but the
aircraft does not execute those
modifications on time because they
were not expecting to receive
trajectory modifications (e.g., in a
critical phase of flight) and therefore
is delayed more than expected in
executing the new trajectory.

Ai: Yes
Az:

Assumption: Since the aircraft are
coordinating trajectory modifications,
they would know about potential
collisions that they need to resolve
and thus this scenario would not occur

EC-19:
Responsiveness of
execution of
trajectory
modifications to
prevent loss of
separation when
trajectory
modifications have
been issued

188

Evaluation

ID | Scenario Scenario Occurs? Criteria
An emergency or last-minute EC-10: Level of
airspace restriction occurs, requiring situational
large numbers of aircraft to modify awareness of
their trajectories. As a result, Az airspace state
<contro||er(s:) performlng Re'sp—1>. are Assumption: ATM will be able to available to
forced to qwckly modify trajectories coordinate large groups of aircraft | PTEVENt loss of

13 for numerous aircraft before they can | ygjectories more easily because of its | S€P3ration when
adequately consider the collision broader situational awareness of the | ralectory
implications of the new trajectories. airspace state modifications must
As a result, they select the trajectory be identified under
modifications that result in the A;: Yes challenging or
fewest collisions and issues those extremely limiting
even though some trajectories have trajectory
collisions. constraints
Although <controller(s) performing
Resp-1> rec.eives feedbzflc.k in.dicatir.lg EC-1: Frequency
that the traJ(.ac.tory. mod.lflcatlons YVI” A;:: Yes and complexity of
result in collision, it believes that it trajectory
can |'ss.ue Turther trajectory A2: modifications

14 modifications later to prevent Assumption: The aircraft will have | 4acisions to
collision. However, <controller(s) fewer collisions to attend to and prevent loss of
performing ResP-EI.> do not return t9 therefore are less likely to be.u.nab/e separation when
correct that collision (e.g., because it toreturntoa SeCOﬂd?W collision to resolving an urgent
becomes preoccupied resolving other resolve it conflict
collisions) and thus the collision -
occurs
<Control.ler(s:) performing Resp-1> do EC-12: Timeliness
not. receive t|m.e.ly ﬂ?edbac.k that th.e A:: Yes of ground hazards
trajec.tc.)ry modifications will result in feedback to
a C0|.|ISIO!’1 because they do not Az: prevent loss of

15 | receive timely feedback of ground Assumption: The aircraft will have

hazards and wrongly believe that the
trajectory modifications they are
providing are not in conflict with a
ground hazard

appropriate sensors to be able to
detect ground hazards with enough
range to take action to avoid them

separation when
resolving a conflict
involving terrain or
ground obstacles

189

Evaluation

ID | Scenario Scenario Occurs? Criteria
<controller(s) performing Resp-1> do A1: Yes EC-14: Timeliness
not receive timely information about A of aircraft
the aircraft’s capabilities and, for) 2.) _ capabilities, flight
example, could wrongly believe that ﬁc\js.sur:llptlon L The;::r.craft W;{l Z‘; conditions and
an aircraft is capable of more precise rectly aware of er OW.nflg operational

16 .. . conditions and navigational .
navigation than it is. As a result, capabilities constraints
<controller(s) performing Resp-1> Assumption 2: Coordinating between feedback to
provides trajectory modifications that mp .I' b di g d prevent loss of
it wrongly believes does not contain aircraft on flight conditions an separation when
! o sly aircraft capabilities is faster than Vi flict
collisions coordinating with ATM resolving a conflic

. EC-18:
<Controller(s) performing Resp-1> Vulnerability of
issue trajectory modifications that do A1: Yes providing
not result in collision. However, . .
during transmission to the aircraft, a) Azf E:?g;?i;:ions to

17 | communications error occurs, and Assumptl.on. Itis assun.qed.that. a £l f
the aircraft only receives part of the compromised communication link prevent 1oss o

. de, . P dth experienced by one aircraft will separation when
traJeFtory rTmo : .lc§tlons.a.n t .e part typically not affect all aircraft (some | errors with the
that is received is in collision with exceptions exist) —communications
another aircraft trajectory ath occurs
<Controller(s) performing Resp-1> EC-14: Timeliness
receives fe.edk.)ack that the aircraft is A;:: Yes of aircraft
not following its trajectory exactly as capabilities, flight
expected but does not receive Az conditions z;md
enough feedback to know exactly Assumption: The aircraft are aware of | gperational

18 | how much extra space buffer to their own flight conditions and can | o1 ctraints
provide. As a result, <controller(s) determine their navigational feedback to

performing Resp-1> provides
trajectory modifications to allow
extra spacing between aircraft even
though they might be unnecessary

capabilities with better accuracy to
determine how much spacing from
other aircraft is needed

prevent loss of
separation when
resolving a conflict

190

Evaluation

ID | Scenario Scenario Occurs? Criteria
<Controller(s) performing Resp-1>
does not receive timely information EC-3:
about the aircraft capabilities.. Asa Responsiveness of
result, <controller(s) performmg trajectory
Resp-1> h'a's 'the wrong pellef about A;:: Yes modifications
the capabilities of 'Fhe aircraft when decisions to
they'change gver tlme.. For example, Az: prevent inability to
19 | @" aircraft might experience Assumption: Since aircraft are complete missions
temporary degradation of their GPS c.(?ord.inating thei.r trajectO(y when orovidin
signal that recovers after a short modifications, they will be motivated more sp—gacin
time. As a result, <controller(s) to optimize the trajectories once any _p_gb ;
. L etween aircraft
performing Resp-1> have degradation is resolved. q
. ue to degraded
wro'ng/_outdated b(_al.le.zfs about the navigational
n'aV|gat|onaI'capab|Iltl.es of 'Fhe ' ca aEbiIities
aircraft and issues trajectories with
unnecessarily large spacing/clearance
<Controller(s) performing Resp-1> do
not receive feedback indicating that
the trajectories will consume more EC-7:
space than necessary because they Responsiveness of
originally believed that there was A;: trajectory
extra airspace available to increase Assumption: If ATM makes these | modifications
the separation between flights. decisions centrally, it maintains decisions to enable
However, a later flight is filed whose awareness of where it has chosen to | aircraft to
20 | optimal flight path conflicts with the consume more airspace than complete missions

first. Instead of modifying the
trajectory to just what is necessary,
the later flight's flight plan is
modified instead because
<controller(s) performing Resp-1> do
not recognize that the first flight's
trajectory is consuming more space
than necessary

necessary in its trajectory
modifications so that those decisions
can be undone if necessary

A,: Yes

when reducing
spacing between

aircraft to
accommodate
additional air
traffic

191

Scenario

Scenario Occurs?

Evaluation

Criteria
<Controller(s) performing Resp-1> do
not receive feedback indicating that EC-7:
the trajectories will consume more Responsiveness of
airspace than necessary because the Ay traje.c'Fory.
aircraft try to reserve more airspace Assumption: Since ATM is centrally mo<.j|f|cat|ons
than necessary for themselves as a L decisions to enable
) T responsible, it can balance the .

safety margin and therefore indicate requests and needs of each aircraft aircraft to -

21 | that they are capable of less precise with the resources (e.g., airspace, complete missions
navigation than they actually are. As | time) available for flights and ensure | When preventing
a result, <controller(s) performing fair allocation of those resources unnecessary
Resp-1> bases its selection of .Y increases in
trajectory modifications on that Az: Yes spacing for
feedback, not realizing that those additional safety
trajectories consume more airspace margin
than necessary
<Controller(s) performing Resp-1>
begin to modify the trajectories of
active flights to accommodate a EC-2:
h|gher.-pr|or|ty fllght. However, while Responsiveness of
seIec't|.ng 'Fhese traJeFtory . Ar: Y trajectory
mod|f|catlons, .the hlgher—prlorlty . 1. YeS modifications
flight ch.a.nges its flight plan. To avoid A: decisions to

22 the additional workload ofre- Assumption: The aircraft would be | Prevent inability to

selecting those trajectory
modifications, <controller(s)
performing Resp-1> may choose to
just provide the already-selected
trajectory modifications instead of
re-selecting them even though they
consume more airspace than
necessary.

motivated to modify their trajectories
to be more efficient if such an option
were available.

complete missions
when a high-
priority flight

changes its
planned trajectory

192

Evaluation

i Scenario Occurs? o
ID | Scenario Criteria
Although <cont'rollerr](s) perfor'mmgI EC-11: Level of
Resp-1>‘ recognllze that operationa situational
cor‘lstr'a.lnts would t?e exceeded. (e.g., - awareness of
a significant extension of the flight A operational
path), it belle{vgs tchat it would t.>e Assumptlgn: Wn:‘h ATM s'centrallzed impacts occurred
opt|ma| to minimize the operat|ona| role in this architecture, it would be by each flight to
) chfli
23 | impacts to other aircraft (that might better able to balance equitable y i gb'l't ;
have fly at higher speeds or be distribution of operational impacts | Preventinability to
o 'ny . rg le) and result amongst aircraft complete missions
cad(;/ll g 9 eI pegp efa . zs aresu when distributing
saddles a single al'rcralt' wit A: Yes operational
nurlnferloufsliorp:eratlro]na |mpacts (e.g., impacts over
multiple flight path extensions or numerous flights
delays)
<Controller(s) performing Resp-1>
does not receive feedback that the
trajectory modification would not
meet operational constraints because EC-13: Timeliness
i i of operational
some Qperatlona! contstralnts' change A;:: Yes Y _
over time (e.g., diversion options constraints
become more restricted due to fuel A2: feedback to
24 remaining as a flight progresses). If Assumption: Since the aircraft are prevent. loss of
<controller(s) performing Resp-1> responsible for conflict avoidance, separation when
does not receive timely feedback they would be aware of changes and | operational
indicating a change to the would initiate trajectory modifications | constraints are
operational constraints when it if needed. changing
selects alternative trajectories, it frequently
could select trajectory modifications
based on out-of-date or incomplete
operational constraints.
I ‘ . EC-8:
<Contr9 err(]s) per ormmg fReshp—1> " Responsiveness of
recoin|ze t. ?]t L:]A';f a;]rcr? t that wi A trajectory
interfere with the flig t of an ' 1% modification
emergency response aircraft. Assumption: Because ATM has -
s . .) . decisions to
However, especially if the airspace is broader SA of the airspace, it can inability to
25 | densely occupied, <Controller(s) clear a path for an emergency | .
. ; t faster than the complete missions
performing Resp-1> may not be able response aircroft .
to clear a path for the emergenc aircraft could individually when ahigh
p. ftintime b fg yh priority flight needs
response aircraft in tlme ef ore tde A,: Yes to be given
emergency response aircraft needs to —g_recedence for

depart.

mission completion

193

Scenario

Scenario Occurs?

Evaluation

Criteria
<Controller(s) performing Resp-1>
receives feedback at the last minute EC-8:
! nd|c?t|r'1g tha'nthU?]Mﬂa.lrEraf: are Responsiveness of
interfering with the |g t of atr: Ax: trajectory
emergency response alrcra? t because . 1. modification
the emergency response aircraft are Assumption: Because ATM has .
o]) . . i o decisions to
modifying their trajectories quickly in | broader situational awareness of the inability to
26 | response to an evolving emergency airspace, it can clear a.path foran complete missions
event (e.g., a bad accident, a wild emergency response aircraft faster P _
fire). If <controller(s) performing than the aircraft could individually Whe’? ahigh- h'_ h-
R ’ 1> bl d and priority flight needs
es(;;)'-]c >: una. e to'respfoSA:/ln A: Yes to be given
mo i]}/t e trajectorler'ls o . recedence for
fanrcra t'm res.ponse, they can end up mission completion
interfering with the emergency
response flight
<Controller(s) performing Resp-1>
dr:)es :,Ot reFe|ve fee;iback. |nd|fcat|ng A;: Yes
t a:c|t- e tra?J(:]ctorybo anI aircraft _ A EC-12: Timeliness
coh |ch with an 9 stacle or terram. 2: of ground hazards
This might occur if the obstacle is Assumption: The aircraft would have | feedback to
27 | new and/or temporary (e.g., a tall onboard sensing capable of detecting prevent loss of
crane or a temporary structure near a the ol?stac/e with gnough range to separation when
UAM aerodrome) and feedback allow time for the aircraft to respond . .
. . ; resolving a conflict
about the presence of this obstacle to avoid a collision with the ground
has not been provided to hazard
<controller(s) performing Resp-1>.
<Controller(s) performing Resp-1>
receive feedback that the aircraft EC-16: Use of
require an immediate change in “mutual
trajectory but is unable to issue A agreement” input
trajectory modifications in time Assumption: Since ATM has broader | to prevent loss of
)8 because it must coordinate the situational awareness of the airspace, | separation when

change with numerous other aircraft
trajectories. This is especially
challenging when the airspace is
densely populated. However, it is
unable to issue the required
trajectory modifications in time

it can solve large conflict sets faster
than the aircraft could individually

A,: Yes

resolving a conflict

involving
numerous aircraft

and/or densely

populated airspace

194

Scenario

Scenario Occurs?

Evaluation

Criteria
<Controller(s) performing Resp-1>
correctly recognize that the
trajectory needed by an aircraft EC-6:
experiencing an emergency conflicts Responsiveness of
\Igwth thosetgf other a|rcbr|af'fc. et A trajectory
owever, €y f‘:\re una edi'se gc Assumption: As the central decision | modifications

appropriate trjaject‘ory modifications maker, ATM can more quickly gather | decisions to

29 bec'ause multlple aircraft ha've and account for the various prevent loss of
various operational constraints that operational constraints to select separation when
<controller(s) performing Resp-1> is trajectory modifications resolving a conflict
unaware of until it requests fo.r ' A Yes involving restrictive
feedback about them. By the time it ooerational
has received this feedback, there is constraints
not enough time to issue appropriate
trajectory modifications to resolve
the conflict
<Controller(s) performing Resp-1> EC-2:
receive feedback indicating that Responsiveness of
there is a more efficient or desirable traiector
trajectory available for an aircraft but Ai: Yes) - y.

modifications

does not issue trajectory . .
modifications. This could occur if Az: deC|5|on§ to .

30 Assumption: The aircraft would be | Preventinability to

<controller(s) performing Resp-1>
decides to avoid the extra workload
of switching the aircraft over to the
more efficient trajectory and decides
to just leave the aircraft on its less
efficient or desirable trajectory

motivated to modify their trajectories
to be more efficient if such an option
were made available

complete missions
when a high-
priority flight is no
longer being
performed

195

Appendix E Design Iteration 2 — Analysis of Shared Responsibility
Architecture

This appendix presents the STPA-Teaming results from analyzing the shared responsibility
collision avoidance architecture chosen in design iteration 1. As described in Section 5.2, STPA-
Teaming was used to analyze the Trajectory Modifications control action to determine how ATM
and the aircraft collectively providing or not providing trajectory modifications could lead to
unsafe behavior. Four main combinations of control actions are considered:

Combination 1: Neither ATM nor the aircraft provide trajectory modifications when....
Combination 2: Either ATM or the aircraft provide trajectory modifications when....
Combination 3: Both ATM and the aircraft provide trajectory modifications when.....
Combination 4: One controller (ATM or the aircraft) provides trajectory modifications
before the other provides trajectory modifications when....

In the following subsections, the abstract and refined UCCAs and scenarios identified for each
of these combinations are presented. The hazards associated with each UCCA are linked in square
braces. In addition, the UCCAs for which scenarios were generated are colored in blue. For the
causal scenarios, the requirement derived from each scenario is linked in square braces.

E.1. Combination 1 UCCAs and Scenarios

Table E-1: Combination 1 UCCAs and Scenarios

ID UCCA

UCCA-1 | Neither ATM nor the aircraft provide trajectory modifications when the trajectories of two
aircraft are in conflict [H-1]

UCCA-2 | Neither ATM nor the aircraft provide trajectory modifications when UAM aircraft interfere
with the flight of an emergency response aircraft [H-3]

UCCA-3 | Neither ATM nor the aircraft provide trajectory modifications when the trajectory of an
aircraft conflicts with an obstacle or terrain [H-1]

UCCA-4 | Neither ATM nor the aircraft provide trajectory modifications when the trajectory needed
by an aircraft experiencing an emergency conflicts with other aircraft [H-1, H-3]

UCCA-5 | Neither ATM nor the aircraft provide trajectory modifications when the arrival trajectory of
a UAM aircraft at a conventional airport conflicts with the approach course used by
conventional aviation aircraft [H-1, H-3]

UCCA-6 | Neither ATM nor the aircraft provide trajectory modifications when a higher priority flight
incurs an unacceptable operational impact (e.g., delay) due to UAM flights that are
occurring [H-3]

UCCA-7 | Neither ATM nor the aircraft provide trajectory modifications when UAM aircraft need to
be sequenced for arrival to a conventional airport [H-3]

UCCA-8 | Neither ATM nor the aircraft provide trajectory modifications when UAM aircraft have
overlapping arrival or departure trajectories [H-1, H-3]

UCCA-9 | Neither ATM nor the aircraft provide trajectory modifications when the trajectory of a

UAM aircraft will take it toward inclement weather that exceeds the aircraft’s capabilities
[H-1, H-3]

196

Scenarios for UCCA-1: Neither ATM nor aircraft provide trajectory modifications when the
trajectories of two aircraft are in conflict [H-1]

CSs-2.1.1. ATM and the aircraft both receive feedback about the imminent collision but
none of them issue trajectory modifications to resolve the conflict. This could occur if:
CS-2.1.1-1.The aircraft attempt to resolve the conflict and ATM does not. However, when the
aircraft attempt to verify with ATM that their selected trajectory modifications will have
alternate trajectory options available, ATM does not confirm this and therefore the aircraft
are unable to issue trajectory modifications before the collision occurs. [»LReq-113]
CS-2.1.1-2.ATM allows the aircraft to resolve the conflict. However, if the conflict involves a
large number of aircraft or numerous operational constraints, it may take too long for the
aircraft to coordinate among themselves to resolve the collision. As a result, neither ATM nor
the aircraft issue trajectory modifications to prevent the conflict. [Reg-101, Req-102, Reg-
103]

CS-2.1.1-3.ATM is preoccupied with a previous conflict and the aircraft assume ATM will
resolve the conflict and therefore do not resolve the conflict themselves. As a result, none of
them issue trajectory modifications to prevent the conflict. [Reg-101, Reqg-102, Reg-103]
CS-2.1.1-4.ATM and the aircraft both assume the other is better equipped to resolve the
conflict or they each wrongly believe the other will resolve the conflict. As a result, each waits
for the other to resolve the conflict and neither of them selects trajectory modifications to
prevent the conflict. & Reg-121]

CS-2.1.1-5.Although the imminent collision is recognized by both ATM and the aircraft,
neither is able to identify trajectory modifications before the collision occurs. For ATM, this
could occur if it is resolving a conflict set involving a large number of aircraft. Similarly, for
the aircraft, if a large number of aircraft are involved, the coordination required amongst
aircraft may slow down conflict resolution. [\ Req-101, Req-102]

CS-2.1.1-6.Although both ATM and the aircraft receive feedback about the imminent
collision, ATM wrongly omits the track or trajectory of one of the aircraft from the
consolidated airspace state that it provides to the aircraft to support collision avoidance. This
could occur either maliciously (e.g., a bad actor deleting trajectory data) or unintentionally
(e.g., data errors). As a result, although the aircraft receive correct feedback about the
imminent collision, they choose to ignore that correct feedback because they wrongly believe
that ATM’s consolidated airspace state information is valid. As a result, both ATM and the
aircraft do not attempt to resolve the imminent collision. [Reqg-111, Reqg-118,]
CS-2.1.1-7.Although the imminent collision is recognized by both ATM and the aircraft, both
are delayed by ATM needing to confirm those trajectory modifications. This could be
especially likely to happen if ATM and the aircraft both try to verify trajectory modifications
to resolve the same conflict. As a result, ATM does not confirm those trajectory modifications
and neither is able to select trajectory modifications in time. & Req-113, Reqg-121]

CS-2.1.2. ATM and the aircraft do not receive feedback about the imminent collision
because:

CS-2.1.2-1.ATM and the aircraft receive inaccurate of out-of-date information about the
navigational capabilities of each aircraft. As a result, if one aircraft’s navigational capabilities

197

changes (e.g., becomes degraded), neither ATM nor the aircraft receive timely feedback
about the change. They are therefore unaware that the aircraft with altered navigational
capabilities is on a collision course with another aircraft even though it is. [Reg-111]
CS-2.1.3. Either ATM or the aircraft recognize a potential conflict and attempt to provide
trajectory modifications to prevent it. However, those trajectory modifications are not
received by the aircraft because:
CS-2.1.3-1. Malicious interference or equipment failure results in trajectory modifications not
reaching the aircraft. As a result, the aircraft attempt to resolve conflicts independently and
select trajectory modifications that conflict with those selected by other aircraft. [\ Req-104]
CS-2.1.4. ATM and the aircraft both receive feedback about the potential conflict and at
least one of them correctly issues trajectory modifications to resolve it. However, the
collision still occurs. This could occur if:
CS-2.1.4-1.While the aircraft are still trying to identify appropriate trajectory modifications,
ATM selects one and transmits it to the aircraft. However, the aircraft are preoccupied with
identifying their own resolution to the conflict and do not recognize that ATM has transmitted
trajectory modifications to them already. As a result, they either do not execute them at all
or execute them too late for the modifications to be effective. [i Reg-121, Reg-112]
CS-2.1.4-2.The aircraft do execute the trajectory modifications provided by ATM but not to
the required level of performance (e.g., precision). This could occur either due to
inappropriate equipage, inadequate maneuvering capability or environmental conditions
interfering with the flight (e.g., wind gusts, temporary GPS outage). As a result, the provided
trajectory modifications do not adequately resolve the conflict. In addition, if ATM notices
this too late, there may not be enough time to recompute new trajectory modifications to
resolve the conflict. [J« Reg-111, Req-145]
CS-2.1.4-3.The aircraft is deliberately ignoring the trajectory modification provided by ATM
and continues on its original trajectory or a different one while other aircraft are executing
the trajectory modifications provided to them. As a result, new conflicts arise. [\ Reg-107]
CS-2.1.4-4.The aircraft execute trajectory modifications that are either provided by ATM or
selected by them but these trajectory modifications do not adequately resolve the collision.
ATM notices this but believes that the aircraft should attempt to re-resolve the collision
themselves. However, by the time ATM has notified the aircraft to re-resolve the potential
collision, there is not enough to identify new trajectory modifications before the collision
occurs. [Req-109]

Scenarios for UCCA-2: Neither ATM nor the aircraft provide trajectory modifications when UAM
aircraft interfere with the flight of an emergency response aircraft [H-3]

CS-2.2.1. ATM and the aircraft both recognize that a UAM flight will interfere with that of
an emergency response aircraft. However, neither of them issue trajectory modifications
to address the interference. This could occur because:

CS-2.1.1-1.Especially if the airspace is densely occupied, ATM may be preoccupied resolving
more imminent conflicts and the aircraft may require a long time to adequately coordinate
on trajectory modifications to avoid interference. As such, neither ATM nor the aircraft can

198

respond and select trajectory modifications before the emergency response aircraft needs to
depart. [{ Reg-101, Reg-102]

CS-2.1.1-2.ATM and the aircraft receive the feedback about the interference at the last
minute because the emergency response flight needs to depart immediately or it is changing
its flight path in response to a rapidly evolving emergency. As a result, ATM and the aircraft
are unable to respond and modify aircraft trajectories in time to avoid interference with the
emergency response flight. [{ Req-101, Req-102, Req-122]

CS-2.2.2. ATM and the aircraft do not receive feedback that the trajectory of a UAM

aircraft will interfere with the flight of an emergency response aircraft. This might occur
because:
CS-2.1.2-1.The emergency response aircraft is changing trajectories rapidly in response to an
evolving situation and therefore its desired trajectory is not known in advance. As a result,
the emergency response aircraft does not have a planned trajectory that can be used to
inform conflict resolution decisions. [~L Reqg-128]

Scenarios for UCCA-3: Neither ATM nor the aircraft provide trajectory modifications when the
trajectory of an aircraft conflicts with an obstacle or terrain [H-1]

CS-2.3.1. Feedback is received that indicates that the trajectory of an aircraft conflicts
with an obstacle or terrain but neither ATM nor the aircraft issue trajectory modifications
to resolve it. This could occur because:

CS-2.3.1-1.ATM either assumes that the aircraft will resolve the conflict with terrain or it does
not receive the feedback about the aircraft’s conflict with terrain and therefore takes no
action. However, due to other traffic close to the aircraft and the aircraft’s proximity to the
terrain, the aircraft are unable to select appropriate trajectory modifications before a
collision occurs. [{ Req-108]

CS-2.3.1-2.The aircraft correctly recognize the conflict and request ATM’s assistance to
resolve the conflict. However, because ATM is dependent on the aircraft to receive feedback
about the obstacle or terrain they conflict with, ATM does not receive that feedback with
enough time to issue trajectory modifications to prevent a collision before it occurs. [Reg-
105]

CS-2.3.1-3.The aircraft whose trajectory conflicts with an obstacle or terrain tries to resolve
the conflict by communicating with other nearby aircraft to coordinate a trajectory change.
However, one of the nearby aircraft is not equipped appropriately to coordinate trajectory
modifications. By the time the original aircraft notifies ATM to assist in the conflict, there is
not enough time to coordinate amongst the aircraft to resolve the conflict before it occurs.
[\ Reg-114]

CS-2.3.4. Either ATM or the aircraft correctly select trajectory modifications to resolve
an aircraft’s conflict with terrain or an obstacle. However, a collision with an obstacle or
terrain still occurs. This could occur if:

CS-2.3.4-1.The first aircraft was successfully able to prevent a collision with an obstacle or
terrain. However, a second aircraft selects trajectory modifications without being aware of
the terrain or obstacle that the first aircraft had successfully avoided. As a result, the second

199

aircraft selects trajectory modifications that result in a collision with the obstacle or terrain.
[\ Reg-116]

Scenarios for UCCA-4: Neither ATM nor the aircraft provide trajectory modifications when the
trajectory needed by an aircraft experiencing an emergency conflicts with other aircraft [H-1, H-
3]

CS-2.3.4. Feedback is received that indicates that the trajectory needed by an aircraft
experiencing an emergency conflicts with other aircraft. However, neither ATM nor the
aircraft issue trajectory modifications to resolve the conflict. This could occur because:
CS-2.3.4-1.ATM believes that the aircraft can identify trajectory modifications on their own
and therefore allow the aircraft to do so. However, either due to traffic density or tight
operational constraints (e.g., fuel), the aircraft are unable to identify appropriate trajectory
modifications in time. [J« Reqg-103]

E.2. Combination 2 UCCAs and Scenarios
Table E-2: Combination 2 Abstracted UCCAs

Ci Ci(s) Context

UCCA-10 Trajectory -Trajectory when the trajectory of an aircraft is already valid
modifications modifications and optimal [H-3]

UCCA-11 Trajectory -Trajectory when the modifications will result in a secondary
modifications modifications collision with another aircraft [H-1]

UCCA-12 Trajectory -Trajectory when those trajectories allocate more airspace
modifications modifications than necessary to prevent collisions [H-3]

UCCA-13 Trajectory -Trajectory when the operational constraints for at least one
modifications modifications of the aircraft will be exceeded [H-1, H-3]

UCCA-14 Trajectory -Trajectory when the modifications will cause a collision with
modifications modifications an obstacle or terrain [H-1]

UCCA-15 . . when the modification requires an aircraft to

Trajectory -Trajectory . .
e L traverse adverse weather that it is not equipped
modifications modifications
to handle [H-1]

UCCA-16 Trajectory -Trajectory when they do not satisfy the priority needs of the

modifications modifications aircraft [H-1, H-3]

For each of the abstracted UCCAs in Table E-2, two refined UCCAs are generated and their IDs
are formatted as follows:

e |Ds that have the format “UCCA-XX.1” are refined UCCAs where ATM provides trajectory
modifications but the aircraft do not
e |Ds that have the format “UCCA-XX.2” are refined UCCAs where the aircraft provide
trajectory modifications but ATM does not

200

Scenarios for UCCA-10.1: ATM provides trajectory modifications (and the aircraft do not) when
the trajectory of a UAM aircraft is already valid and optimal [H-3]

CS-2.10.1.1. Although ATM knows that the trajectory of an aircraft is already valid and

optimal, it issues trajectory modifications anyway. This could occur because:
CS-2.10.1.1-1. ATM is forced to make trajectory modifications to accommodate higher-
priority traffic (e.g., an emergency response flight). As a result, it makes a trajectory
modification that is no longer optimal for the UAM aircraft and that results in a delay or even
the UAM aircraft being unable to complete its mission to allow the higher-priority traffic to
proceed as requested. [Reqg-130, Req-131]
CS-2.10.1.1-2. ATM wrongly identifies a potential conflict that will not actually occur. This
could happen if ATM receives erroneous or out-of-date trajectory or track data from the
aircraft. For example, due to inclement weather, aircraft may be modifying trajectories and
ATM may identify a potential conflict based on the unmodified aircraft trajectories. As a
result, ATM unnecessarily modifies the trajectories of aircraft away from the valid and
optimal one to prevent a conflict that does not actually exist. & Reg-119, Reg-131]

CS-2.10.1.4. ATM does not provide trajectory modifications but the aircraft deviate from a
valid and optimal trajectory. This could occur because:

CS-2.10.1.4-1. The aircraft changes its trajectory intentionally (e.g., modifying its
trajectory for an obstacle that was not previously known) or unintentionally (e.g., strong wind
pushes the aircraft off course) [Reg-111]

Scenarios for UCCA-11.1: ATM provides trajectory modifications (and the aircraft do not) when
the modifications will result in a collision

CS-2.11.1.1. ATM and the aircraft receive feedback indicating that the trajectory
modifications will result in a collision. However, ATM issues its selected trajectory
modifications anyway. This could occur if:

CS-2.11.1.1-1. ATM selects trajectory modifications that contain secondary collisions. It
does this believing that it would be faster to issue these first and then resolve the secondary
collisions later. However, ATM becomes busy resolving these secondary collisions and does
not return to at least some of them in time. Furthermore, the aircraft believe ATM will resolve
the secondary collisions and therefore don't try to resolve them on its own. & Reqg-101, Reqg-
102]

CS-2.11.1.1-2. While attempting to identify appropriate trajectory modifications, ATM
does not process feedback about changes to the trajectories of other aircraft and therefore
does not update its process model to reflect the new trajectories of those aircraft. Similarly,
the aircraft may not receive timely feedback about changes in the trajectories of aircraft
because they would only receive such feedback indirectly when the consolidated airspace
state feedback changes. As a result, ATM selects trajectory modifications that it wrongly
believes are collision free but are actually in conflict based on the updated trajectories of
other aircraft and the aircraft do not have the timely feedback to recognize that a secondary
collision will occur. [»L Reqg-108]

201

CS-2.11.1.2. ATM and the aircraft do not receive feedback that the trajectory modifications
will result in a collision. This could occur because:

CS-2.11.1.2-1. ATM does not receive timely feedback of ground hazards (e.g., a new
construction crane being erected) and believes that the trajectory modification it is providing
will not cause a conflict with that ground hazard. In addition, the aircraft may be unable to
detect the ground hazard with enough time to either avoid it themselves or notify ATM to
take action. As a result, the aircraft do not select trajectory modifications and ATM issues its
selected trajectory modifications, unaware that it will cause a collision. & Reg-123]
CS-2.11.1.2-2. Other aircraft are about to but have not yet modified their trajectories and
therefore ATM has not received any feedback that the trajectories of some aircraft are about
to be modified when it begins to identify its own trajectory modifications. If it does not
receive and process feedback later that the trajectories of some aircraft have been modified,
ATM will identify trajectory modifications based on the outdated, unmodified aircraft
trajectories and therefore identify its own trajectory modifications that it does not realize are
in conflict with the modified trajectories of some aircraft. & Reqg-135, Req-136]

CS-2.11.1.3. ATM issues trajectory modifications that do not result in a collision. However,

trajectory modifications that do result in a collision are received by the aircraft. This could
occur because:
CS-2.11.1.3-1. During transmission to the aircraft, part of the trajectory modification is
dropped (e.g., due to a partial/temporary communications failure). As a result, the aircraft
only receives part of the trajectory modifications and the part that is received by the aircraft
is in collision with another aircraft trajectory. However, since the aircraft believe that ATM is
managing the collision, they do not check the trajectory modification themselves and simply
execute it. [J« Reg-134]

Scenario for UCCA-11.2: The aircraft provide trajectory modifications (and ATM does not) when
the modifications will result in a collision

CS-2.11.2.1. The aircraft do not receive feedback that the trajectory modifications will result
in a collision. This could occur because:
CS-2.11.2.1-1. One set of aircraft are about to but have not yet modified their trajectories
and therefore other aircraft have not received any feedback that the trajectories of some
aircraft are about to be modified when they begin to identify their own trajectory
modifications. If these other aircraft do not receive and process feedback later that the
trajectories of some aircraft have been modified, they will identify trajectory modifications
based on the outdated, unmodified aircraft trajectories and therefore identify their own
trajectory modifications that they do not realize are in conflict with the modified trajectories
of some aircraft. [{ Req-135, Req-136]

202

Scenarios for UCCA-12.1: ATM provides trajectory modifications (and the aircraft do not) when
those trajectories allocate more airspace than necessary to prevent collisions

CS-2.12.1.1. ATM and the aircraft both receive feedback that the trajectory modifications
provided to the aircraft will consume more airspace than necessary but ATM issues them
anyway. This could occur because:

CS-2.12.1.1-1. Based on feedback about the track of the aircraft, ATM wrongly believes
that the aircraft is not adequately following its trajectory and could get too close to another
aircraft. ATM therefore decides to issue further trajectory modifications that expand the
amount of airspace consumed for that aircraft. However, if the aircraft is actually following
its trajectory closely enough that there was no collision risk, it is actually unnecessary to
consume the additional airspace. [Reg-117, Req-118]

CS-2.12.1.1-2. ATM believes that weather or other event will occur in the near future that
will compromise the ability of aircraft to follow more precise trajectory or the ability to track
them precisely. As a result, they issue/select these expanded trajectory modifications
anyway to protect airspace safety even though they consume more airspace than necessary
at the current time. The additional airspace provided for each aircraft provides the aircraft
with additional flexibility and safety margin so the aircraft accept the expanded trajectory
modifications. However, if the anticipated event does not ultimately occur, these expanded
trajectory modifications will not have been necessary at all. & Reg-117, Reg-118]

CS-2.12.1.2. SC-12.1.2: ATM does not receive feedback that the trajectories will consume
more airspace than necessary even though they do. This could occur because:
CS-2.12.1.2-1. ATM does not receive timely information about the aircraft capabilities. As
aresult, ATM has the wrong belief about the capabilities of the aircraft and continues to issue
trajectory modifications under the wrong belief that aircraft capabilities are degraded even
though they are no longer degraded. Since ATM chose to resolve the conflict, the aircraft do
not coordinate with each other and therefore also do not realize that the trajectories will
consume more space than necessary. [~L Reg-111, Reqg-115]

Scenarios for UCCA-12.2: The aircraft provide trajectory modifications (and ATM does not) when
those trajectories allocate more airspace than necessary to prevent collisions

CS-2.12.2.1. The aircraft and ATM both receive feedback indicating that they have selected
trajectory modifications that will allocate more airspace than necessary to prevent
collisions. However, they select those trajectory modifications anyway. This could occur
because:

CS-2.12.2.1-1. The aircraft correctly identify and begin coordinating a resolution. ATM,
seeing that the aircraft are coordinating a solution, decides not to step in to resolve the
conflict by itself. As a result, ATM does not have the opportunity to recognize when aircraft
might be selecting trajectory modifications that consume more airspace than necessary. As a
result, if the aircraft try to maintain more separation from other traffic than necessary, they

203

could end up selecting trajectory modifications that consume more airspace than necessary
and ATM would not notice that to correct it. [¥ Reqg-127]

CS-2.12.2.1-2. The aircraft decide to modify their trajectories and know that the
trajectory modifications it is issuing will consume more airspace than necessary to prevent
collisions but issues them anyway. This could occur if one aircraft experiences flight
conditions that it believes will cause the other aircraft to be unable to follow their pre-
arranged trajectories accurately enough. If this aircraft assumes this without confirming, it
could unilaterally select an expanded trajectory to protect airspace safety, consuming more
airspace than necessary. Since the aircraft decided to modify them on their own, ATM does
not notice that the trajectories consume more airspace than necessary. & Reg-118, Reg-116]

E.3. Combination 3 UCCAs and Scenarios

In this research, only one abstract UCCA is considered for combination 3:

UCCA-17: Both ATM and the aircraft provide trajectory modifications when the trajectory

modifications conflict [H-1]

As described in Section 5.2, there are three refined UCCAs that can be generated for UCCA-
17. These are shown in Table E-3. Following the table are the causal scenarios identified for each

of the three refined UCCAs.

Table E-3: Refined UCCAs for UCCA-17

Sub-ID ATM Aircraft 1 Aircraft n Context
. . . . Does not provide

UCCA-17.1 PrOV|.d.es Trajectory Prow.d.es Trajectory Trajectory

Modifications Modifications e o

Modifications when the

Does not provide Provides Trajectory Provides Trajectory | trajectory
UCCA-17.2 Trajectory Modifications Modifications modifications

Modifications conflict [H-1]
UCCA-17.3 Provides Trajectory | Provides Trajectory Provides Trajectory

) Modifications Modifications Modifications

Scenarios for UCCA-17.1: ATM and the aircraft both provide trajectory modifications when they

conflict with each other [H-1]

CS-2.17.1.1.

ATM and the aircraft receive feedback that the trajectory modifications selected
by one of them will conflict with those selected by the other. However, they issue their
conflicting trajectory modifications anyway. This could occur if:

CS-2.17.1.1-1. Both ATM and a UAM aircraft identify a potential conflict with another
aircraft that is not equipped to perform self-separation. The UAM aircraft proceeds to resolve
the conflict under the assumption that the other aircraft will not change trajectory and are
able to identify a solution first. However, ATM can control that other aircraft (e.g., by
coordinating with conventional ATC). Thus, although ATM knows the aircraft has already

204

selected trajectory modifications, ATM provides what it believes to be a better solution but
that conflicts with those of the aircraft. [\ Reg-114]
CS-2.17.1.1-2. Both ATM and the aircraft identify a potential conflict and ATM is the first
to issue trajectory modifications to the aircraft. Although the aircraft receive those trajectory
modifications, they wrongly believe those modifications will not adequately resolve the
collision. The aircraft therefore ignore ATM’s trajectory modifications and issue their own
trajectory modifications that conflict with those selected by ATM. & Reg-106]
CS-2.17.1.1-3. Two aircraft correctly recognize a conflict and agree on trajectory
modifications to prevent it. Although ATM knows that the other aircraft has already selected
a trajectory modification, ATM believes a different solution exists because it is balancing
competing factors differently. Thus, ATM issues trajectory modifications anyway to
implement its solution even though it conflicts with that selected by the two aircraft. [Reg-
106]
CS-2.17.1.1-4. The aircraft and ATM both identify a conflict at the same time and both try
to resolve it independently. As a result, ATM and the aircraft choose different trajectory
modifications to resolve the conflict. If they manage to select trajectory modifications at
about the same time, even if one of them receives feedback that the other has already
selected trajectory modifications, they may not process that feedback in time before they
provide their own (conflicting) trajectory modifications. & Reg-110, Reg-121]
CS-2.17.1.1-5. Two aircraft correctly recognize a conflict and agree on trajectory
modifications to prevent it. At the same time, ATM also begins to try to resolve the conflict.
Because of this, although ATM receives the trajectory modifications selected by the aircraft
as feedback, it does not process this feedback because it is trying to resolve the conflict. As a
result, by the time ATM realizes the aircraft have already selected trajectory modifications,
ATM has already transmitted its own trajectory modification that conflicts with the trajectory
modification selected by the equipped aircraft. [{ Req-106, Reg-110]
CS-2.17.1.1-6. Multiple sets of conflicts are occurring and ATM and the aircraft have
received feedback about them and are attempting to resolve them. While the aircraft are
each only attempting to resolve their own local conflict, ATM is resolving all these conflicts
together because it believes it can resolve them more efficiently. As a result, although the
aircraft have selected trajectory modifications already, ATM provides a conflicting set to the
aircraft. [{ Req-124]
CS-2.17.1.1-7. ATM and the aircraft both receive feedback about a conflict but only the
aircraft also realize that they need to modify their trajectory to avoid weather. Thus, while
ATM is identifying trajectory modifications to resolve the conflict, the aircraft are resolving
the conflict as well as avoiding weather. If they take about the same time to decide on
trajectory modifications, the aircraft might end up selecting trajectory modifications that are
different from those selected by ATM. & Req-110, Req-121, Req-146, Req-147]

CS-2.17.1.2. ATM does not receive feedback that its trajectory modifications will conflict with
those selected by the aircraft. This could occur if:
CS-2.17.1.2-1. Both ATM and the aircraft identify a potential conflict and attempt to
resolve it. If they both select trajectory modifications at about the same time, neither ATM
nor the aircraft will receive feedback that the other has already selected trajectory

205

modifications before they provide their own. Thus, they both provide trajectory modifications
that conflict with each other. [{ Reg-123]

CS-2.17.1.2-2. Two aircraft approach each other but only one of the aircraft is equipped
to perform self-deconfliction. That aircraft thus selects a trajectory modification. ATM,
however, does not know that the other aircraft has already selected a trajectory modification
and it tries to prevent the conflict by transmitting its own trajectory modification that
conflicts with the trajectory modification selected by the equipped aircraft. & Reg-114, Reqg-
121]

CS-2.17.1.3. ATM and the aircraft do not provide conflicting trajectory modifications but
conflicting trajectory modifications are received by the aircraft. This could occur if:
CS-2.17.1.3-1. An aircraft (aircraft A) is involved in a conflict (conflict 1) and begins
coordinating to resolve it. While doing so, it becomes involved in another conflict (conflict 2)
but cannot attend to conflict 2 until it has resolved conflict 1. However, the aircraft involved
in conflict 2 begin coordinating their trajectory modifications. As a result, aircraft A receives
two conflicting sets of trajectory modifications, one to resolve conflict 1 and another to
resolve conflict 2. [J« Reqg-148]

CS-2.17.1.4. The aircraft do not receive conflicting trajectory modifications but the reason for
needing trajectory modifications is not resolved or a collision still occurs. Same scenarios as
CS-2.1.4

Scenarios for UCCA-17.2: The aircraft provide trajectory modifications when they conflict with
each other [H-1]

CS-2.17.2.1. The aircraft receive feedback that the trajectory modifications selected by each of
them are in conflict but they select them anyway. This could occur if:
CS-2.17.2.1-1. Two aircraft correctly recognize a conflict but conflict in their proposals for
how to resolve it. This could occur if the aircraft prioritize different types of safety margins
and thus select different trajectory modifications to enact those margins. [\ Reg-109, Reg-
132, Reg-133]
CS-2.17.2.1-2. Two aircraft identify the same conflict at the same time and both attempt
to resolve the conflict. They both choose the same trajectory modification for themselves and
transmit the modification they intend to follow to the other aircraft, assuming that the other
aircraft will pick a deconflicted trajectory. If they both make this assumption, they might both
pick the same trajectory modification, assuming that the other aircraft will change its
trajectory modification. If neither changes its trajectory modification, the aircraft end up
executing the conflicting trajectory modifications they originally chose. v Req-149]
CS-2.17.2.1-3. Two aircraft (A & B) identify a conflict. Aircraft A selects a suitable
trajectory modification for itself and indicates its proposal to aircraft B. However, due to
traffic density, there is not a suitable trajectory available for aircraft B given the trajectory
selected by aircraft A and the air traffic in the surrounding airspace. As a result, aircraft B
selects a conflicting trajectory modification and requests aircraft A to change its trajectory to
deconflict. However, aircraft A does not respond to this request or it has no other options
available and thus they select trajectory modifications that conflict. W Req-150]

206

CS-2.17.2.2. The aircraft do not receive feedback that they are selecting conflicting trajectory
modifications. This could occur if:
CS-2.17.2.2-1. Two aircraft each observe a set of conflicts that do not involve each other
and they each coordinate with their own group of aircraft to resolve a conflict. Because these
two aircraft are resolving different conflicts, they are not coordinating with each other and
therefore do not receive feedback that they are selecting trajectory modifications that will
conflict with each other (i.e., a secondary conflict) & Reqg-108]
CS-2.17.2.2-2. An emergency response aircraft believes they do not need to coordinate
trajectories with other aircraft because of a TFR that is put in place to protect the airspace for
emergency response operations (e.g., a wildfire). It therefore selects trajectories as needed
for its operations. However, one of the UAM aircraft does not obey this TFR and selects a
trajectory modification that places it within the TFR. If that emergency response aircraft does
not communicate its intent to change trajectories, the UAM aircraft may select further
trajectory modifications that conflict with the emergency response aircraft. & Reg-151]

CS-2.17.2.3. The aircraft do not select conflicting trajectory modifications but conflicting
trajectory modifications are received by at least one of the aircraft. This could occur if:
CS-2.17.2.3-1. An aircraft (aircraft A) identifies two conflicts that need to be resolved.
Although ATM issues trajectory modifications to resolve conflict 1, Aircraft A coordinates with
other aircraft to resolve conflict 2. As a result, aircraft A receives conflicting trajectory
modifications even though the ones selected by the aircraft were not conflicting. & Req-148,
Reg-152]

CS-2.17.2.4. The aircraft do not select conflicting trajectory modifications and those
modifications are received correctly by the aircraft. However, the aircraft end up colliding
anyway. Same scenarios as C5-2.1.4

Scenarios for UCCA-17.3: ATM and the aircraft provide trajectory modifications when they all
conflict with each other [H-1]

CS-2.17.3.1. ATM and the aircraft receive feedback that they are selecting trajectory
modifications that are mutually in conflict but select them anyway. This could occur if:
CS-2.17.3.1-1. The two aircraft correctly recognize a conflict but do not agree on how to
prevent it. Furthermore, ATM issues its own trajectory modifications. This could be because
it needs to step in to help the two aircraft select an appropriate trajectory modification or
because it believes its solution is a better balance of competing factors. Thus, the aircraft and
ATM all issue their own trajectory modifications that all conflict with each other. & Req-123]
CS-2.17.3.1-2. Two different conflicts involving different aircraft are identified. The
aircraft involved in each conflict resolve their respective conflicts without coordinating with
each other. As a result, they select trajectory modifications that conflict with each other.
ATM, however, does resolve these conflicts in a coordinated way and issues conflicting
trajectory modifications to the aircraft because it believes it has a better coordinated or more
efficient solution to the two conflicts. [Req-121, Req-148, Reqg-152]

CS-2.17.3.2. ATM and the aircraft do not receive feedback that they are selecting conflicting
trajectory modifications. This could occur if:

207

CS-2.17.3.2-1. Two different conflicts involving different aircraft are identified. The
aircraft involved in each conflict resolve their respective conflicts without coordinating with
each other. As a result, they select trajectory modifications that conflict with each other
without realizing that they do. Although the aircraft provide feedback to ATM that they have
selected trajectory modifications, that feedback is not received by ATM. However, because
ATM provides no feedback when it receives trajectory modifications selected by the aircraft,
ATM and the aircraft are all unaware that mutually conflicting trajectory modifications have
been selected. [Reg-121, Req-148, Reg-152]

CS-2.17.3.3. ATM and the aircraft do not select mutually conflicting trajectory modifications

but the trajectory modifications received by the aircraft are mutually conflicting. Same
scenarios as CS-2.17.1.3 and CS-2.17.2.3

CS-2.17.3.4. ATM and the aircraft do not select mutually conflicting trajectory modifications

and they are correctly received by the aircraft. However, the aircraft end up colliding
anyway. Same scenarios as SC-2.1.4

E.4. Combination 4 UCCAs and Scenarios

Two abstract UCCAs were identified for combination 4 and these are shown in Table E-4. As

in the previous section, three refined UCCAs were identified for each of these abstract UCCAs
and they are shown in Table E-5. Following these tables are the scenarios that were identified for
each refined UCCA.

Table E-4: Combination 4 Abstract UCCAs

Either ATM or | Then the Context
the aircraft other
when ATM and the aircraft are attempting to resolve
UCCA-18 | provides Provides pHing

the same conflict [H-1]

UCCA-19 | Modifications Modifications

Trajectory Trajectory

When ATM and the aircraft are modifying trajectories
for different reasons [H-1]

Table E-5: Refined UCCAs for UCCA-18 and UCCA-19

Trajectory Modifications Then trajectory

Sub-1D provided by Modifications provided by Context

UCCA-18.1 ATM Aircraft n when ATM and the

UCCA-18.2 Aircraft n ATM aircraft are attempting
to resolve the same

UCCA-18.3 Aircraft 1 Aircraft n conflict [H-1]

UCCA-19.1 ATM Aircraft n When ATM and the

UCCA-19.2 Aircraft n ATM aircraft are modifying
trajectories for different

UCCs-19.3 Aircraft 1 Aircraft n reasons [H-1]

208

Scenarios for UCCA-18.1: ATM provides trajectory modifications then the aircraft provide
trajectory modifications when ATM and the aircraft are attempting to resolve the same conflict
[H-1]

CS-2.18.1.1. One or more of the aircraft provide trajectory modifications after ATM does
even though they both received feedback indicating the conflict at the same time. This
could occur if:

CS-2.18.1.1-1. When feedback about the conflict is received, both ATM and the aircraft
begin trying to resolve it. If the conflict occurs in densely populated airspace, ATM is faster at
identifying a solution and transmits its solution to the aircraft. However, the aircraft are
preoccupied with identifying a solution and don’t process the trajectory modifications from
ATM and issue their own trajectory modifications to resolve the same conflict. [Reg-121,
Reg-153]

CS-2.18.1.1-2. When feedback about the conflict is received, both ATM and the aircraft
begin trying to resolve it. ATM is faster at identifying a solution and the aircraft correctly
receive that solution. However, the aircraft disagree with ATM’s selected trajectory
modifications and believe they have the authority (e.g., PIC authority) to select different ones
and therefore the aircraft select different trajectory modifications for the same conflict. [
Reg-133, Req-154, Reg-155]

CS-2.18.1.1-3. The aircraft have more direct feedback about prevailing flight conditions
and recognize that inclement weather or other factors may make it more difficult for aircraft
to fly standard trajectories. Thus, the aircraft take additional time to coordinate trajectory
modifications to account for these factors. ATM, however, does not realize these conditions
are happening and therefore is faster at issuing trajectory modifications because it wrongly
believes that standard trajectories can be used. [Reqg-111, Reqg-116, Req-121]

CS-2.18.1.2. ATM and the aircraft do not receive feedback indicating the conflict at the same

time. This could occur if:
CS-2.18.1.2-1. The aircraft are temporarily unable to receive consolidated airspace state
feedback (e.g., terrain or building interference) and therefore get that feedback later than
ATM. As a result, ATM resolves the conflict first and then only do the aircraft identify their
solution. [Req-156]

CS-2.18.1.3. ATM does not provide trajectory modifications before the aircraft do but the

aircraft do receive trajectory modifications from ATM before they select their own. This
could occur if:
CS-2.18.1.3-1. ATM modifies the trajectory of the aircraft for some other reason (e.g., a
different conflict, weather, traffic) before it realizes a new conflict exists. However, ATM does
not indicate that its trajectory modifications are not to resolve that conflict. As a result, for
that conflict, although ATM isn’t resolving that conflict yet, the aircraft receive trajectory
modifications from ATM before they select their own. [Req-132]

CS-2.18.1.4. ATM does not provide trajectory modifications before the aircraft and that is
what the aircraft receive. However, they respond by executing a set of trajectory
modifications provided by ATM before the ones selected by the aircraft. This could occur if:

209

CS-2.18.1.4-1. An aircraft receives a set of trajectory modifications from ATM for some
other reason and then becomes involved in a conflict and selects trajectory modifications to
resolve the conflict (and ATM does not transmit its own trajectory modifications for that
conflict). However, if the aircraft apply those modifications in the order they were received
and begin to execute the modifications from ATM first before executing the ones selected by
the aircraft to resolve the conflict. [{ Reqg-157]

Scenarios for UCCA-18.2: The aircraft provide trajectory modifications then ATM provides
trajectory modifications when ATM and the aircraft are attempting to resolve the same conflict
[H-1]

CS-2.18.2.1. ATM provides trajectory modifications after one or more of the aircraft does

even though they both received feedback indicating the conflict at the same time. This
could occur if:
CS-2.18.2.1-1. In a situation where a large group of aircraft need to alter their trajectories,
a subset of the aircraft may select their own trajectory modifications and are able to do so
faster than ATM. ATM, however, is identifying a more complete solution for all aircraft which
takes it longer but is more optimal/valid. Thus, the aircraft end up selecting one set of
trajectories first before ATM identifies its solution. & Reqg-124]

CS-2.18.2.2. ATM and the aircraft do not receive feedback indicating the conflict at the same

time. This could occur if:
CS-2.18.2.2-1. The aircraft receive feedback about each other’s trajectory or track via
direct transponder links whereas ATM receives that information through a ground receiver
network. As a result, ATM receives feedback about the trajectory/track after the aircraft does
and therefore the aircraft select trajectory modifications before ATM does. In addition, if ATM
does not process feedback that the aircraft have selected trajectory modifications, it won’t
know to avoid providing its own set of modifications. [{ Reg-121, Req-158]

CS-2.18.2.3. The aircraft do not provide trajectory modifications before ATM does but they

receive trajectory modifications selected by them before ATM. This could occur if:
CS-2.18.2.3-1. An aircraft modifies its trajectory for some other reason (e.g., a different
conflict, weather, traffic) before it realizes the new conflict exists. Meanwhile, ATM resolves
the conflict but the aircraft don’t know this until ATM issues its trajectory modifications. As a
result, the aircraft receive and execute their own trajectory modification first and only
execute ATM’s trajectory modifications after. & Req-132, Reqg-157]
CS-2.18.2.3-2. ATM transmits its trajectory modifications via a ground network to the
aircraft whereas the aircraft transmit trajectory modifications directly to each other. As a
result, even though they all provide trajectory modifications at the same time, the ones
provided by ATM arrive after the ones provided by the aircraft & Req-132, Req-157]

CS-2.18.2.4. The aircraft do not provide trajectory modifications before ATM and that is what
they receive. However, they respond by executing trajectory modifications provided by
them first before ATM. Same scenarios as CS-2.18.1.4

210

Scenarios for UCCA-18.3: One aircraft provides trajectory modifications then another aircraft
provides trajectory modifications when both aircraft are attempting to resolve the same conflict
[H-1]

CS-2.18.3.1. One aircraft provides trajectory modifications after another aircraft does even
though they receive feedback indicating the conflict at the same time. This could occur if:
CS-2.18.3.1-1. Two aircraft are under a heavy workload. Although one aircraft correctly
recognizes the conflict and tries to resolve it, the other aircraft does not recognize the conflict
immediately and does not try to resolve it until later and does not realize the other aircraft
has already tried to coordinate a resolution to the conflict. As a result, the two aircraft initially
issue conflicting conflict resolutions to each other. [Reqg-106, Req-158]

CS-2.18.3.2. The aircraft do not receive feedback indicating the conflict at the same time. This

could occur if:
CS-2.18.3.2-1. The aircraft receive feedback about the conflict from different sources.
One aircraft might receive the feedback directly via transponder messages from the other
aircraft. However, the other aircraft might receive its feedback via a ground receiver network
which will have more delay than direct transponder messages. [Reg-121]

CS-2.18.3.3. The aircraft do not provide trajectory modifications at different times but they
receive trajectory modifications at different times. Same scenarios as CS-2.18.1.3 and CS-
2.18.2.3

Scenarios for UCCA-19.1: ATM provides trajectory modifications before the aircraft provide
trajectory modifications when they are modifying trajectories for different reasons [H-1]

CS-2.19.1.1. One or more of the aircraft provide trajectory modifications after ATM even

though they receive feedback indicating the need to modify trajectories at the same time.
This could occur if:
CS-2.19.1.1-1. ATM and the aircraft receive feedback about weather and a potential
conflict at the same time. However, ATM has the wrong process model of the aircraft’s ability
to operate in inclement weather and believes only a simple trajectory modification is needed
to resolve both the conflict and sufficiently avoid the weather. However, the aircraft (which
has the correct process model of its own needs) is identifying a more substantial trajectory
modification that resolves the conflict and avoids more of the weather. Thus, although ATM
is faster at identifying its simpler trajectory modification, the aircraft still select their own
trajectory modifications. & Reg-111, Reg-121, Reqg-159]

CS-2.19.1.2. ATM and the aircraft do not receive feedback indicating the need to modify

trajectories at the same time. This could occur if:
CS-2.19.1.2-1. Both ATM and the aircraft receive feedback about a conflict at the same
time but feedback about inclement weather is either only received by the aircraft or received
late by ATM. ATM therefore selects trajectory modifications to prevent the conflict only.
However, the aircraft select different trajectory modifications that also avoid weather and
prevent the conflict. & Reqg-111, Reg-159]

211

CS-2.19.1.3. ATM and the aircraft do not provide trajectory modifications at different times
but the aircraft receive trajectory modifications from the aircraft after ones from ATM.
Same as CS-2.18.1.3

CS-2.19.1.4. ATM and the aircraft do not provide trajectory modifications at different times.
However, the aircraft respond by executing trajectory modifications provided by ATM first
before the ones provided by the aircraft. Same as C5-2.18.1.4

Scenarios for UCCA-19.2 The aircraft provide trajectory modifications then ATM provides
trajectory modifications when they are modifying trajectories for different reasons [H-1]

CS-2.19.2.1. ATM provides trajectory modifications after one or more of the aircraft do even

though they receive feedback indicating the need to modify trajectories at the same time.
This could occur if:
CS-2.19.2.1-1. The feedback indicates two conflicts, one more immediate than the other.
The aircraft decide to resolve the more immediate one first whereas ATM tries to resolve
both conflicts at the same time. Thus, the aircraft identify trajectory modifications more
quickly than ATM but ATM issues its trajectory modifications anyway because it has a solution
to both conflicts. [J« Reg-121]

CS-2.19.2.2. ATM and the aircraft do not receive feedback indicating the need to modify
trajectories at the same time. Same as €5-2.19.1.2

CS-2.19.2.3. ATM and the aircraft do not provide trajectory modifications at different times
but the aircraft receive trajectory modifications from the aircraft before ones from ATM.
Same as C5-2.18.2.3

CS-2.19.2.4. ATM and the aircraft do not provide trajectory modifications at different times
and that is what they receive. However, the aircraft respond by executing trajectory
modifications provided by ATM first before the ones provided by the aircraft. Same as CS-
2.18.2.4

Scenarios for UCCA-19.3: One aircraft provides trajectory modifications then the other when
they are modifying trajectories for different reasons [H-1]

CS-2.19.3.1. One aircraft provides trajectory modifications after the other does even though
they receive feedback indicating the need to modify trajectories at the same time. Same as
(S-2.18.3.1

CS-2.19.3.2. ATM and the aircraft do not receive feedback indicating the need to modify
trajectories at the same time. Same as C5-2.18.3.2

CS-2.19.3.3. ATM and the aircraft do not provide trajectory modifications at different times
but the aircraft receive trajectory modifications from the aircraft before ones from ATM.
Same as C5-2.18.3.3
CS-2.19.3.4. ATM and the aircraft do not provide trajectory modifications at different
times. However, the aircraft respond by executing trajectory modifications provided by
ATM first before the ones provided by the aircraft. Same as CS5-2.18.3.4

212

Appendix F Design Iteration 2 — Requirements and Refined
Control Elements

In this appendix, the additional system requirements and the refined control elements that
were used to create the iteration 2 shared collision avoidance conceptual architecture (shown in
Figure 39) are presented.

F.1 Additional System Requirements for Shared Collision Avoidance

Reqg-101. If there is not enough time to generate complete trajectory modifications for all aircraft, partial
trajectory modifications must be generated that resolve the most imminent conflicts or interference
first. [\ RC-76]

Reqg-102. If partial trajectory modifications are provided, they must be updated within <TBD> time of
issuing them to ensure aircraft have complete and collision-free trajectories to follow for their flight.
[RC-77]

Reqg-103. If either ATM or the aircraft is unable to resolve a potential conflict, the other must be able to
take over and resolve it. [i« RC-78]

Reqg-104. Conflicts must continue to be resolved even if the ability of ATM or one of the aircraft to do so
is compromised [i« RC-79]

Reqg-105. Ground hazards must be detected with at least <TBD> range to ensure aircraft can take action
to avoid them. [»L RC-80]

Reqg-106. The conflict being resolved must be indicated to the aircraft involved to ensure they recognize
the collision. [»L RC-81]

Reqg-107. If an aircraft does not adequately execute its trajectory modifications, its trajectory should be
analyzed with respect to nearby aircraft to identify any potential collisions that might result from the
inadequately executed trajectory modification. [{ RC-82]

Reqg-108. Any aircraft within <TBD> of an area where a potential conflict might occur or within <TBD>
distance of an aircraft whose trajectory is being modified must be included in coordination to ensure
secondary collisions are avoided. [i RC-83]

Reg-109. A potential conflict that remains unresolved after <TBD> of being identified or <TBD> seconds
of the potential collision occurring must be prioritized and resolved within<TBD> time. [{ RC-84]
Req-110. If either ATM or the aircraft decide to attempt to resolve a collision, they must provide feedback

of their decision to do so. [»L RC-85]

Reg-111. Any changes to the navigational capabilities of an aircraft (e.g., accuracy) must be reported in a
timely manner to ensure that those capabilities are kept up-to-date for use in collision avoidance
decisions. [J« RC-86]

Req-112. The aircraft must begin executing trajectory modifications issued by ATM within <TBD> time of
receiving them [i« RC-87]

Reqg-113. Requests to confirm that proposed trajectory modifications will have adequate alternative
trajectories available must be confirmed within <TBD> time of the request being received to ensure
trajectory modifications can be issued in a timely manner. [{ RC-88]

Reqg-114. If a conflict involves at least one aircraft that is not equipped or non-cooperative, the conflict
must be resolved by whoever has better information about that aircraft. [l« RC-97]

213

Reqg-115. Trajectory modification decisions must account for any flight conditions that cause an aircraft
to be unable to meet their expected navigational or maneuvering capabilities or trajectory
constraints. [~L RC-89]

Reg-116. If prevailing flight conditions are affecting the ability of one aircraft to meet their expected
navigational or maneuvering capabilities or trajectory constraints, the ATM system shall anticipate
and verify that other aircraft of similar type might be experiencing the same effects and account for
them in trajectory modification decisions. [{ RC-90]

Reqg-117. Any trajectory modifications that consume additional airspace must be checked periodically to
confirm they are still necessary [i RC-91]

Reqg-118. Trajectories that consume more airspace than necessary must be able to be amended should it
become necessary to use airspace more efficiently [{ RC-92]

Reg-119. If a more efficient trajectory becomes available for an aircraft, trajectory modifications must be
provided to place the aircraft on the more efficient path within <TBD> time. [i RC-95]

Reqg-120. Any aircraft requiring a change in trajectory for any reason must be able to initiate a request for
trajectory modifications. [RC-94]

Req-121. An explicit decision must be made about who is resolving a potential conflict. [\ Resp-1.2]

Req-122. Emergency response flights must be given priority to carry out their missions. [\ RC-96]

Reqg-123. If multiple potential resolutions to a conflict are identified, an explicit decision must be made
about which trajectory modification instructions to execute [{ Resp-1.3]

Reqg-124. Under <TBD> conditions, to better coordinate the resolution of conflicts, it must be possible to
temporarily require that all trajectory modification decisions be made centrally. [Resp-1.6]

Req-125. If the NAS temporarily enters a “centralized mode”, it must have an associated end time when
that mode ends [»L RC-100]

Req-126. ATM system shall establish maximum allowable spacing between aircraft based on current and
anticipated conditions [»L RC-101]

Req-127. Flights that require additional spacing beyond <TBD> maximum allowable spacing must be
monitored and managed to ensure the additional spacing does not cause undue negative impacts to
other airspace users. [»L RC-102]

Req-128. Emergency response aircraft must be provided with sufficient protected airspace to allow them
the flexibility to make some small changes to their trajectory without having to re-coordinate with
other aircraft or ATM [i RC-104]

Req-129. If a nearby aircraft is detected but not included in the consolidated airspace state provided by
ATM, the consolidated airspace state must be reviewed to confirm if the detected aircraft was wrongly
omitted. [{ RC-105]

Reqg-130. If a more efficient trajectory becomes available for an aircraft, trajectory modifications must be
provided to place the aircraft on the more efficient path within <TBD> time [RC-106]

Reqg-131. Any changes made by the aircraft to its trajectory (e.g., to account for weather) must be
accounted for in future trajectory modification decisions [{ RC-107]

Req-132. Trajectory modifications must always be accompanied by rationale for their selection. [{ RC-
108]

Reqg-133. When arbitrating conflicting trajectory modifications, the rationale for each trajectory
modification selection must be considered [l« RC-98]

214

Reg-134. Acknowledgements of trajectory modifications must be checked to ensure that they match the
originally transmitted trajectory modification [\ RC-109]

Req-135. When aircraft are identified as needing a trajectory modification, an indicator must be provided
within the consolidated airspace state to ensure other aircraft and ATM are aware of aircraft whose
trajectories may be changing [{ RC-110]

Reqg-136. Trajectory modification decisions must account for aircraft who may be about to change
trajectories [i« RC-93]

Req-137. If a collision is not adequately resolved, the conflict must be re-evaluated and new trajectory
modifications issued to resolve it again [~L RC-103]

Reg-138. In consolidated airspace state, indicate if an aircraft is an emergency response aircraft so that
additional spacing can be provided for them [{ RC-111]

Reqg-139. If multiple conflicting trajectory modifications are issued, none will be transmitted for execution
until they are arbitrated [\ RC-112]

Reqg-140. Consolidated airspace state must include characteristics of the aircraft and mission along with
the trajectory (i.e., aircraft capabilities, mission and operational constraints) [{ RC-113]

Req-141. Traffic priorities must be accounted for when deciding who should resolve a conflict [\ RC-114]

Reqg-142. Selection of trajectory modifications must account for all aircraft that are identified as being
potential participants in a conflict [{ RC-115]

Reqg-143. The controller selected to resolve the conflict must either attempt to resolve the conflict or
indicate that they are unable to [i RC-116]

Req-144. Air traffic priorities must be determined and adhered to consistently when making trajectory
modification decisions [»L Resp-1.5]

Req-145. The ability of aircraft to execute their planned trajectory to the required navigational
performance must be monitored and trajectory modifications reconsidered if they are unable to
execute their planned trajectories sufficiently accurately [{ Resp-1.4]

Reqg-146. Aircraft must be able to decline a trajectory modification if the new trajectory cannot be
executed safely. [»L RC-120]

Req-147. If an aircraft declines a trajectory modification, it must provide a reason for declining it [{ RC-
121]

Reqg-148. If an aircraft is involved in two conflicts at once, a decision must be made about whether these
two conflicts should be resolved as two conflicts or if they should be combined into 1 large conflict [+
RC-122]

Req-149. If the aircraft are resolving a conflict, they must ensure that they select trajectories that do not
conflict with each other [i RC-123]

Req-150. If aircraft are resolving a conflict, they must be able to provide their trajectory restrictions to
the other aircraft to support overall selection of trajectory modifications [{ RC-124]

Reqg-151. Even airspace operations that are protected within a TFR must have track and planned
trajectories available and kept updated [{ RC-125]

Reqg-152. If two conflicts are combined into one, a new decision must be made about which controller
resolves that new combined conflict [l« RC-126]

Reqg-153. When a controller is selected to resolve the conflict, a time limit for resolving the conflict must
be established that is based on how much time is available before a collision occurs [»L RC-127]

215

Req-154. Unless an aircraft is unable to execute trajectory modifications, it must execute the trajectory
modifications provided to it [RC-128]

Req-155. If an aircraft is unable to execute a provided set of trajectory modifications, it must provide a
reason for being unable to execute them so that new trajectory modifications can be selected [{ RC-
129]

Req-156. Feedback mechanisms used by the aircraft to receive feedback needed for collision avoidance
must be designed for the anticipated urban environments or terrain conditions of UAM [{ RC-130]

Req-157. If two different sets of trajectory modifications that modify the same portion of an aircraft’s
trajectory for two different purposes, they should be arbitrated to decide how to apply both sets of
modifications (if possible) [{ RC-131]

Reqg-158. If an aircraft receives a message from another aircraft to coordinate trajectory modifications, it
must respond with its proposed trajectory modifications within <TBD> time [RC-132]

Reg-159. If the aircraft identify a conflict, they must be able to highlight important trajectory constraints
to assist with deciding which controller would be best able to resolve the conflict [i RC-133]

Reqg-160. Once a conflict is identified, it must be monitored to ensure it is resolved until there is no longer
a risk of a collision. [~L RC-134]

Reg-161. Once a conflict is identified, it must be reported within <TBD> time [{ RC-135]

Reqg-162. The controller assigned to resolve a conflict must acknowledge the conflict they are assigned to
[RC-136]

Reg-163. When switching to fully centralized decision making, a transition period shall be allowed where
aircraft continue resolving some conflicts to avoid overwhelming ATM [{ RC-137]

Req-164. If additional aircraft become involved in a conflict that is already being resolved, the controller
chosen to resolve that conflict must be re-evaluated to ensure they are still appropriate. [{ RC-138]

Req-165. The airspace near an aerodrome must be managed by ATM to protect aircraft entering/exiting
the aerodrome unless traffic density levels permit the aircraft to self-separate [{ RC-139]

Req-166. If a conflict is reassigned to a different controller, controllers that are no longer assigned must
stop resolving a conflict [RC-140]

Reqg-167. If the aircraft are resolving a conflict, they must select trajectory modifications in accordance
with the prescribed traffic priorities. [RC-141]

Req-168. If a conflict remains unresolved, the originally assigned controllers must be notified to re-resolve
it. [{ RC-142]

Reqg-169. If controllers are unable to adequately resolve a conflict after <TBD> attempts, a re-assignment
should be considered. [i RC-143]

Req-170. Trajectory modifications to resolve a conflict should only be accepted from the controller
assigned to the conflict. [i« RC-144]

Reqg-171. A controller assigned to a conflict must be given enough time to attempt to resolve the conflict
before that conflict is marked as unresolved [Jf RC-145]

Req-172. If an aircraft needs to modify its departure time (earlier or later), it must provide feedback of
that for approval and deconfliction with other aircraft [{ RC-146]

Reqg-173. If multiple aircraft select the same trajectory modifications, all aircraft other than the one with
the highest assigned priority must alter their trajectory modifications [{ RC-147]

Req-174. The aircraft resolving a conflict must confirm each other’s trajectory modifications before they
are executed. [i« RC-148]

216

Req-175. If two aircraft select similar trajectory modifications and both aircraft are assigned the same
priority, they must ensure that one aircraft changes its trajectory modifications [J« RC-149]

Reqg-176. A request to take over resolving a conflict must be confirmed with the originally assigned
controller before transferring assignment [{ RC-150]

Req-177. Future trajectory modification decisions must account for any arbitrated trajectory
modifications [i« RC-151]

Req-178. The reference frame used by aircraft to exchange trajectory constraints must be consistent
across aircraft [i« RC-152]

F.2 Refined Control Elements for Shared Collision Avoidance

The figures in this section show how these additional requirements were used in conjunction
with the earlier set of system requirements shown in Appendix B to refine Resp-1 and generate
the six more detailed control responsibilities and their associated control actions and feedback.
Each of these responsibilities and a simplified version of their corresponding control actions and
feedback were shown on the refined conceptual architecture shown in Figure 39 in Section 5.3.2.
Each control element is traced to the constraint or requirement used to generate it using the
links in square braces.

217

Resp-1.1: Identify and resolve any conflict with an aircraft's trajectory [Req-4]

RC-2: Account for planned trajectory when
identifying conflicts [Req-10]

RC-3: Ensure that coordination provided to the
aircraft is within the capabilities of the aircraft
[Req-15]

RC-4: Ensure coordination decisions do not cause
secondary conflicts [Reqg-17]

RC-15: Continue resolving conflicts even if one
or more aircraft are unable to communicate or
are not responding [Reqg-12]

RC-26: Ensure that aircraft have received the
coordination being communicated [Req-13]

RC-31: Ensure that alternative movement options
are considered when coordinating aircraft [Reg-
57]

RC-54: Ensure that initiated traffic management
plans are used to influence trajectory
modifications, alternative trajectory selection,
and airspace access management [Req-61]

RC-58: Confirm alternative trajectories are
available for any proposed coordination [Req-83]

RC-61: Account for reasons that a trajectory
modification was ineffective when selecting new
trajectory modifications [Req-85]

RC-71: Check in with affected aircraft on
preferred trajectory modification if unable
to meet all operational constraints [Req-86]

RC-80: Detect ground hazards with at least
<TBD> range to ensure aircraft can take
action to avoid them [Reg-105]

RC-94: Any aircraft requiring a change in
trajectory for any reason must be able to
initiate a request for trajectory
modifications [Req-120]

RC-103: Re-evaluate any inadequately
resolved conflict and generate new
trajectory modifications [Req-137]

RC-112: If conflicting trajectory
modifications are issued, only execute a
chosen set after arbitration [Req-139]

RC-115: Account for all aircraft identified as

potential participants in a conflict when
selecting trajectory modifications [Req-142]

RC-116: Resolve the conflict or indicate if
unable if a controller is selected to resolve a
conflict [Req-143]

RC-151: Account for arbitrated trajectory
modifications in future trajectory
modification decisions [Req-177]

Process Model Parts & Required Feedback/Inputs

Feedback from the aircraft:

Acknowledgement of traj. mods. [RC-26]
Detected ground hazards [RC-80]
Reason for trajectory deviation [RC-61]
Request for trajectory change [RC-94]

Inputs from Resp-1.2:

Controller assigned to resolve conflict [RC-116]
Aircraft involved in conflict [RC-15, RC-115]

Inputs from Resp-1.3: Selected trajectory

modifications [RC-112, RC-151]

Inputs from Resp-1.4:

e Unresolved Collision Risk [RC-27, RC-103]
e Reason for trajectory deviation [RC-61]

Inputs from Resp-1, 2, 3,4 0r5:

e Active traffic mgmt program [RC-54]

e Confirm trajectory modifications [RC-58]

e Alternate trajectories [RC-31, RC-58]

e Aircraft not communicating [RC-15]

e Consolidated airspace state [RC-2, RC-3,
RC-4]

Required Control Actions/Outputs

Control actions to the aircraft:

Trajectory modifications [Resp-1]
Request acknowl. of traj. mods. [RC-26]
Trajectory modification options [RC-71]

Outputs to Resp-1, 2, 3,4 0or 5:

e Trajectory modifications [Resp-1]
e Proposed trajectory modifications [RC-58]

Figure F-1: Defined control elements for Resp-1.1

218

Resp-1.2: Decide which controller is resolving a conflict [Req-121]

RC-78: Allow ATM and the aircraft to take over
from each other to resolve a conflict [Req-103]

RC-133: Aircraft must be able to highlight
important trajectory constraints to assist with

deciding which controller would be best able
to resolve the conflict [Req-159]

RC-136: Acknowledge the conflict to be
resolved once a controller is assigned to
resolve the conflict [Reg-162]

RC-137: Allow for a transition period where
aircraft continue resolving some conflicts to
avoid overwhelming ATM when initially
transitioning to fully centralized decision
making [Req-163]

RC-143: Consider a re-assignment of controller
if a conflict persistently remains unresolved
[Req-169]

RC-150: A request to take over resolving a
conflict must be confirmed with the originally
assigned controller [Req-176]

RC-79: Continue preventing conflicts even if
the ability of ATM or one of the aircraft to do
so is compromised [Req-104]

RC-83: Aircraft within <TBD> of an area where
a potential conflict might occur should be
included in coordination [Req-108]

RC-85: When either ATM or the aircraft decide
to resolve a collision, they must notify the
other aircraft or ATM of their decision [Reg-
110]

RC-97: If a conflict involves at least one aircraft
that is not equipped or non-cooperative, the
conflict must be resolved by whoever has
better information about that aircraft [Reg-
114]

RC-114: Account for traffic priorities when

deciding who should resolve a conflict [Reg-
141]

Process Model Parts & Required Feedback/Inputs
Inputs from Resp-1.5: Traffic priorities [RC-114]

Inputs from Resp-1.6: Implement fully centralized
collision avoidance [RC-137]

Input from Resp-4: Consolidated airspace state
[RC-97]
Internal Process Model Variables

Feedback from Resp-1.1:

e Identified conflicts [Resp-1.2]

e Requested controller to resolve conflict [RC-
78, RC-85]

e Unable to resolve conflict [RC-78, RC-79]

e Ops constraints for identified conflict [RC-133]

e Acknowledge conflict to resolve [RC-136]

e Assignment transfer accepted [RC-150]

Feedback from Resp-1.4:

e Aircraft unable to communicate [RC-79]
e Persistent unresolved conflict [RC-143]

Number of aircraft involved in conflict [RC-83]
e Current workload (of controllers resolving
conflicts) [Resp-1.2]

Required Control Actions/Outputs

Control actions to Resp-1.1:

e Controller assigned to resolve conflict [Resp-1.2]
e Aircraftinvolved in conflict [RC-83]
e Proposed assignment transfer [RC-150]

Figure F-2: Defined control elements for Resp-1.2

219

Resp-1.3: Arbitrate any conflicting conflict resolution proposals [Reqg-123]

RC-112: If conflicting trajectory modifications are issued, only execute a chosen set after they

have been arbitrated [Req-139]

RC-131: Arbitrate two different sets of trajectory modifications that modify the same portion of
an aircraft’s trajectory for two different purposes to decide how to apply them [Reg-157]

RC-144: Only accept trajectory modifications from the controller assigned to a conflict [Req-170]

Process Model Parts & Required Feedback/Inputs

Feedback from aircraft: Received trajectory modifications [Resp-1.3]

Input from Resp-1.2: Controller assigned to resolve conflict [RC-144]

Input from Resp-1.5: Traffic priorities [RC-131]

Required Control Actions/Outputs

Control action to aircraft: Selected trajectory modifications [RC-112]

Figure F-3: Defined control elements for Resp-1.3

Resp-1.4: Ensure conformance with planned trajectory and any modifications [Req-145]

RC-27: If coordination was not effective,
coordination is evaluated again to ensure that
risks are adequately mitigated [Req-50]

RC-60: If a trajectory modification is not
effective at resolving the collision, the reason
for the modification not being effective must
be determined so that an updated trajectory
modification can account for it [Req-84]

RC-66: Re-evaluate an aircraft’s trajectory if an
aircraft deviates from its planned trajectory by
more than <TBD> [Req-91]

RC-89: Account for any flight conditions that
cause an aircraft to be unable to meet their
expected navigational or maneuvering
capabilities or trajectory constraints [Req-115]

RC-90: If prevailing flight conditions are
affecting the navigational capabilities of
multiple aircraft, verify those effects with
other aircraft [Req-116]

RC-119: Ensure that aircraft needing trajectory
modifications have received it, are executing it
correctly and that the risk of collision or
interference is no longer present [Req-5]

RC-134: Monitor an identified conflict until
there is no longer a risk of collision [Req-160]
RC-142: Notify controllers assigned to a
conflict if it remains unresolved [Req-168]

RC-145: Allow enough time for an assigned
controller to resolve a conflict before flagging
the conflict as unresolved [Reqg-171]

Process Model Parts & Required Feedback/Inputs

Input from Resp-1.2: Controller assigned to
resolve conflict [RC-145]

Input from Resp-4: Consolidated airspace state
[RC-60]

Internal Process Model Variable: Unresolved
conflicts [RC-66, RC-134]

Feedback from the aircraft:

e Reason for trajectory deviation [RC-60]

e Prevailing flight conditions [RC-89, RC-90]
Feedback from Resp-1.1:

e Trajectory modifications [RC-27, RC-119]
e |dentified conflicts [RC-119]

Required Control Actions/Outputs

Control action to the aircraft: Request reason for
ineffective trajectory modification [RC-60]

Control actions to Resp-1.1:

e Unresolved collision risk [RC-142]
e Reason for ineffective traj. mod. [RC-89]

Figure F-4: Defined control elements for Resp-1.4
220

Resp-1.5: Set air traffic priorities to be enforced by the controller resolving a conflict [Req-145]

RC-7: Account for any users’ constraints on mission execution in addition to access priorities to
determine which impacts to operations are acceptable when coordinating aircraft [Reqg-21]
RC-44: Grant an aircraft experiencing an emergency the highest priority access to the airspace
they need to address the emergency [Reg-68]

RC-59: Ensure that the overall operational impact incurred by an aircraft is considered and
minimized when making coordination decisions [Req-78]

RC-70: Ensure that any changes to relevant operational constraints are accounted for when
issuing trajectory modifications [Req-95]

RC-96: Ensure that emergency response flights are given priority to carry out their missions [Reg-
133]

Process Model Parts & Required Feedback/Inputs

Feedback from Resp-1.1: Input from Resp-4: Consolidated airspace state
o Identified conflicts [Resp-1.4] [RC-7, RC-70, RC-96]
e Aircraftinvolved in a conflict [Resp-1.4] Internal Process Model Variable: Accrued

e Ops constraints relevant for identified conflict ~ operational impact [RC-59]
[RC-70]

Required Control Actions/Outputs
Control actions to Resp-1.1: Traffic priorities [Resp-1.4]

Figure F-5: Defined control elements for Resp-1.5

Resp-1.6: Establish when trajectory modification decisions need to be made centrally [Reg-
124]

RC-100: If NAS enters "centralized mode", it must have an associated end time when that mode
ends [Req-125]

Process Model Parts & Required Feedback/Inputs
Feedback from Resp-1.2: Identified conflicts [Resp-1.6]
Input from Resp-4: Consolidated airspace state [Resp-1.6]

Internal Process Model Variables:

e Number of conflicts [Resp-1.6]
e Current and anticipated future traffic density [Resp-1.6]

Required Control Actions/Outputs
Control actions to Resp-1.2: Implement fully centralized collision avoidance [Resp-1.6, RC-100]

Figure F-6: Defined control elements for Resp-1.6

221

Appendix G Design Iteration 2 — STPA Analysis of Refined
Conceptual Architecture

In Section 5.3.2, the refined conceptual architecture shown in Figure 39 was presented as
though it was all created in a single iteration. In reality, however, several of the control actions
and feedback shown in Figure 39 were only identified after the initial refined conceptual
architecture was analyzed. This appendix presents the STPA analysis of the refined conceptual
architecture to demonstrate how the results were used to identify both modifications to the
initial conceptual architecture and the assignment constraints that were used to inform the
creation of architecture options.

This appendix is organized as follows. First, the STPA results from analyzing the initial version
of the refined conceptual architecture are shown. For causal scenarios that can be used to
generate assignment constraints, the assignment constraints are highlighted in blue text at the
end of the scenario. Then, a comparison of the initial and modified versions of the conceptual
architecture are shown and the differences between them are highlighted and traced to the
scenarios and requirements that were used to generate them. This demonstrates how the
conceptual architecture can be modified based on some of the STPA results.

G.1 STPA Analysis of Initial Version of Refined Conceptual Architecture

For reference, the initial version of the refined conceptual architecture is shown in Figure G-
1. There are some differences between this initial version and the modified version shown in
Figure 39 in Section 5.3.2. These differences will be elaborated on later in Section G.2.

This STPA analysis is intentionally limited in scope because it is intended to only be a
demonstration of how the initial version of the refined conceptual architecture would be
analyzed. Thus, only the Trajectory Modifications control action provided from Resp-1.1 to the
aircraft is analyzed and causal scenarios are identified for only a few UCCAs.

In addition, since this analysis is performed by updating the STPA analysis shown earlier in
Appendix E, the UCCA tables are the same and will not be repeated in this appendix. Instead, only
the UCCAs that were analyzed to generate scenarios will be shown along with the updated
scenarios that were generated for them.

222

\ J

Arbitrate any

Resp-1.1:

Regulators
‘ T
|
~ ~
1 h
‘ / . Resp-2: Resp-3: Resp-5 ! \
! Ensure sufficient capacity Ensure coordination options are Manage airspace state :
1 is available available information 1
: ! \
b 'S'-""-'.' '''''''''''''''''''''''''''
| | Current workload ;ﬂx\t‘emj\te ‘f'ﬁjle‘:loh"?’
Trajectory modifications T“m‘ frafme m%‘ﬂm I
Consolidated airsapce state
| s Resp-1: “~ 0
’ Prevent Conflicts Resp-1.6: S |
’ Establish centralized N
|] Resp-1.5: decision making “
1 Prioritize air traffic A |
- | Implement fully 1
' I Traffic centralized | |ldentified 1
= . isi i isi 1
| Resp-4 V 1 Priorities collision avoidance | Collisions | |
M e 1
N anﬁagle accessto [. Resp-1.2: 1
| the airspace worming aircraft g Decide which controller is resolving a conflict 1
‘] Identified 4 - \ : |
1 Collisions Assigned lgel':.t'f'ed '
| ! Aireraft controller ofiistons Unresolved ;
1 Ircra resolving isi i
. involved in conflict | | Reauest controller collision risk :
1 conflict :
‘ |] Aircraft | | Workload of Aircraft ! |
, L PITErAR | ATMiAircraft unable to '
Ops| involved in communicate I
1 constraints conflict 1
I for Unable to resolve : |
‘ 1 identified conflict |
1 i conflict
| 1 Traffic Resp-1.4: ! I
1 Priorities Ensure potential conflict is resolved | '
1
r
| : Unresolved 1
. Collision Risk |
! Trajectory I
| : Modifications| | Reason for I
. N Lineff. traj. mod. 1 |
A 1
| 1 Resp-1.3: Selected 4 I
! I
\

conflicting conflict
\ |resolution proposals

traj. mods.

Identify and Resolve Potential Conflicts

N N (Performed by both ATM and UAM)
~ - 1 _
N P
~ o e e — L e -

Acknowledge tF Elijeqtory Trajectory Modifications
modifications Reason for
Received | | Selected Request trajectory
Trajectory | | trajectory Detected ground deviation

" o acknowledgement of

Modifications | | modifications hazards trajectory rgodiﬂcations
Prevailing flight
Request trajectory Request reason for conditions

change deviation

Request
reason for
ineff. traj.

mod.

UAM and Existing Aviation Aircraft

Figure G-1: Initial refined conceptual architecture

223

Scenarios for UCCA-1: Neither ATM nor aircraft provide trajectory modifications when the
trajectories of two aircraft are in conflict [H-1]

CS-3.1.1. Neither ATM nor the aircraft are assigned to resolve the conflict and therefore
no trajectory modifications are selected. This could occur if:

CS-3.1.1-1.The conflict is correctly identified by either ATM or the aircraft and, as part of
deciding who should resolve it, traffic priorities must be provided. However, if it takes
too long to decide on traffic priorities, no one is assigned to resolve the conflict until
traffic priorities are decided. {Resp-1.5=ATM, Resp-1.5=Resp-1.2}

CS-3.1.1-2.The conflict is correctly identified but only by the aircraft. However, they are
preoccupied with other tasks and are delayed in providing feedback about that conflict
so that a decision can be made about who should resolve it. As a result, no one is assigned
to resolve the collision. [Req-161]

CS-3.1.1-3.Under a period of high workload, a conflict is wrongly perceived as not urgent and
can be resolved later when the workload might be lower. However, if no better
opportunity arises or workload prevents returning to the conflict to assign a controller,
no one is ultimately assigned to resolve the conflict. In addition, that potential conflict is
not monitored for resolution because a conflict is not monitored until trajectory
modifications are issued. [Reg-160]

CS-3.1.1-4.The conflict is correctly identified and either ATM or the aircraft are assigned to
resolve the conflict. However, if they do not process the control, they may not know that
they have been assigned to resolve the conflict and therefore no one provides trajectory
modifications to resolve it. [Req-162]

CS-3.1.1-5.The aircraft identify an urgent conflict that needs to be resolved. However, they
need to wait for a decision on who should resolve the conflict. By the time they receive
that decision, there is not enough time to select trajectory modifications before the
conflict occurs {Resp-1.2 = Aircraft}

CS-3.1.1-6.The aircraft are assigned to resolve an urgent conflict that they did not identify.
However, by the time they are notified and the aircraft synchronize their process models
on what the conflict is and the aircraft that are involved, there is not enough time to
select trajectory modifications before the conflict occurs. {Resp-1.2 = Aircraft}

CS-3.1.2. An inappropriate controller is assigned to resolve the collision. As a result, they
are unable to select appropriate trajectories. This could occur if:

CS-3.1.2-1.When the conflict was identified, the aircraft were assigned to resolve it. However,
right after that decision is made, the system decides to switch to fully centralized collision
avoidance. Thus, the conflict is re-assigned to ATM to resolve and the aircraft do not
attempt to resolve it. However, this switch overwhelms ATM’s capacity to resolve
conflicts and it is unable to make a decision in time. [Req-163] {Resp-1.2=ATM}

CS-3.1.2-2. ATM is assigned to resolve a conflict that could have been resolved by the aircraft
based on inconsistent information about the current workload of ATM and the aircraft.
Based on this incorrect information, it is wrongly believed that ATM’s workload can
handle resolving this conflict and the aircraft are too busy to resolve this conflict.

224

However, it is ATM that is too busy to resolve the conflict while the aircraft wait for
trajectory modifications. {Resp-1.2=ATM}

CS-3.1.2-3. The aircraft are assigned to resolve a collision that initially does not involve a large
number of aircraft. However, additional aircraft become identified as involved in the
collision (e.g., more aircraft diverting to the same area for weather/aerodrome
availability) and the conflict is simply updated to include these additional aircraft without
re-evaluating the controller assigned to resolve the conflict. As a result, a large number
of aircraft end up having to coordinate to select trajectory modifications instead of ATM
resolving it centrally [Req-164]

CS-3.1.2-4.The aircraft are assigned to resolve an urgent conflict despite the fact that at least
one of them is in a critical phase of flight where their workload is high. This assignment
is made because of the urgency of the conflict but under out-of-date information about
the context of the conflict (e.g., level of workload of that aircraft due to the critical phase
of flight, trajectory constraints arising from traffic density) (inadequate process model).
As a result, the aircraft are unable to select appropriate trajectory modifications before
a collision occurs. {Resp-1.2=ATM}

CS-3.1.3. The correct controller is assigned to resolve the conflict. However, no trajectory
modifications are selected, or inadequate trajectory modifications are selected. This could
occur because:

CS-3.1.3-1.The aircraft are correctly assigned to resolve a conflict. However, one of the
aircraftis in a critical phase of flight (e.g., departure, final approach) and wrongly believes
its trajectory has no room for deviation to avoid conflicting with aircraft that are about
to depart. Thus, they rely on the other aircraft to modify their trajectories. However, if
the airspace is constrained enough, the other aircraft may not be able to adequately
modify their trajectories to prevent the conflict [Req-165]

CS-3.1.3-2. The aircraft are initially assigned to resolve a conflict but the conflict is re-assigned
to ATM when the system decides to switch to fully centralized collision avoidance.
However, the aircraft do not process this re-assignment and therefore ATM and the
aircraft both select trajectory modifications that conflict. [Req-166]

CS-3.1.3-3. The aircraft are correctly assigned to resolve a conflict but do not have a
consistent process model of each other’s trajectory constraints. As a result, they propose
trajectory modifications that are inappropriate for the other aircraft and ultimately are
unable to select appropriate trajectory modifications before a collision occurs. [Req-150]

CS-3.1.3-4. The aircraft are correctly assigned to resolve a conflict. However, they select
trajectory modifications that are inconsistent with the chosen traffic priorities (e.g., a
higher priority aircraft is forced to deviate far off its original flight path to avoid a
conflict). As a result, although the conflict is resolved, it results in some aircraft incurring
unacceptable delays. [Reqg-167]

CS-3.1.4. The controller that is less equipped to resolve a conflict is correctly not assigned
to resolve it. However, it does try to resolve the conflict anyway. This could occur if:
CS-3.1.4-1.The aircraft are assigned to resolve a conflict but they are unable to adequately

resolve it. When this is discovered, the conflict is reassigned to ATM to resolve it.
However, the aircraft are also notified that they did not resolve the conflict adequately
and therefore start to re-resolve the conflict even though ATM is already assigned to

225

resolve it. This results in duplicate trajectory modifications being issued. [Req-168, Reg-
169]

Scenarios for UCCA-11.1: ATM provides trajectory modifications (and the aircraft do not) when
the modifications result in a collision

CS-3.11.1.1. ATM is inappropriately assigned to resolve a conflict and it chooses trajectory
modifications that result in a collision. This could occur if:

CS-3.11.1.1-1. ATM is assigned to resolve the conflict because it was decided that all
conflict resolution decisions should be made centrally. However, because ATM receives
less timely feedback on flight conditions, it selects trajectory modifications that the
aircraft cannot execute accurately enough in the current flight conditions and a collision
occurs even though the aircraft were executing the trajectory modifications provided.
[Req-163]

CS-3.11.1.1-2. ATM is assigned to resolve a conflict because out-of-date feedback about
flight conditions or aircraft capabilities were used to make that decision. However,
because flight conditions are changing often and ATM does not have as up-to-date
feedback about flight conditions, it selects trajectory modifications that the aircraft
cannot adequately execute, and a collision occurs. {Resp-1.2=Aircraft}

CS-3.11.1.1-3. ATM is assigned to resolve a conflict instead of the aircraft to avoid
imposing additional workload onto the aircraft even though they are better suited to
resolve the conflict (inadequate control algorithm). As a result, ATM struggles to select
appropriate trajectory modifications. {Resp-1.2=Aircraft}

CS-3.11.1.2. ATM is correctly assigned to resolve a conflict and it chooses trajectory
modifications that result in a collision. This could occur if:

CS-3.11.1.2-1. Near a busy aerodrome, ATM provides trajectory modifications to an
aircraft to resolve a conflict based on an incorrect/out-of-date model of when aircraft
are departing from the aerodrome. As a result, it provides trajectory modifications that
conflict with the departure trajectory of an aircraft leaving the aerodrome and there is
not enough time to resolve that conflict by the time it is identified [Req-172]

CS-3.11.1.2-2. The aircraft are assigned to resolve a conflict but an error in the
communications channel results in some aircraft not receiving the full list of aircraft
involved in the conflict. As a result, different aircraft have a different process model of
which aircraft should be included in coordination efforts. As a result, some aircraft might
be ignored even if they attempt to coordinate trajectory modifications because the other
aircraft wrongly believe they are not part of the conflict being resolved [Req-158]

CS-3.11.1.2-3. In a previous conflict, ATM selected trajectory modifications that
conflicted with those selected by the aircraft. While those conflicting trajectory
modifications are being arbitrated, ATM selects trajectory modifications for this conflict
without knowing what the result of the arbitration is. As a result, it selects trajectory
modifications that conflict with the arbitrated trajectory modifications issued for the
other conflict [Req-177]

226

CS-3.11.1.2-4. The aircraft are assigned to a conflict and begin coordinating trajectory
modifications. However, some aircraft misinterpret the reference frame used by the
other aircraft to specify trajectory constraints (inadequate process model). As a result,
some aircraft choose trajectory modifications that are actually in conflict with the other
aircraft without realizing it. [Req-178]

Scenarios for UCCA-11.2: The aircraft provide trajectory modifications (and ATM does not) when
the modifications result in a collision

CS-3.11.2.1. The aircraft are inappropriately assigned to resolve a conflict and they choose
trajectory modifications that result in a collision. This could occur if:

CS-3.11.2.1-1. The aircraft are assigned to resolve a conflict involving an emergency
response aircraft that is wrongly believed to have a known trajectory that won’t change
much. As a result, if their trajectory actually changes frequently or changes in a way that
involves more aircraft, the aircraft can select trajectory modifications that contain
conflicts. [Reqg-164]

CS-3.11.2.2. The aircraft are correctly assigned to resolve a conflict and they choose
trajectory modifications that result in a collision. This could occur if:

CS-3.11.2.2-1. Two of the aircraft involved in the conflict select trajectory modifications
that conflict with each other and assume that the other aircraft will select a different
trajectory modification. By the time the conflicting trajectories are identified, there is not
enough time to resolve them to avoid a collision. [Req-173]

CS-3.11.2.2-2. The aircraft are assigned to resolve a conflict. While selecting trajectory
modifications, one of the aircraft begins executing its selected trajectory modification
before it is confirmed that all aircraft involved in the conflict have selected adequate
modifications. As a result, a collision occurs with other aircraft who have not yet selected
appropriate trajectory modifications. [Req-174]

CS-3.11.2.2-3. Two aircraft are assigned the same priority and therefore they select very
similar trajectory modifications at the same time. If they assume that the other aircraft
will change its trajectory modification, they might both execute those similar trajectory
modifications and cause a collision [Req-174, Req-175]

Scenarios for UCCA-17.1: ATM and the aircraft both provide trajectory modifications when they
conflict with each other [H-1]

CS-3.17.1.1. Both UAM and the aircraft are assigned to resolve a conflict and they choose
conflicting trajectory modifications. This might occur if:

CS-3.17.1.1-1. The aircraft are initially assigned to a conflict before it is realized that one
of the aircraft is unable to perform self-separation (e.g., not equipped, not able to
communicate). When this is realized, ATM is assigned to the conflict instead. However,
if the aircraft do not process the re-assignment, they may end up selecting trajectory
modifications while ATM is doing the same. [Req-162, Req-166, Req-170]

227

CS-3.17.1.1-2. The aircraft are assigned to resolve a conflict. However, before the aircraft
have had enough time to resolve the conflict, premature feedback is received indicating
that the conflict remains unresolved. As a result of this feedback, the conflict is re-
assigned to ATM to resolve. If the aircraft do not process this re-assignment, they may
end up selecting trajectory modifications while ATM is doing the same. [Req-162, Reqg-
166, Req-170, Req-171] {Resp-1.2 = Resp-1.4}

CS-3.17.1.2. Only ATM or the aircraft are assigned to resolve a conflict but the other also
attempts to resolve the conflict and they choose conflicting trajectory modifications. This
could occur if:

CS-3.17.1.2-1. The aircraft are assigned to resolve a conflict but are unable to do so
adequately. As a result, they are notified that the collision is unresolved. However, ATM
also receives this notice and believes it should step in to help resolve it and does so even
though it was not assigned to. [Reqg-176]

G.2 Identifying Required Modifications to the Initial Refined Conceptual Architecture

Using these causal scenarios, changes were made to the initial refined conceptual
architecture shown in Figure G-1. Table G-1 lists the scenarios that were used to generate these
changes, the requirement that was derived from those scenarios and the control actions or
feedback that were added based on those requirements. Figure G-2 then shows the modified
refined conceptual architecture. This is the same conceptual architecture that was shown in
Figure 39 in Section 5.3.2, but with the added or removed control actions and feedback
highlighted in green.

Table G-1: Scenarios and requirements that led to added control actions and feedback

Scenario ID Requirement ID Control Action/Feedback
Cs-3.17.1.1-1 Reqg-170 Controller assigned to resolve conflict
(Control action from Resp-1.2 to Resp-1.3)
Proposed assignment Transfer
(Control action from Resp-1.2 to Resp-1.1)
CS-3.17.1.2-1 Reqg-176 -
Assignment transfer accepted
(Feedback from Resp-1.1 to Resp-1.2)
Cs-3.1.1-4 Req-162 Acknowledge conflict to resolve
(Feedback from Resp-1.1 to Resp-1.2)
CS-3.1.1-3 Req-160 Identified conflicts
(Feedback from Resp-1.1 to Resp-1.4)
CS-3.17.1.1-2 Reg-171 Controller assigned to resolve conflict
(Control action from Resp-1.2 to Resp-1.4)
CS-3.1.4-1 Req-169 Persistent unresolved conflicts
(Feedback from Resp-1.4 to Resp-1.2)

228

Regulators

+

/ _— _— —_— _— h— e _— _— _— _— _— _— —
ittt : ~N
, Resp-2: Resp-3: Resp-5 !
! Ensure sufficient capacity Ensure coordination options are Manage airspace state : \
' is available available information '
‘ i
7 S 7T ===== _ __________________________________
Trajectory modifications Consolidated airsapce state |
" - Resp-1: ~~.
’ Prevent Conflicts Resp-1.6: N
’ Establish centralized \ |
’ Resp-1.5: decision making \
. Prioritize air traffic Implement fully ‘l
' I
I | i Traffic __ centralized |denf::fit8d I
Resp4 I Identified | priorities collision avoidance | [contlicts :
Manage access * i conflicts Resp-1.2: . |
to the airspace B Decide which controller is resolving a conflict
| ! Aircraft = '
ircra - |
1 . . L
involved in e |
I conflict Ident!fled) : 1
| Controller conflicts & ops Hisi isk |
| . cosntraints 1
Ops assigned to Controller| | . |
! constraints resolve Request assigned| |Aircraft :
: for conflict controller to resolve unable 10. 1
| identified conflict| |commu mc:ateI I
1 conflict Alrcraft Unable to resolve : 1
X involved in conflict Persistent |
X conflict unresolved |
conflicts I
1 Traff P " Acknowledge 1
| raffic ropose conflict to resolve I
| priorities assignment 1 I
1 transfer | | acsignment)
: Controller transfer accepted v :
X assigned Resp-1.4: I I
. to resolve Ensure potential conflict is resolved | |
conflict . 1
! Trajectory] | Unresolved . |
: Modifications Collision Risk ;
1
: Identified | | Reason for i |
| conflicts | | ineff. traj. mod. I
I Y v 1 1 1
1 Resp-1.3: S(.elected Resp-1.1: I ,
| Arbitrate any traj. mods. Identify and Resolve Potential Conflicts 1
1 conflicting conflict 1
4 |resclution proposals (Performed by both ATM and UAM) y
\)
\ ’
y
B J '//
N ~ -,
~ L ',/'
—— — —— — — — — — p— — — — —
Acknowledge trajectory
modifications Trajectory Modifications
Reason for
K Detected ground Request trajectory Request
1':\;:.‘;?:'1"05‘1 tsr:‘leeg‘ﬁsr(‘j hazards | | acknowledgement of deviation | | reason for
Modifitj:ationri mojdifica)tfions trajectory modifications ineff. traj.
Request trajectory Prevailing flight mod.
change Request reason for conditions
deviation/ineff traj. mod.
Aircraft capabilities
v ¥

UAM and Existing Aviation Aircraft

Figure G-2: Modified conceptual architecture with added control actions and feedback shown in green

229

Appendix H Design Iteration 2 — Analysis and Comparison of
Architecture Options

This appendix shows the results from comparing the two architecture options in design
iteration 2. The first option (As4) is the ground-based conflict assignment architecture where Resp-
1.2 is assigned to ATM. The second option (As) is the airborne conflict assignment architecture
where Resp-1.2 is assigned to the aircraft. Table H-1 shows the full set of evaluation criteria that
were identified and the comparison results for each architecture option. These evaluation criteria
are sorted by type (e.g., decision making, control path). For each evaluation criterion, links are
provided in square braces to the scenario(s) in Table H-2 used to generate them.

Table H-2 then presents the full architecture comparison table. This table contains (1) the
scenarios used to compare the two architecture options, (2) the decisions about whether each
scenario occurs for each architecture option, (3) any assumptions used to decide that a scenario
does not occur for an architecture option, and (4) the evaluation criterion generated from that
scenario. As in Appendix D, note that Table H-2 only includes scenarios where behavioral
differences were observed.

Table H-1: Full set of evaluation criteria for comparison of architecture options A; and As

Benefit (+) or
ID Evaluation Criteria Tradeoff (-)
A4 A5

Decision Making Evaluation Criteria

EC-2.1 Responsiveness of trajectory modification decisions when the aircraft @
) resolve an urgent conflict [Scenario 2.1]
Stability of decision about controller assigned to a conflict to prevent
EC-2.2 loss of separation when waiting for controller to resolve conflict @
[Scenario 2.20]
EC-2.3 Capacity to make conflict resolution decisions to prevent loss of @
) separation when selecting trajectory modifications [Scenario 2.25]
EC-2.4 Responsiveness of trajectory modification decisions when ATM
) resolves an urgent conflict [Scenario 2.2]
EC-2.5 Need to make Conflict Assignment Transfer decisions when an urgent

conflictis identified [Scenario 2.5]

Ability to make appropriate decisions to accept/reject conflict
EC-2.6 assignments when a controller is assigned a conflict to resolve
[Scenario 2.22]

Ease of coordinating centralization and conflict assignment decisions

oXo)o]o,

EC-2.7 o
when switching to centralized decision making [Scenario 2.14]
Process Model Evaluation Criteria
Ability to ensure adequate update of controller assigned to conflict
EC-2.8 when assigning two conflicts that occur close together in time @
[Scenario 2.4]

230

Evaluation Criteria

Benefit (+) or
Tradeoff (-)

A5

EC-2.9

Available awareness of aircraft workload when assigning conflicts to
be resolved [Scenarios 2.7, 2.8]

EC-2.10

Level of situational awareness needed of aircraft involved in a
conflict and relevant trajectory constraints when the aircraft resolve a

conflict they did not identify [Scenario 2.10]

EC-2.11

Required awareness of aircraft or ATM workload to prevent loss of
separation when assigning conflicts to be resolved [Scenarios 2.17,
2.18]

EC-2.12

Ability to maintain alignment of Controller Assigned to Conflict when
receiving conflict assignment [Scenarios 2.12, 2.13]

ONOJNOJNOL

EC-2.13

Level of situational awareness of aircraft involved in a conflict and
relevant trajectory constraints when assigning conflicts to be resolved
[Scenario 2.11]

EC-2.14

Ability to maintain alignment of Controller Assigned to Conflict when
deciding who is resolving a conflict [Scenarios 2.6, 2.23]

EC-2.15

Level of situational awareness of future changes in airspace state to
prevent loss of separation when resolving conflicts near aerodromes
[Scenario 2.26]

EC-2.16

Level of situational awareness of trajectory constraints applicable for
a conflict to prevent loss of separation when resolving an urgent
conflict [Scenario 2.27]

OJNOJ(O RO,

Feedback / External Inputs Evaluation Criteria

EC-2.17

Timeliness of flight conditions and aircraft capabilities feedback when
assigning conflicts to be resolved [Scenarios 2.9, 2.15]

EC-2.18

Ability to process identified conflicts inputs when the workload of the

controller processing that feedback is high [Scenario 2.3]

EC-2.19

Timeliness of feedback about aircraft arrivals and departures to
prevent loss of separation when resolving conflicts near aerodromes
[Scenario 2.19]

EC-2.20

Ability to evaluate and verify aircraft to be included in conflict
resolution to prevent loss of separation when selecting trajectory
modifications [Scenario 2.24]

O 000

EC-2.21

Ability to evaluate and verify requests to resolve a conflict to prevent
loss of separation when ATM or the aircraft request to resolve a
conflict [Scenario 2.16]

EC-2.22

Ability to respond appropriately to centralization inputs to prevent
loss of separation when assigning conflicts to be resolved [Scenario
2.21]

OJNO,

231

Table H-2: Comparison results for the centralized (A;) and decentralized (A;) collision avoidance architecture options

Evaluation
i Scenario Occurs? .
ID Scenario Criteria
EC-2.1:
The aircraft identify an urgent Responsiveness of
conflict that needs to be resolved. Az Yes trajectory
However, <controller performing As: modification
Resp-1.2> takes too long to decide 3 decisi
2.1 | who should resolve a conflict. By the Assumption: Since the aircraft ecisions to
) time the aircraft receive that. identify a conflict and are also the | prevent loss of
decisi h . hti ones deciding who should resolve it, | separation when
ecision, t ereis not 'e'nou'g time to they can respond to an urgent the aircraft
select traJectory' modifications conflict quicker resolves an urgent
before the conflict occurs conflict
ATM identifies an urgent conflict EC-2.4:
that needs to be resolved. However, Responsiveness of
<controller performing Resp-1.2> Az trajectory
takes too long to decide who should Assumption: If ATM identifies a modification
resolve a conflict (inadequate conflict and it also decides who decisi A
2.2 control algorithm). By the time ATM should resolve it, it can respond to an ecisions to
receives that decision, there is not urgent conflict quicker spgg\::;]:icl)(:ms\s/viln
enough time to select trajectory As: Yes ATM resolves an
modifications before the conflict urgent conflict
occurs HIEENT CONTICt
<Controller not performing Resp-
1.2> identifies a conflict and
provides that feedback, but A4' Yes EC-2.18: Ability to
<controller performing Resp-1.2> ’ process identified
does no'F process that ffee.dback As: conflicts inputs to
appropriately because it is Assumption: Even if one of the prevent loss of
23 experiencing high workload. As a aircraft is experiencing a high separation when

result, <controller not performing
Resp-1.2> wrongly believe
<controller performing Resp-1.2> is
aware of the conflict but it is not.
The conflict therefore remains
unresolved by <controller
performing Resp-1.2>.

workload and does not process the

indication from ATM, other aircraft

might not be and could process the

indication and decide to resolve the
conflict (or not)

the workload of
the controller

processing that
feedback is high

232

Evaluation

ID | Scenario Scenario Occurs? Criteria
Two conflicts occur close together
and <controller performing Resp-
1.2> wrongly believe they already EC-2.8: Ability to
requested <controller not As: Yes ensure adequate
performing Resp-1.2> to resolve Ac: update of
both conflicts even though that) 5] controller assigned
2.4 | assignment was for the earlier Assumption: The aircraft are to conflict when
conflict, not the more recent one. monitoring their own trajectories assigning two
. closely and so would not forget to ; . :
<Controller performing Resp-1.2> either resolve a conflict themselves or conflicts that
therefore does not issue a new have ATM take over to resolve it oceur close
assignment for the more recent together in time
conflict and that conflict goes
unresolved.
<controller performing Resp-1.2>
identifies an urgent conflict and As: EC-2.5: Nee.d to
|n|t|a!ly believe 'Fhey can resolve the Assumption: ATM, with its broader ma!<e Conflict
conflict but realize they are unable situational awareness, would be able Assignment .
25 to. Because of the urgency of the to resolve an urgent conflict if it was Transfer decisions
conflict, by the time they try to needed to (and it was the one who | tO Prevent loss of
request <controller not performing identified it) separation when
Resp-1.2> to take over, there is not an urgent conflict
enough ti i i As: Yes is identified
gh time for it to resolve it is identifie
before a collision occurs.

EC-2.14: Ability to
<Controller performing Resp-1.2> Az m.aintain
Ident,lfu,es a conflict but has Assumption: Within ATM, its process alignment of
conflicting process models about model will always be consistent Con.troller

26 who is resolving the conflict. As a about whether it is resolving a Assigned to

result, <controller performing Resp-
1.2> does not assign a controller to
resolve the conflict and does not
resolve the conflict itself

conflict itself or assigning it to the
aircraft.

As: Yes

Conflict to prevent
loss of separation
when deciding
who is resolving a
conflict

233

Evaluation

ID | Scenario Scenario Occurs? Criteria
<Controller performing Resp-1.2>
attempts to resolve a conflict that
should be assigned to <controller not
performing Resp-1.2> because As: Yes EC-2.9: Available
<Controller performing Resp-1.2> awareness of
has incorrect information about the As: aircraft workload
2.7 | current workload of <controller not Assumption: The aircraft would not | t0 prevent loss of
performing Resp-1.2>. However, try to account for ATM's workload | separation when
<Controller performing Resp-1.2>is | and just make the request for ATM to | assigning conflicts
itself experiencing high workload help resolve a conflict if needed to be resolved
and cannot select appropriate
trajectory modifications before a
collision occurs.
<Controller performing Resp-1.2>
assigns the aircraft to resolve a
collision that initially does not
involve a Iarge. |t1umbe.r of aircraft. Ag: Y EC-2.9: Available
Howg\{er, ad(_:lltlonal a.lrcraft beco.me 4. Y€Ss awareness of
identified as involved in the C(?nﬂlCt. As: aircraft workload
2.8 'I:A(‘(l;[shpo-lig;;(s:zr::/;or!i:]zf?;err?sjrrfber Assumption: Once the aircraft believe | 1O prevgnt loss of
. . . they can't resolve the conflict separation when
of aircraft in the conflict is growing, adequately, they will request ATM's | assigning conflicts
it keeps the conflict assigned to the assistance as soon as possible to be resolved
aircraft. As a result, a large number -
of aircraft end up having to
coordinate to select trajectory
modifications.
<Controller performing Resp-1.2>
assigns the aircraft to resolve an
urgent conflict even though at least EC-2.17:
o.ne of them is |r? a critical phas? of As: Yes Timeliness of
fl|ght where the|_r workload is high. flight conditions
This assignment is made. because of As: and aircraft
Fhe urgency of the cpnfllct but under Assumption: Since the aircraft capabilities
2.9 | inaccurate information about the exchange trajectory constraints and | faedback to

capabilities/operational constraints
of that aircraft (e.g., limitations on
low altitude maneuvering). As a
result, the aircraft are unable to
select appropriate trajectory
modifications before a collision
occurs.

are directly gathering weather
feedback, they have more timely
access to this information than ATM
does

prevent loss of
separation when
assigning conflicts
to be resolved

234

Evaluation

ID | Scenario Scenario Occurs? Criteria
) EC-2.10: Level of
<C9ntro|ler performlng Resp-1.2> situational
assigns the aflrcraft to reso‘lve an A4: Yes awareness needed
grgeqt conflict that they did not of aircraft involved
identify based on the urgency of the As: in a conflict and
conflict. However, by the time the Assumption: When the aircraft relevant trajectory
2.10 | aircraft synchronize their process perform Resp-1.2, they have greater | .o straints to
models on what the conflict is and situational awareness of the airspace prevent loss of
the aircraft that are involved, there and will be faster in synchronizing :

. : separation when
is not enough time to select thelrprc?cess .nj)odel of the conflict the aircraft resolve
trajectory modifications before the identified by ATM. : .

. a conflict they did
conflict occurs. not identif
<Controller performing Resp-1.2> EC-2.13: Level of
identifies a conflict but does not situational
adequately process feedback on the Ag: awareness of
relevant operational or trajectory Assumption: ATM would have aircraft involved in
constraints for that conflict. Thus, broader awareness needed to a conflict and

2.11 | they correctly assign the aircraft to accurately determine the operational | relevant trajectory
resolve the conflict but wrongly omit | ©" trajectory constra{'nts relevant for | constraints to
some aircraft from the list of aircraft a conflict prevent loss of
involved in the conflict. As a result, As: Yes separation when
only a subset of the aircraft assigning conflicts
coordinate to resolve the conflict. to be resolved
<Controller performing Resp-1.2>
correctly assigns the aircraft to As: Yes EC-.2.12.: Ability to
resolve a conflict. However, delays in maintain
when that assignment is received by A5: alignment of

212 the various aircraft result in delays in Assumption: With the aircraft Con.troller
the aircraft beginning to coordinate coordinating on who should resolve a | Assigned to

trajectory modifications (inadequate
control path). As a result of these
delays, the conflict is not adequately
resolved before a collision occurs.

conflict, a delay in starting to select
trajectory modifications would not
occur

Conflict when
receiving conflict

assignment

235

Scenario

Scenario Occurs?

Evaluation

Criteria
<Controller performing Resp-1.2>
assigns the aircraft to resolve a
conflict. Based on the provided Az: Yes EC-.2-12.= Ability to
traffic priorities, the aircraft wait for maintain
the highest priority aircraft to select A5: alignment of
2.13 its trajectory modifications. Assumption: If the aircraft have Con.troller
However, if the highest priority identified the conflict, they know they | Assigned to
aircraft is delayed in recognizing that | need to resolve it even if they are still | Conflict when
it needs to resolve a conflict, that waiting on traffic priorities to be receiving conflict
will delay all other aircraft in provided by ATM assignment
selecting trajectory modifications as
well
Either ATM or the aircraft identify a
conflict and <controller performing EC-2.7: Ease of
Resp-1.2> decides to resolve it. A4: coordinating
However, while they are resolving Assumption: In this architecture, ATM | centralization and
the conflict, ATM also indicates that retains sole decision-making conflict
it is implementing centralized authority over assignment of conflicts | assignment
2.14 | collision avoidance. Based on this to aircraft. Thus, the control action to | decisions to
input, <controller performing Resp- .switch to centrolr/i{ed collision prevent loss of
1.2> attempts to transfer the conflict avoidance "mode"” is ’"te"’?’ to ATM separation when
to ATM. If ATM is unable to resolve and not known to the aircraft switching to
the conflict (e.g., too little time A5: Yes centralized
remaining to collision), the conflict decision making
remains unresolved.
<Controller performing Resp-1.2>
decides to resolve a conflict based Az Yes EC-2.17:
on out-of-date feedback about flight ’ Timeliness of
conditions or aircraft capabilities. As: flight conditions
However, because flight conditions Assumption: The aircraft will have and ai.rFr.aft
215 | are changing often and <Controller more timely feedback about flight | capabilities
performing Resp-1.2> does not conditions and aircraft capabilities | feedback to

receive timely feedback about flight
conditions, it selects trajectory
modifications that the aircraft
cannot adequately execute, and a
collision occurs.

than ATM and therefore could make
more appropriate resolution
decisions when those factors are
important to consider

prevent loss of
separation when
assigning conflicts
to be resolved

236

Evaluation

ID | Scenario Scenario Occurs? Criteria
<Controller not performing Resp-
1.2> indicates a conflict to
<controller performing <Resp-1.2> Az EC-2.21: Ability to
and requests that it be allowed to Assumption: ATM verifies any request | €valuate and
resolve the conflict. Even though from the aircraft to resolve a conflict. | verify requests to
<controller not performing Reps-1.2. Given ATM's broader situational resolve a conflict
2.16 | is not able to adequately resolve the | awareness of what is happening in | to prevent loss of
conflict, <controller performing the airspace, it is assumed that ATM | separation when
Resp-1.2> complies with the request. would know if the aircraft can or | ATM or the
As a result, <controller not cannot adequately resolve a conflict aircraft request to
performing Resp-1.2> selects As: Yes resolve a conflict
trajectory modifications that result
in a collision
<Controller resolving Resp-1.2>
decides to resolve a conflict itself to
avoid imposing additional v.vorkload As: Yes EC-2.11: Required
on <controller not performing Resp- Ac: awareness of
1.2> even though <controller not) S5e) . aircraft or ATM
performing Resp-1.2> is better Assumption: Once the aircraft believe
2.17 . . they can't resolve the conflict workload to
. suited to resolve the conflict.) , loss of
However, <controller performing adequgte/y , they will request ATM's prevent.
assistance and do not need to separation when
Resp-1.2> struggles to select consider ATM's workload because | assigning conflicts
appropriate trajectory modifications ATM can mitigate its workload in to be resolved
due to workload or other conditions other ways
and selects modifications that result
in a conflict
<Controller resolving Resp-1.2>
decides to assign the conflict to
<controller not performing Resp- .
1.2> even though <controller As: Yes EC-2.11: Required
performing Resp-1.2> is better As: awareness of
suited to resolve the conflict because | assumption: Once the aircraft believe aircraft or ATM
218 <controller performing Resp-1.2> is they can't resolve the conflict workload to

experiencing high workload.
However, <controller not performing
Resp-1.2> struggles to select
appropriate trajectory modifications
due to workload or other conditions
and selects modifications that result
in a conflict

adequately, they will request ATM's
assistance and do not need to
consider ATM's workload because
ATM can mitigate its workload in
other ways

prevent loss of
separation when
assigning conflicts
to be resolved

237

Evaluation

ID Scenario Scenario Occurs? Criteria
Near a busy aerodrome, <controller
performing Resp-1.2> decides to
assign ATM to resolve a conflict
because it wrongly believing that the EC-2.19:
airspace near that aerodrome is too As: Yes Timeliness of
busy for the aircraft to resolve the Ac: feedback about
conflict themselves. However, Assumption'sT'he ircraft could aircraft arrivals
i | T T i | e et o | g
the aircraft to resolve a conflict al?out gerodrome dep a.rtures by prevent_ loss of
talking directly to other aircraft than | separation when
bahsed 9” anfsut-o;-date'['mo?el Ofth for ATM to put that information resolving conflicts
when aircraft are departing from the together.
aerodrome. As a result, it provides J nesracrodromes
trajectory modifications that conflict
with the departure trajectory of an
aircraft leaving the aerodrome
The <controller performing Resp-
1.2> initially assigns the conflict to
<controller not performing Resp- As: Yes EC-2.2: Stability of
1.2> to resolve, but then decides decision about
that they are taking too long to As: controller assigned
resolve the conflict. <Controller Assumption: Because the aircraft | t0 @ conflict to
2.20 | performing Resp-1.2> therefore cannot unilaterally direct ATM to prevent loss of
reassigns the conflict to itself to take over resolving a conflict, they | separation when
resolve even though <controller not are less likely to repeatedly change | waiting for
performing Resp-1.2> was almost their decision of who should resolve a | controller to
done resolving a conflict. However, conflict resolve conflict
there is not enough time to
adequately resolve the conflict.
ATM indicates that it is
implementing centralized collision Az: EC-2.22: Ability to
avoidance. However, <controller .) .
. . . Assumption: In this architecture, ATM respond
.per.forr.nlng Resp-1.2> re.celves this retains sole decision making appropriately to
indication and as.sumes it should authority over assignment of conflicts | centralization
2.21 transfer all conflicts they are to aircraft. Thus, the control action to | inputs to prevent

resolving to ATM to resolve
(inadequate control algorithm). This
therefore overwhelms ATM and it
selects inadequate trajectory
modifications that resultin a
collision.

switch to centralized collision
avoidance "mode" is internal to ATM
and not known to the aircraft

As: Yes

loss of separation
when assigning
conflicts to be
resolved

238

Scenario

Scenario Occurs?

Evaluation

Criteria
<Controller performing Resp-1.2> EC-2.6: Ability to
requests <controller not performing . make appropriate
Resp-1.2> to resolve a conflict even Ag: decisions to
though <controller performing Resp- | Assumption: The aircraft will always accept/reject
1.2> is better equipped to resolve it. indicate to ATM if they cannot .

2.2 Because <controller not performing resolve a conflict and will not feel con.fllct
Resp-1.2> wrongly believes it must ‘obligated" to accept a request 2scs(|)gnr;:)|e|2:si:vhen
accept the request, it selects As: Yes assignmmlict
modifications that resultin a to resolve
collision. —_—
<Controller performing Resp-1.2>
identify a conflict but it becomes
misaligned about who is resolving EC-2.14: Ability to
the conflict. As a result, <Controller maintain
performing Resp-1.2> provides Az alignment of
conflicting feedback both requesting | Assumption: Because ATM is the sole | . .
the assistance of <controller not decision maker for Resp-1.2 in this Assigned to
2.23 | performing Resp-1.2> and indicating scenario, ATM will maintain a C ﬁ tt ¢
that <controller performing Resp- consistent process model of who is | on |fc © preven
1.2> is resolving the conflict itself. assigned to resolve a conflict o;s © dser.)j.ratlon
When <controller performing Resp- As: Yes xhi?s%g 3
1.2> receives this conflicting conflict
feedback, it decides it should just -
resolve the conflict even though it is
not able to do so adequately
<Controller performing Resp-1.2>
assigns the conflict to <controller not EC-2.20: Ability to
performing Resp-1.2> to resolve but As: Yes evaluate and
inadvertently leaves out several Ac: verify aircraft to
aircraft that should be included in S5e be included in
coordination to prevent the conflict | Assumption: Because of ATM's other | confiict resolution
2.24 responsibilities, even if the aircraft

(inadequate control algorithm). As a
result, <controller not performing
Resp-1.2> does not adequately
coordinate their trajectory
modifications and some resultin a
collision.

inadvertently omit some aircraft from
the set of aircraft to be included in
coordination, ATM will recognize and
correct for that

to prevent loss of
separation when
selecting

trajectory
modifications

239

Evaluation

i Scenario Occurs? o
ID Scenario Criteria
The aircraft receive a <conflict
a55|fg|r1me:t/request to resolve X EC-2.3: Capacity to
C?” ']Cct> rqm A;.Ml; Howkelve;, the As: Yes make conflict
a‘|rcra‘tare|na |Ig' wor}'1 oa o Ac: resolution
situation or resolving ot' er coq icts 5. decisions to
295 and therefore does not immediately Assumption: The aircraft are prevent loss of
begul'l re;olvmg the Eclanfllct;jAs a | r;zomltormg their m;;n trf}ectortlis separation when
n n r .
resu t{ they are unable to a eqt..late y .C osely and so WOU_ otjorget to selecting
coordinate to prevent the conflict either resolve a conflict themselves or traiector
; have ATM take over to resolve it trajectory
and 'Fh'ey Fhoose traJector.y modifications
modifications that resultin a
collision.
<Controller performing Resp-1.2>
decides to assign the aircraft to
resolve a conflict, believing that the
chra?ftfare re.ce|V|rE)g modre up-to- EC-2.15: Level of
a';e in 'orrl’natl.on a putf epar;ure As: situational
an erlva trajectorlesdrom the Assumption: With ATM's broader awareness of
aerodrome. However, uetoan situational awareness, it would know | future changes in
2,06 | EveNtoccurring at another to transfer the conflict back to itself if | airspace state to
aerodrome (e.g., weather), necessary when the airspace density prevent loss of
numerous aircraft are about to changes as it does in this scenario separation when
d|v;rt 'Zlo th|.s a.erodrome. ﬁ\s the f As: Yes resolving conflicts
traffic density increases, t e.alrcra t near aerodromes
are unable to select appropriate
trajectory modifications and there is
not enough time for ATM to assist
before a collision occurs.
<Controller performing Resp-1.2>
decides to assign the aircraft to
resolve an urgent conflict even EC-2.16: Level of
though their workload is high. This situational
assignment is made because of the As: awareness of
.urgency of .the confl.lct but under Assumption: ATM will have broader trajectqry
297 inaccurate information about all the situational awareness to identify all constraints

applicable trajectory constraints or
while lacking information about the
anticipated future state of the
airspace. As a result, the aircraft are
unable to select appropriate
trajectory modifications before a
collision occurs.

trajectory constraints for a conflict

As: Yes

applicable for a
conflict to prevent
loss of separation
when resolving an
urgent conflict

240

